Bibliography

Agresti, A., and M. Kateri. 2022. Foundations of Statistics for Data Scientists. Chapman; Hall/CRC.
Akaike, H. 1985. “Prediction and Entropy.” In A Celebration of Statistics, edited by A. C. Atkinson and S. E. Fienberg, 1–24. Springer. https://doi.org/10.1007/978-1-4613-8560-8_1.
Amari, S.-I. 2016. Information Geometry and Its Applications. Springer. https://doi.org/10.1007/978-4-431-55978-8.
Bernardo, J. M. 1979. “Expected Information as Expected Utility.” Ann. Stat. 7: 686–90. https://doi.org/10.1214/aos/1176344689.
Dawid, A. P., and M. Musio. 2014. “Theory and Applications of Proper Scoring Rules.” METRON 72: 169–83. https://doi.org/10.1007/s40300-014-0039-y.
Diaconis, P., and B. Skyrms. 2018. Ten Great Ideas about Chance. Princeton University Press.
Domingos, P. 2015. The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books.
Gelman, A., J. B. Carlin, H. A. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis. 3rd ed. CRC Press.
Good, I. J. 1952. “Rational Decisions.” J. R. Statist. Soc. B 14: 107–14. https://doi.org/10.1111/j.2517-6161.1952.tb00104.x.
———. 1979. A. M. Turing’s Statistical Work in World War II.” Ann. Math. Statist. 66: 393–96. https://doi.org/10.1093/biomet/66.2.393.
Heard, N. 2021. An Introduction to Bayesian Inference, Methods and Computation. Springer.
Held, L., and D. S. Bové. 2020. Applied Statistical Inference: Likelihood and Bayes. Second. Springer.
Jaynes, E. T. 2003. Probability Theory: The Logic of Science. Cambridge University Press. https://doi.org/10.1017/CBO9780511790423.
Kullback, S., and R. A. Leibler. 1951. “On Information and Sufficiency.” Ann. Math. Statist. 22: 79–86. https://doi.org/10.1214/aoms/1177729694.
Leff, H. S. 2007. “Entropy, Its Language, and Interpretation.” Bell Syst. Tech. J. 77: 1744–66. https://doi.org/10.1007/s10701-007-9163-3.
McGrayne, S. B. 2011. The Theory That Would Not Die. Yale University Press.
Pachter, J. A., Y.-J. Yang, and K. A. Dill. 2024. “Entropy, Irreversibility and Inference at the Foundations of Statistical Physics.” Nat. Rev. Physics 6: 382–93. https://doi.org/10.1038/s42254-024-00720-5.
Shannon, C. E. 1948. “A Mathematical Theory of Communication.” Bell Syst. Tech. J. 27: 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.