Bibliography
Agresti, A., and M. Kateri. 2022. Foundations of Statistics for Data
Scientists. Chapman; Hall/CRC.
Akaike, H. 1985. “Prediction and Entropy.” In A
Celebration of Statistics, edited by A. C. Atkinson and S. E.
Fienberg, 1–24. Springer. https://doi.org/10.1007/978-1-4613-8560-8_1.
Amari, S.-I. 2016. Information Geometry and Its Applications.
Springer. https://doi.org/10.1007/978-4-431-55978-8.
Bernardo, J. M. 1979. “Expected Information as Expected
Utility.” Ann. Stat. 7: 686–90. https://doi.org/10.1214/aos/1176344689.
Dawid, A. P., and M. Musio. 2014. “Theory and Applications of
Proper Scoring Rules.” METRON 72: 169–83. https://doi.org/10.1007/s40300-014-0039-y.
Diaconis, P., and B. Skyrms. 2018. Ten Great Ideas about
Chance. Princeton University Press.
Domingos, P. 2015. The Master Algorithm: How the Quest for the
Ultimate Learning Machine Will Remake Our World. Basic Books.
Gelman, A., J. B. Carlin, H. A. Stern, D. B. Dunson, A. Vehtari, and D.
B. Rubin. 2014. Bayesian Data Analysis. 3rd ed. CRC Press.
Good, I. J. 1952. “Rational Decisions.” J. R. Statist.
Soc. B 14: 107–14. https://doi.org/10.1111/j.2517-6161.1952.tb00104.x.
———. 1979. “A. M. Turing’s Statistical
Work in World War II.” Ann. Math. Statist.
66: 393–96. https://doi.org/10.1093/biomet/66.2.393.
Heard, N. 2021. An Introduction to Bayesian Inference, Methods and
Computation. Springer.
Held, L., and D. S. Bové. 2020. Applied Statistical Inference:
Likelihood and Bayes. Second. Springer.
Jaynes, E. T. 2003. Probability Theory: The Logic of Science.
Cambridge University Press. https://doi.org/10.1017/CBO9780511790423.
Kullback, S., and R. A. Leibler. 1951. “On Information and
Sufficiency.” Ann. Math. Statist. 22: 79–86. https://doi.org/10.1214/aoms/1177729694.
Leff, H. S. 2007. “Entropy, Its Language, and
Interpretation.” Bell Syst. Tech. J. 77: 1744–66. https://doi.org/10.1007/s10701-007-9163-3.
McGrayne, S. B. 2011. The Theory That Would Not Die. Yale
University Press.
Pachter, J. A., Y.-J. Yang, and K. A. Dill. 2024. “Entropy,
Irreversibility and Inference at the Foundations of Statistical
Physics.” Nat. Rev. Physics 6: 382–93. https://doi.org/10.1038/s42254-024-00720-5.
Shannon, C. E. 1948. “A Mathematical Theory of
Communication.” Bell Syst. Tech. J. 27: 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.