Bibliography

Agresti, A., and M. Kateri. 2022. Foundations of Statistics for Data Scientists. Chapman; Hall/CRC.
Akaike, H. 1985. “Prediction and Entropy.” In A Celebration of Statistics, edited by A. C. Atkinson and S. E. Fienberg, 1–24. Springer. https://doi.org/10.1007/978-1-4613-8560-8_1.
Amari, S.-I. 2016. Information Geometry and Its Applications. Springer. https://doi.org/10.1007/978-4-431-55978-8.
Bernardo, J. M. 1979. “Expected Information as Expected Utility.” Ann. Stat. 7: 686–90. https://doi.org/10.1214/aos/1176344689.
Dawid, A. P., and M. Musio. 2014. “Theory and Applications of Proper Scoring Rules.” METRON 72: 169–83. https://doi.org/10.1007/s40300-014-0039-y.
Diaconis, P., and B. Skyrms. 2018. Ten Great Ideas about Chance. Princeton University Press.
Efron, B. 2022. Exponential Families in Theory and Practise. Cambridge University Press. https://doi.org/10.1017/9781108773157.
Gelman, A., J. B. Carlin, H. A. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis. 3rd ed. CRC Press.
Good, I. J. 1952. “Rational Decisions.” J. R. Statist. Soc. B 14: 107–14. https://doi.org/10.1111/j.2517-6161.1952.tb00104.x.
———. 1979. A. M. Turing’s Statistical Work in World War II.” Ann. Math. Statist. 66: 393–96. https://doi.org/10.1093/biomet/66.2.393.
Heard, N. 2021. An Introduction to Bayesian Inference, Methods and Computation. Springer.
Held, L., and D. S. Bové. 2020. Applied Statistical Inference: Likelihood and Bayes. Second. Springer.
Jaynes, E. T. 2003. Probability Theory: The Logic of Science. Cambridge University Press. https://doi.org/10.1017/CBO9780511790423.
Kullback, S., and R. A. Leibler. 1951. “On Information and Sufficiency.” Ann. Math. Statist. 22: 79–86. https://doi.org/10.1214/aoms/1177729694.
Leff, H. S. 2007. “Entropy, Its Language, and Interpretation.” Bell Syst. Tech. J. 77: 1744–66. https://doi.org/10.1007/s10701-007-9163-3.
McGrayne, S. B. 2011. The Theory That Would Not Die. Yale University Press.
Pachter, J. A., Y.-J. Yang, and K. A. Dill. 2024. “Entropy, Irreversibility and Inference at the Foundations of Statistical Physics.” Nat. Rev. Physics 6: 382–93. https://doi.org/10.1038/s42254-024-00720-5.
Shannon, C. E. 1948. “A Mathematical Theory of Communication.” Bell Syst. Tech. J. 27: 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.