Reading list:
These are the papers we plan to discuss in each session:
- Biology and Technology
- Expression Indices
- Li, C., and W.H. Wong. 2001. Model-based analysis of oligonucleotide
arrays: expression index computation and outlier detection.
PNAS 98:31-36.
- Naef, F., D.A. Lim, N. patil, and M.O. Magnasco. 2001.
From features to expression: high-density oligonucleotide
array analysis revisited.
Preprint.
- Irizarry, R.A., B. Hobbs, F. Collin, Y.S. Beazer-Barclay,
K.J. Antonellis, U. Scherf, and T.P. Speed.
2002. Exploration, normalization, and summaries of high density
oligonucleotide array probe level data.
Preprint.
- Normalisation
- Schadt, E.E., C. Li, C. Su, and W. H. Wong. 2000.
Analyzing high-density oligonucleotide gene expression array data.
J. Cellul. Biochem. 80:192-202
(reprint).
- Yang, Y.-H., S. Dudoit, P. Lu, and T.P. Speed. 2001.
Normalization for cDNA microarray data.
Proc. Int.
Symp. Biomedical Optics. 20-26 January, 2001, San Jose.
(preprint)
- Yang, Y.-H., S. Dudoit, P. Lu, D.M. Lin, V. Peng, J. Ngai,
and T.P. Speed. 2002. Normalization for cDNA microarray data:
a robust composite method addressing single and multiple slide
systematic variation.
Nucl. Acids Res. 30(4):e15.
- Differential Expression I
- Chen, Y., E.D. Dougherty, and M.L. Bittner. 1997.
Ratio-based decisions and the quantitative analysis of
cDNA microarray images.
J. Biomed. Optics 2:364-374.
- Newton, M.A., C.M. Kendziorski, C.S. Richmond, F.R. Blattner,
and K.W. Tsui. 2001.
On differential variability of expression ratios: improving
statistical inference about gene expression changes from
microarray data.
J. Comp. Biol. 8:37-52.
- Ting Lee, M.L., F.C. Kuo, G.A. Whitmore, and J. Sklar. 2000.
Importance of replication in microarray gene expression studies:
statistical methods and evidence from repetitive cDNA hybridizations.
PNAS 97:9834-9839.
- Differential Expression II
- Dudoit, S., Y.-H- Yang, M.C. Callow, and T.P. Speed. 2002.
Statistical methods for identifying differentially expressed
genes in replicated cNDA microarray experiments.
Statistika Sinica 12(1).
(preprint)
- Goss Tusher, V., R. Tibshirani, and G. Chu. 2001.
Significance analysis of microarrays applied to the
ionizing radiation response.
PNAS 98:5116-5121.
- Lönnstedt, I., and T.P. Speed. 2002.
Replicated microarray data.
Statistika Sinica 12(1).
(preprint)
- Differential Expression III
- Efron, B., R. Tibshirani, J.D. Storey, and V. Tusher. 2001.
Empirical Bayes analysis of a microarray experiment.
JASA 96:1151-1160.
- Efron, B., J.D. Storey, and R. Tibshirani. 2001.
Microarrays empirical Bayes methods, and false discovery rates.
Technical Report 2001-23B/217
(Dept. of Statistics, Stanford).
- Efron, B. 2001. Robbins, empirical Bayes, and microarrays.
Technical Report 2001-30B/219
(Dept. of Statistics, Stanford).
- ANOVA
- Kerr, M.K, M. Martin, and G.A. Churchill. 2000.
Analysis of variance for gene expression microarray data.
J. Comp. Biol. 7:819-837.
(preprint)
- Kerr, M.K, and G.A. Churchill. 2001. Statistical design and the analysis
of gene expression microarray data.
Genet. Res. Camb. 77:123-128.
- Kerr, M.K., C.A. Afshari, L. Bennet, P. Bushel, J. Martinez, N.J. Walker,
and G.A. Churchill. 2002.
Statistika Sinica 12(1).
(preprint)
- Clustering I
- Tamayo, P., D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky,
E.S. Lander, and T.R. Golub. 1999. Interpreting patterns of gene expression with
self-organizing maps: methods and application to hematopoietic
differentiation.
PNAS 96:2907-2912.
- Yeung, K.Y., C. Fraley, A. Murua, A.E. Raftery, and W.L. Ruzzo. 2001.
Model-based clustering and data transformations for gene expression
data.
Bioinformatics 17:977-987.
- Fraley, C., and A.E. Raftery. 1998. How many clusters? Which
clustering method? Answers via model-based cluster analysis.
The Computer Journal 41:578-588.
- Clustering II
- Eisen, M.B., P.T. Spellman, P.O. Brown, and D. Botstein. 1998.
Cluster analysis and display of genome-wide expression patterns.
PNAS 95:14863-14868.
- Herrero, J., A. Valencia, and J. Dopazo. 2001. A hierarchical
unsupervised growing neural network for clustering gene
expression patterns.
Bioinformatics 17:126-136.
- Kerr, M.K., and G.A. Churchill. 2001. Bootstrapping cluster
analysis: assessing the reliability of conclusions from microarray
experiments.
PNAS 98:8961-8965.
- Data and Dimension Reduction
- Alter, O., P.O. Brown, and D. Botstein. 2000. Singular value
decomposition for genome-wide expression data processing and
modelling.
PNAS97:10101-10106
- Yeung, K.Y., and W.L. Ruzzo. 2001. Principal component analysis
for clustering gene expression data.
Bioinformatics 17:763-774.
- Hastie, T., R. Tibshirani, M.B. Eisen, A. Alizadeh, R. Levy, L. Staudt,
W.C. Chan, D. Botstein, and P. Brown. 2000.
'Gene shaving' as a method for
identifying distinct sets of genes with similar expression patterns.
Genome Biology 1(2):research0003.-0003.21
- Classification I
- Golub, T.R., D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek,
J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri,
C.D. Bloomfield, and E.S. Lander. 1999.
Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring.
Science 286:531-537.
- Slonim, D.K., P. Tamayo, J.P. Mesirov, T.R. Golub, and E.S. Lander.
2000. Class prediction and discovery using gene expression data.
Proceedings RECOMB IV:263-271.
(reprint)
- Yeang, C.-H., S. Ramaswamy, P. Tamayo, S. Mukherjee, R.M. Rifkin,
M. Angelo, M. Reich, E.S. Lander, J. Mesirov, and T. Golub. 2001.
Molecular classification of multiple tumor types.
Bioinformatics 17:S316-S322.
- Classification II
Most of these papers are downloadable from within the network of the
University of Munich. (You may need to configure your browser properly
- see the proxy guide
at the LRZ). If you have
problems or prefer to copy an article please contact us.
|