Bibliography
Bishop, C. M. 2006. Pattern Recognition and Machine Learning.
Springer. https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/.
Izenman, A. J. 2008. Modern Multivariate Statistical
Techniques. New York: Springer. https://doi.org/10.1007/978-0-387-78189-1.
James, G., D. Witten, T. Hastie, and R. Tibshirani. 2021. An
Introduction to Statistical Learning with Applications in
R. 2nd ed. Springer. https://doi.org/10.1007/978-1-0716-1418-1.
James, G., D. Witten, T. Hastie, R. Tibshirani, and J. Taylor. 2023.
An Introduction to Statistical Learning with Applications in
Python. Springer. https://doi.org/10.1007/978-3-031-38747-0.
Mardia, K. V., J. T. Kent, and J. M. Bibby. 1979. Multivariate
Analysis. Academic Press.
Murphy, K. P. 2022. Probabilistic Machine Learning: An
Introduction. MIT Press. https://probml.github.io/pml-book/book1.html.
———. 2023. Probabilistic Machine Learning: Advanced Topic. MIT
Press. https://probml.github.io/pml-book/book2.html.
Prince, S. J. D. 2023. Understanding Deep Learning. MIT Press.
https://mitpress.mit.edu/9780262048644/understanding-deep-learning/.
Rogers, S., and M. Girolami. 2017. A First Course in Machine
Learning. 2nd ed. Chapman; Hall / CRC. https://doi.org/10.1201/9781315382159.
Zhang, A., Z. C. Lipton, M. Li, and A. J. Smola. 2023. Dive into
Deep Learning. https://d2l.ai.