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Chapter 1

Overview

1.1 Introduction

Molecular phylogenetics deals with inferring phylogenetic relationships from molecu-

lar sequence data. Of the many techniques described (Swofford et al., 1996) maximum-

likelihood methods are special due to their conceptual simplicity and their well-defined

statistical basis. In principle a maximum-likelihood analysis consists of three parts.

First a model of evolutionary change for nucleotides or amino acids is specified. Then,

based on this model, different hypotheses about the evolutionary history are evalu-

ated in terms of the probability that the hypothesized history would give rise to the

observed data. Finally, the hypothesis is selected that shows the highest probability.

Maximum-likelihood often yields estimates with a lower variance than other methods,

and it is frequently the estimation method least affected by sampling error (Swofford

et al., 1996). In addition, maximum-likelihood also seems to be quite robust against

violations of the assumptions used in the underlying model (Huelsenbeck, 1995). This

is part of the power of the approach.

However, maximum-likelihood methods have drawbacks as well. Most impor-

tantly, they often are computationally very expensive. This can mostly be attributed

to two factors. First, in order to find the optimal solution usually a large number of

alternative hypotheses have to be evaluated. Consider, e.g., the number of different

unrooted binary trees

B(N) =
N∏

i=3

(2i− 5). (1.1)

for N sequences (Felsenstein, 1978). As B(N) grows exponentially with N it is virtu-
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ally impossible for any computer to compare all trees even if the number of sequences

is only moderately large. Second, the complexity of computing the probability for a

specific hypothesis can be prohibiting as well. The advent of powerful computers has

only partially resolved this situation.

1.2 Subject of this thesis

In this thesis we introduce heuristic methods for use in molecular phylogeny that en-

able the application of maximum-likelihood even for large data sets. First we pro-

vide in Chapter 2 an introduction to models of sequence evolution and to maximum-

likelihood. Then we study in Chapter 3 the problem to obtain maximum-likelihood

estimates for the parameters of a model of sequence evolution. We describe a num-

ber of useful simplifications to speed up the estimation of evolutionary parameters for

given data set. In Chapter 4 we focus on quartet-puzzling, a heuristic tree search based

on maximum-likelihood tree reconstruction for all sets of four sequences that can be

formed for a given data set. The overall tree is then recovered by finding a tree topology

reconciling all quartet topologies. This method allows the reconstruction of trees for a

large number of sequences. In addition, quartet-puzzling computes estimates of sup-

port for all internal branches. In Chapter 5 we present likelihood-mapping, an approach

for assessing and visualizing the phylogenetic content of a sequence alignment. This

method is based on the evaluation of quartets of sequences as well. It allows to quickly

determine the phylogenetic signal present in a given data set. Moreover, likelihood-

mapping can also be applied to investigate whether a hypothesized grouping of se-

quences is supported by the data. In contrast to bootstrap techniques this method can

be used even for very large data sets. Likelihood-mapping can be viewed as comple-

mentary approach to the so-called statistical geometry in sequence space. Finally, we

describe in Appendix A the PUZZLE software, which implements all methods intro-

duced here.
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Chapter 2

Maximum Likelihood

In this chapter we give an introduction to models of sequence evolution and to

maximum-likelihood. We model the substitution of nucleotides and amino acids by a

homogeneous stationary stochastic process and assign relative rates to each sequence

position using discrete probability distributions. Then we show how to calculate the

likelihood of a data set for a given evolutionary history and explain the principle of

maximum-likelihood.

2.1 Introduction

Models of nucleotide or amino acid evolution play an essential role in the analysis of

molecular sequence data (Swofford et al., 1996). They are a tool to reduce the enor-

mous complexity of the biological mutation process to a comparatively simple pattern

that can be described by a small number of parameters. The models of sequence evo-

lution considered here consist of two parts. First, they specify a modus of substitution

for nucleotides or amino acids at a given site. Second, they give a prescription how

the rate of substitutions is distributed over different positions in a sequence. This is

called a model of rate heterogeneity. Examples for models describing the substitution

process of nucleotides are the JC model (Jukes and Cantor, 1969) or the HKY model

(Hasegawa et al., 1985). A common model of rate variation is to introduce invariable

sites (Fitch and Margoliash, 1967; Hasegawa et al., 1985; Churchill et al., 1992) and

to assume a Γ-distribution for the rates of the variable positions (Wakeley,1993; Yang,

1993; Gu et al., 1995).

In the following, we consider a set of aligned sequences that are typically derived
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Frog    CAGTGATAAACATTGAAC-ATGAGCGAAGCTCGAT
Bird    CAGTAATTAACCTTAAGCAATAAGTGTAACTTGAC
Human   CAGTGATTAACCTTTAGCAATAAACGAAGTTTAAC
Seal    CAGTAATAAAAATTAAGCTATGAACGAAGTTTGAC
Cow     CAGTGACAAAAATTAAGCCATAAACGAAGTTTGAC
Whale   CAGTGATAAAAATTAAGCTATAA-CGAAGTTCGAC
Mouse   CAGTGATAAATATTAAGCAATAAACGAAGTTTGAC
Rat     CAGTGATAAATATTAAGCAATGAACGAAGTTTGAC

Figure 2.1: Example of a nucleotide alignment. The letters A, C, G, and T code for the

four nucleotides, dashes represent gaps (insertions or deletions).

from different species (Figure 2.1). In an alignment sequences positions that trace back

to a common ancestor are lined up in the same column. This is done by introducing

insertions or deletions (gaps) in one ore more of the sequences. Thus, an alignment

identifies homologous positions in a set of DNA sequences. The problem to infer the

correct alignment will not be discussed here (Thompson et al., 1994), we assume that

an alignment is given. Each column s in the alignment defines a so-called site pattern

Ds. Usually site patterns with gaps are excluded from the analysis to remove insertion

or deletion events from the data. A site is said to be constant if the site pattern contains

only one sort of nucleotide or amino acid. Computation of the probabilities to observe

a specific site pattern Ds for a given evolutionary history T is the basic idea behind

the maximum-likelihood framework. This, however, requires that a specific model of

sequence evolution is specified.

2.2 Substitution process

A DNA sequence is a collection of the four nucleotides adenine (A), cytosine (C),

guanine (G), and thymine (T). Therefore there exist n = 4 different states for a se-

quence position. For amino acid sequences the number of possible states is n = 20

corresponding to the number of amino acids that are used in protein synthesis. It is

commonly assumed that the substitution of nucleotides or amino acids is a stationary

stochastic process (Swofford et al., 1996). This implies that nucleotide or amino acid

frequencies πi do not change over time and from sequence to sequence in a data set.

The substitution process is described by the transition probability matrix P(k). It con-
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sists of the probabilities Pij(k) to get from state i to state j after k substitutions at a

site. Note, k can also take on fractional values. In a tree k is also called branch length.

As a probability Pij(k) satisfies
n∑

j=1

Pij(k) = 1 (2.1)

with initial values

Pij(0) =





1 for i = j

0 for i 6= j .
(2.2)

The total probability h that a substitution occurred at a site is

h = 1−
n∑

i=1

πiPii(k). (2.3)

The number of positions where two DNA sequences are different divided by the length

l of the alignment, i.e. the so-called observed distance, is an estimate of h. Solving

Equation 2.3 for k allows to infer the so-called expected distance k, i.e. the number

of substitutions that actually occurred. Usually, the substitution process described by

P(k) is also assumed to be reversible, i.e.

πiPij(k) = πjPji(k). (2.4)

This assumption, also known as detailed balance, ensures local substitution equilib-

rium. Moreover, it turns out that it simplifies many calculations. If k is small it is

possible to linearly approximate the transition probability matrix P(k) by

P(k) ≈ P(0) + kR. (2.5)

R is called rate matrix (Tavaré, 1986). In order not to violate Equation 2.1 it satisfies
n∑

j=1

Rij = 0. (2.6)

As the expected and the observed number of substitutions are identical for small k it

follows from Equations 2.3 and 2.5 that R also obeys
n∑

i=1

πiRii = −1. (2.7)

For a reversible process the rate matrix R can be decomposed into so-called rate para-

meters Qij and frequencies πi (Yang, 1994a)

Rij =





Qijπj for i 6= j

−∑n
m=1 Qimπm for i = j .

(2.8)
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The matrix Q = (Qij) is symmetric, Qij = Qji, and has vanishing diagonal entries,

Qii = 0. As a consequence of Equation 2.7 Q is constrained by
n∑

i=1

n∑

j=1

πiQijπj = 1. (2.9)

If we further assume that the substitution of nucleotides or amino acids is a homoge-

neous Markov process then R determines P(k) for all k by

P(k) = P(0) + kR +
(kR)2

2!
+

(kR)3

3!
+ . . . = exp(Rk). (2.10)

This matrix exponential can be computed for reversible R by spectral decomposition

Pij(k) =
n∑

m=1

exp(λmk)UmiU
−1
jm (2.11)

where the λi are the eigenvalues of R, U = (Uij) is the matrix with corresponding

eigenvectors (note indices!), and U−1 is the inverse of U.

2.3 Models of substitution

Choosing a model of nucleotide or amino acid substitution amounts to specifying ex-

plicit values for Q and πi. In the most general case there are n − 1 independent fre-

quency parameters πi because of
∑n

i=1 πi = 1 and n(n − 1)/2 − 1 independent rate

parameters because of Qij = Qji, Qii = 0, and Equation 2.9.

For nucleotides (n = 4) a number of symmetries of the substitution process can

be assumed that help to further reduce the number of independent parameters. Substi-

tutions of nucleotides can be divided into two groups, so-called transitions (Ts) and

transversions (Tv). Substitutions between pyrimidines (C ⇀↽ T) are pyrimidine transi-

tions (TsY) and substitutions between purines (A ⇀↽ G) are purine transitions (TsR). All

other substitutions where a purine is exchanged by a pyrimidine or vice versa (A ⇀↽ C,

A ⇀↽ T, C ⇀↽ G, G ⇀↽ T) are called transversions. Each of the six possibilities for a

substitution are represented by an entry in Q.

In order to simplify calculations the four rate parameters describing transversions

are assumed to be identical. If we moreover assume that the two possible transitions

have the same rate parameter and that the ratio of the Ts rate parameter to the Tv rate

parameter is 2 t then the matrix Q reduces to

Q∗
ij =





2t for Ts

1 Tv .
(2.12)
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This is the so-called HKY model (Hasegawa et al., 1985) with parameter t. Note, the

choice of 1 for the Tv rate parameter is arbitrary as only relative values are important.

The star indicates that the matrix still has to be rescaled to conform to Equation 2.9. If

the base frequencies are uniform (πi = 1/4) the HKY model degenerates to the Km

model (Kimura, 1980). For t = 1/2 the HKY model is called F81 model (Felsenstein,

1981), and the Km model further reduces to the JC model (Jukes and Cantor, 1969).

However, if the assumption of identical Ts rate parameters is relaxed by introducing

the parameter γ, the ratio of the TsY rate parameter to the TsR rate parameter, then the

TN model (Tamura and Nei, 1993) is obtained with

Q∗
ij =





2t( 2γ
γ+1

) for TsY

2t( 2
γ+1) TsR

1 Tv .

(2.13)

This is the most general model of nucleotide substitution discussed here. For γ = 1

the simpler HKY model is recovered.

Typical characteristics of a model of nucleotide substitution are the expected Ts/Tv

ratio and the expected TsY/TsR ratio. For any model the fraction, #, of expected TsY,

TsR, and Tv among all substitutions are

#TsY = 2πCQCTπT, (2.14)

#TsR = 2πAQAGπG, (2.15)

#Tv = 2(πAQACπC + πAQATπT + πCQCGπG + πCQCTπT). (2.16)

The expected Ts/Tv ratio and the expected TsY/TsR ratio is then readily obtained:

expected Ts/Tv ratio =
#TsY + #TsR

#Tv
, (2.17)

expected TsY/TsR ratio =
#TsY

#TsR
. (2.18)

It is easy to verify that for the Km model the parameter t is numerically identical to the

expected Ts/Tv ratio. The JC model predicts an expected Ts/Tv ratio of 1/2. Note, both

the expected Ts/Tv ratio and the expected TsY/TsR ratio cannot directly be observed in

a data set. This is because it is not possible to trace multiple substitutions at site. The

same reasoning also explains why only the difference h and not the expected number

of substitutions k is observable (cf. Equation 2.3).
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When the substitution of amino acids (n = 20) is modelled a simplification of

Q comparable to nucleotides is not available. Instead, a number of different numeri-

cally fixed Q derived from empirical substitution matrices are used. For amino acids

encoded on nuclear DNA, e.g., the Dayhoff model (Dayhoff et al., 1978) or the JTT

model (Jones et al., 1992) have been suggested. For mitochondrial proteins the mtREV

model has been proposed (Adachi and Hasegawa, 1996b).

2.4 Models of rate heterogeneity

It is well-known that the number of substitutions at a site is strongly dependent on

its position along the DNA sequence (Li and Graur, 1991). One obvious reason is a

functional constraint on a specific site. Then substitutions are unlikely. On the other

hand, positions with few functional constraints can easier accumulate substitutions.

There exist different approaches to account in a model of sequence evolution for the

site-dependent variation of the number of substitutions.

The simplest model is to assume that a certain fraction θ of the sequence sites

is invariable. Sites s where substitutions are impossible are a assigned a relative rate

rs = 0 whereas for variable positions the relative rate is rs = 1. This model is called

the two-rate model (Fitch and Margoliash, 1967; Hasegawa et al., 1985; Churchill

et al., 1992). Note, though all invariable sites are constant, not all constant sites in an

alignment are necessarily invariable.

The most commonly used Γ-model (Uzzel and Corbin, 1971; Wakeley, 1993) uti-

lizes a Γ-distribution with expectation 1.0 and variance 1/α

g(r) =
ααrα−1

exp(αr) Γ(α)
(2.19)

to assign relative rates to the sequence positions. By varying the shape parameter α two

different scenarios are taken into account (Figure 2.2). For weak rate heterogeneity

over sites (α > 1) the distribution is bell-shaped. The relative rates rs drawn from

this distribution are all approximately 1.0. For strong rate heterogeneity (α < 1) the Γ-

distribution is L-shaped. This indicates that there are positions in the data sets that have

very large relative rates rs whereas many other sites are almost invariable (rs ≈ 0).

Calculations involving the continuous Γ-distribution are very tedious. Therefore an

approximating discrete distribution is used in practice (Yang, 1994b). In other words,

the relative rates rs for each site are drawn from a set of c different rates q1, q2, . . . , qc.
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α = 0.2

r
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Figure 2.2: Bell-shaped (α = 10) and L-shaped (α = 0.2) Γ-distribution.

Usually, the number of rate categories is considered as fixed in advance and not treated

as additional model parameter. Toobtain the discrete Γ-distribution first the cumulative

density function for g(r) (Equation 2.19)

cdf(x) =
∫ x

0
g(r) dr = 1− Γ(α, αx)

Γ(α)
(2.20)

is computed. Γ(a, b) is the incomplete Γ-function with Γ(a, 0) = Γ(a). If c equally

probable rate categories are admitted the rate qi corresponding to each rate category

i ∈ {1, 2, . . . , c} is obtained using the inverse of the cumulative density function

qi = cdf−1(
2i− 1

2c
). (2.21)

This general approach also works for other continuous probability distributions as well.

Note that the mean of a discrete distribution generally deviates slightly from the mean

of the corresponding continuous distribution. Therefore the rates qi are rescaled in

order to obtain an average of one. Yang (1994b) showed that the discrete Γ-distribution

can provide a good approximation with as few as four rate categories.

A third mixed model simply combines invariable sites with Γ-distributed rates for

variable positions (Gu et al., 1995).
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A
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C

D

E

F
G

H

Figure 2.3: An evolutionary tree of five sequences. The known sequences are at the

terminal nodes (A, B, C, D, E) whereas the internalnodes (F, G, H) represent unknown

ancestral sequences.

2.5 Likelihood function

As soon as a model of sequence evolution M = (t, γ, πi, θ, α) is selected it is straight-

forward to compute the probability to observe a data set D if the evolutionary history T

= (branching pattern, branch lengths) underlying the sequences is known. This is done

using a so-called likelihood function L, which plays a central role in all applications

of maximum-likelihood.

The basic idea is to compute the probability Prob(Ds|T, M, rs) that the site pattern

Ds with relative rate rs is the result of the evolutionary process M along T . To illus-

trate the calculation we use a tree connecting five sequences (Figure 2.3). In the tree

the site pattern Ds = (xA, xB, xC, xD, xE) is observed at the terminal nodes labeled by

the sequences A, B, C, D, E. The ancestral states (xF, xG, xH) at the internal nodes la-

beled F, G, H are unknown. In order to compute Prob(Ds|T, M, rs) we have to choose

a hypothetical root node at any convenient location in the tree. As the model of sub-

stitution assumed is reversible the choice of the root does not influence the likelihood

(Felsenstein, 1981). In the tree illustrated in Figure 2.3 we select node G as root. First

the prior probability πxG
of the state xG at the root node G is determined. Then pro-

ceeding from the root to the external nodes of the tree the transition probabilities for

10



each branch are calculated. The product

Prob(Ds|T, M, rs, xF, xG, xH) = πxG
PxGxC

(rs kGC)× (2.22)

PxGxF
(rs kGF)PxFxA

(rs kFA)×

PxFxB(rs kFB)PxGxH(rs kGH)×

PxHxD
(rs kHD)PxHxE

(rs kHE)

is the likelihood to observe Ds given the states xF, xG, xH at the internal nodes. In

this formula kXY denotes the expected number of substitutions (branch lengths) that

occur between nodes X and Y. By summing over all n3 possible configurations for the

unknown ancestral states xF, xG, xH we obtain

Prob(Ds|T, M, rs) =
n∑

m=1

n∑

i=1

n∑

j=1

Prob(Ds|T, M, rs, i, j, m) . (2.23)

A lot of computational effort is saved by rearranging Equation 2.23 to a sum with only

n terms:

Prob(Ds|T, M, rs) =
n∑

m=1

πmPmxC
(rs kGC)× (2.24)

(
n∑

i=1

Pmi(rs kGF)PixA(rs kFA)PixB(rs kFB)

)
×




n∑

j=1

Pmj(rs kGH)PjxD
(rs kHD)PjxE

(rs kHE)


 .

Similar formulas are available to compute Prob(Ds|T, M, rs) for other tree topologies.

In the special case of an invariable site (rs = 0) the formula Equation 2.24 degenerates

to Prob(Ds|T, M, rs) = πxA where xA is the state observed in all external and internal

nodes. The likelihood for a pair of sequences A and B is Prob(Ds|xA, xB, kAB, M, rs) =

πxA
PxAxB

(rs kAB) with A as arbitrary root.

The likelihood L = Prob(D|T, M) for a data set D given T and M is the product of

the probabilities Prob(Ds|T, M, rs) for each site. Note, this implicitly assumes that the

rates of the sites are independent from each other. As the assignments of relative rates

to sequence positions are usually unknown L is computed as positionwise average of

the c rate categories

L = Prob(D|T, M) =
l∏

s=1

(
c∑

i=1

pi Prob(Ds|T, qi)

)
(2.25)
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where l is the length of the sequence alignment. The rates q1, q2, . . . , qc and their prior

probabilities p1, p2, . . . , pc depend on the model of rate heterogeneity. For uniform

rates over sites there is only one possible rate, therefore c = 1, q1 = 1, p1 = 1.

For the two-rate model taking into account variable and invariable sites the rates are

q1 = 0, q2 = 1 and the corresponding prior probabilities are p1 = θ, p2 = 1 − θ.

For a discrete Γ-model with c categories rates qi are determined by Equation 2.21

with pi = 1/c. In a mixed model with in total c categories the rate q1 equals zero

to allow for invariable sites, the other rates q2, q2, . . . , qc are given by a discrete Γ-

distribution with c − 1 categories. The corresponding prior probabilities are p1 = θ

and p2 = p3 = . . . = pc = (1− θ)/(c− 1).

2.6 Principle of maximum-likelihood

Maximum-likelihood aims to maximize L for a given data set with respect to T and

M . This task consists of two different optimization problems.

For a fixed tree topology the branch lengths and the model parameters M =

(t, γ, πi, θ, α) have to be varied simultaneously in order to maximize L. This is a dif-

ficult numerical problem that is typically approached by iteratively optimizing each

branch and each model parameter separately using Brent’s or Newton-Raphson’s

method (e.g., Olsen et al., 1994; Felsenstein and Churchill, 1996). A short cut to this

time-consuming procedure is, e.g., to use approximate maximum-likelihood branch

lengths as described in Chapter 3.

The second difficulty is to find the most likely branching pattern. In order to solve

this combinatorial problem it is necessary to evaluate all different tree topologies that

are possible with the given number of sequences. It is clear that an exhaustive tree

search of this kind is impossible even for moderately sized data sets as the number

of different trees grows exponentially with the number of sequences (Equation 1.1).

Therefore a number of heuristic tree search algorithms have been devised to exclude

unlikely tree topologies from maximum-likelihood evaluation (Swofford et al., 1996).

One recent example is the quartet-puzzling method that is presented in Chapter 4.
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Chapter 3

Parameter Estimation

We discuss the problem to obtain maximum-likelihood estimates for the parameters

of a model of sequence evolution. Then we describe a number of simple strategies to

speed up the estimation of evolutionary parameters for given data set. The performance

of the methods is examined by a simulation study. As example we estimate the rate

heterogeneity of an amino acid alignment consisting of 19 complete vertebrate mtDNA

sequences.

3.1 Introduction

Choosing an optimal model of sequence evolution for a given data set is important,

e.g., for the computation of branch lengths in a tree (Sullivan et al., 1996). In the most

general model discussed in Chapter 2 it requires that optimal values for the parameters

M = (t, γ, πi, θ, α) are selected. In principle, they can be determined as maximum-

likelihood estimates M̂ simultaneously with the estimation of a tree T̂ = (branching

pattern, branch lengths). However, this is computationally not practicable except for

small data sets (Gu et al., 1995; Swofford et al., 1996).

In this chapter we present a number of approximative schemes to speed up the

maximum-likelihood estimation of M . As first simplification (P1) we consider the

computation of approximate maximum-likelihood branch lengths. Next we discuss a

procedure (P2) based on iterative reconstruction of a tree topology using neighbor-

joining. Then we introduce quartet-sampling (QS), which focuses on randomly se-

lected sets of four sequences of the data set. In a simulation study using artificially

generated nucleotide data following clock-like and non-clock-like evolution the suit-
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ability of each procedure to infer the parameters M is investigated. Finally, as an ex-

ample we estimate the rate heterogeneity of an amino acid alignment containing 19

complete vertebrate mtDNA sequences.

3.2 Simplifying procedures

In order to lessen the computational effort involved in the inference of maximum-

likelihood estimates M̂ = (t̂, γ̂, π̂i, θ̂, α̂) simultaneously with T̂ = (branching pattern,

branch lengths) a number of simplifying procedures are conceivable. The principal aim

is to reduce the number of independent parameters of the likelihood function L. Con-

sider, e.g., the stationary frequencies πi. They can be kept fixed in L as they are equally

well estimated from the observed average nucleotide or amino acid composition of the

data set.

A prohibiting factor in the inference is the optimization of the branch lengths. As

for a completely resolved tree with N sequences there are 2N − 3 different branches

it can be quite time-consuming (Felsenstein, 1981; Olsen et al., 1994). However, we

focus on determining maximum-likelihood estimates for the model parameters M and

not for branch lengths. Then the tedious optimization of branch lengths can be avoided

by employing so-called approximate maximum-likelihood branch lengths. This ap-

proximation has first been used by Adachi and Hasegawa (1996a) to single out un-

likely tree topologies in an exhaustive tree search. The following procedure P1 to find

maximum-likelihood estimates of M for a fixed tree topology takes advantage of this

short cut as well.

Procedure P1:

1. Choose start values for M and for the length of each branch (initial step).

2. Obtain estimates M̂ by maximizing the likelihood function L.

3. Compute pairwise maximum-likelihood distances based on M̂ and obtain

approximative maximum-likelihood branch lengths as least-squares fit

of the distances to the tree, following Adachi and Hasegawa (1996a).

4. Repeat steps 2 and 3 until M̂ does not change any more.

14



It is much quicker to determine approximate maximum-likelihood branch lengths

(step 3) than to find true maximum-likelihood estimates by maximizing the likelihood

function L with respect to the branch lengths of the tree. It can be shown that the

likelihood value computed on the basis of the non-optimized branch lengths neverthe-

less is a very good approximation to the maximum-likelihood (Adachi and Hasegawa,

1996a).

Another way to speed up maximum-likelihood estimation of M is to determine

the tree topology by a non-maximum-likelihood method. This assumes that estimates

of model parameters are not severely biased if a slightly incorrect tree topology is

used. There are numerous algorithms to reconstruct phylogenetic trees from molecu-

lar sequence data (Swofford et al., 1996). Probably the best non-maximum-likelihood

method is neighbor-joining (Saitou and Nei, 1987). It is very fast and performs well

even for large data sets (Strimmer and von Haeseler, 1996). Therefore we suggest

the following iterative procedure P2 to estimate M without prior knowledge of a tree

topology.

Procedure P2:

1. Choose start values for M , compute pairwise maximum-likelihood

distances based on M , and reconstruct a neighbor-joining tree (initial step).

2. Find maximum-likelihood estimates M̂ using this tree topology.

3. Based on new estimates M̂ calculate an improved maximum-likelihood

distance matrix and reconstruct a new tree topology.

4. Repeat steps 2 and 3 until M̂ does not change any more.

In this way maximum-likelihood optimization has to be performed only for a com-

paratively small number of tree topologies. Further speed up is gained by using this

procedure in conjunction with P1. This is also advantageous because the matrix of

pairwise maximum-likelihood distances needs only to be computed once.

A third strategy is to break up the data set into a number of smaller parts to enable

a maximum-likelihood estimate of the tree topology. An approximative maximum-

likelihood estimate of M for the whole data set is obtained as average over the es-

timates for the subsets. The following procedure, quartet-sampling (QS), is based on

selecting random sets of four sequences (quartets) from the data set:
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Procedure QS:

1. Choose a random quartet and find maximum-likelihood estimates

M̂1 and T̂ (initial step). Note that only three topologies T1, T3, T3

have to be evaluated (Figure 4.1).

2. Select the next random set z = 2, 3, 4, . . . of four sequences and find

maximum-likelihood estimates M̂z and T̂ .

3. Compute the average M̄ = (
∑z

i=1 M̂i)/z of all quartet estimates M̂i.

4. Repeat steps 2 and 3 until M̄ does not change any more.

To reach convergence of M̄ usually only a small number of quartets have to be in-

vestigated. Quartet-sampling can also be combined with procedure P1. Note, however,

that quartet-sampling cannot be used to infer parameters of rate heterogeneity as the

overall tree structure is important in this case (Sullivan et al., 1996).

3.3 Simulation study

To elucidate the performance of procedures P1 and P2 and of quartet-sampling we

conducted a simulation study using a clock-like (H1) and for a non-clock-like (H2) tree

with branch lengths a = 0.02 and b = 0.19 (Figure 3.1). We generated 100 artificial

nucleotide data sets according to a TN model (Tamura and Nei, 1993) with t = 15,

γ = 3, and uniform nucleotide frequencies πi = 1/4. A fraction θ = 1/6 of the 1200

sites was assumed to be invariable. For the remaining 1000 sites rate heterogeneity was

modelled by a discrete Γ-distribution with four categories and α = 1. Therefore the

total rate heterogeneity (Gu et al., 1995)

ρ =
1 + θα

1 + α
(3.1)

was ρ = 7/12 ≈ 0.58 for the data sets generated.

First we examined how reliable parameters of the substitution process are inferred

if rate homogeneity is assumed in the estimation. We tested whether the results depend

on an overall tree by comparing procedure P2 with quartet-sampling. Both methods

were combined with procedure P1 to avoid optimization of branch lengths. Second

we investigated methods to infer rate heterogeneity. Because it is well-known that the
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Figure 3.1: Evolutionary histories H1 and H2 with branch lengths a and b. In H1 a

molecular clock is assumed, i.e. all sequences at the tips of the tree have the same

distance 3/2a + b to the root R. H2 is an example of non-clock-like evolution where

most of the sequences differ in their distance to the root.
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overall tree structure is necessary for determining the amount of rate variation (Sulli-

van et al., 1996) quartet-sampling was not tested. Instead, we applied the procedure P2

either with computation of exact maximum-likelihood branch lengths or in combina-

tion with procedure P1.

For each investigated parameter a 95% confidence interval was determined. In the

likelihood framework the so-called observed information I(x) with respect to a para-

meter x of the likelihood function L is defined by

I(x) = − ∂2

∂x2
log L . (3.2)

An estimate of the standard error σ of the maximum-likelihood estimate xml is

σ̂ =
1√

I(xml)
(3.3)

(Lindgren, 1976). An approximative 95% confidence interval for xml is obtained by

xml ± 1.96 σ̂ . (3.4)

If quartet-sampling is used the estimate of the standard error of M̄ is

σ̂ =

√√√√ 1

z(z − 1)

z∑

i=1

(M̂i − M̄ ). (3.5)

Table 3.1 summarizes the estimation results for the simulated data sets. On the

whole there was no gross difference in performance of the methods with respect to

clock-like (H1) and non-clock-like (H2) evolution. When rate heterogeneity was ne-

glected the estimates of t and γ were consistently smaller than the true values, as

already found elsewhere (Wakeley,1996). However, the true parameter values were in-

cluded in the 95% confidence interval in the non-clock-like case due to slightly larger

standard errors compared to clock-like evolution. Both quartet-sampling and proce-

dure P2 resulted in similar estimates t̂ and γ̂. Therefore, the inference of substitution

process parameters did not depend on the overall tree structure of the data set.

When rate heterogeneity was taken into account parameters of the substitution

process were correctly inferred. It did not matter whether approximate (procedure P1)

or exact branch lengths were computed. The total rate heterogeneity ρ was inferred

with good accuracy as well though it was slightly overestimated when procedure P1

was used. Estimates for the rate heterogeneity parameters α and θ were much more
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Table 3.1: 95% confidence intervals for parameterestimates from simulated data.

Tree Method t̂ γ̂ θ̂ α̂ ρ̂

H1 I, P1, QS 9.46–14.20 2.09–2.79 — — —

I, P1, P2 9.56–14.46 2.07–2.77 — — —

II, P1, P2 12.13–18.87 2.38–3.72 0.00–0.04 0.46–0.66 0.56–0.72

II, P2 11.61–18.11 2.29–3.51 0.18–0.30 0.89–1.75 0.43–0.71

H2 I, P1, QS 9.28–16.68 2.24–3.18 — — —

I, P1, P2 9.20–16.84 2.29–3.15 — — —

II, P1, P2 12.15–18.03 2.42–3.64 0.00–0.03 0.64–0.66 0.58–0.70

II, P2 11.45–18.85 2.38–3.68 0.20–0.32 0.89–2.11 0.40–0.72

True values 15.00 3.00 0.17 1.00 0.58

(Abbreviations) I: TN model assuming rate homogeneity, II: TN model with mixed model

of rate heterogeneity (discrete Γ-distribution with four categories and invariable sites), P1: ap-

proximative maximum-likelihood branch lengths, P2: neighbor-joining procedure, QS:quartet-

sampling. The boundaries of the confidence intervals are averaged over 100 data sets.

difficult to obtain. For instance, both for clock-like and for non-clock-like evolution

it was not possible at all to infer the fraction of invariable sites when approximate

maximum-likelihood branch lengths were used. However, the presence of invariable

sites lead to a correspondingly smaller value of α̂ so that ρ was still inferred correctly.

Unfortunately, an simultaneous estimate of θ and α could only be obtained when the

time-saving procedure P1 was not applied.

3.4 Rate heterogeneity of an amino acid alignment

To compare the mixed model of rate heterogeneity used in the simulations to a simple

Γ-model or a two-rate model we examined an amino acid alignment of 19 complete

mitochondrial sequences. The data set comprised 18 mammals and the frog. More

precisely, the species involved were Xenopus laevis (frog), Ornithorhynchus anatinus

(platypus), Didelphis virginiana (opossum), Mus musculus (mouse), Rattus norvegi-

cus (rat), Hylobates lar (gibbon), Pongo pygmaeus (orang), Gorilla gorilla (gorilla),

Pan troglodytes (chimpanzee), Pan paniscus (bonobo), Homo sapiens (human), Bos

taurus (cow), Balaenoptera musculus (blue whale), Balaenoptera physalis (finback
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Figure 3.2: Phylogenetic relationship of the 19 complete mtDNA sequences con-

tained in the amino acid alignment. The tree was reconstructed by quartet-puzzling

(Chapter 4) using rate heterogeneity parameters θ = 0.27 and α = 0.64. Maximum-

likelihood branch lengths are proportional to substitutions of amino acids per site.
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Table 3.2: 95% confidence intervals forrate variationparametersof mtDNA sequences.

Method θ̂ α̂ ρ̂ log L

I, P1, P2 0.34–0.36 — 0.34–0.36 -46756.86

II, P1, P2 — 0.27–0.31 0.77–0.79 -45504.67

III, P1, P2 0.00–0.00 0.27–0.31 0.77–0.79 -45499.10

I, P2 0.38–0.42 — 0.38–0.42 -46747.68

II, P2 — 0.31–0.35 0.74–0.76 -45496.39

III, P2 0.25–0.29 0.58–0.70 0.68–0.76 -45468.69

(Abbreviations) I: mtREV model with two-rate model of rate heterogeneity, II: mtREV model

assuming discrete Γ-distribution with four categories, III: mtREV model with mixed model

of rate heterogeneity (discrete Γ-distribution with four categories and invariable sites), P1:

approximative maximum-likelihood branch lengths, P2: neighbor-joining procedure.

whale), Felis catus (cat), Halichoerus grypus (grey seal), Phoca vitulina (harbor seal),

Rhinocerus unicornis (rhinoceros), and Equus caballus (horse). The phylogenetic re-

lationship as inferred by quartet-puzzling (Chapter 4) is shown in Figure 3.2. The frog

was used as outgroup to root the tree of mammals. The 13 protein coding genes en-

coded on the mtDNA sequences (ATP6, ATP8, CO1, CO2, CO3, CYT b, ND1, ND2,

ND3, ND4, ND4L, ND5, ND6) were separately aligned with CLUSTAL W (Thomp-

son et al., 1994) and subsequently concatenated. After removing positions with gaps

an amino acid alignment of 3,735 sites containing 19 sequences remained. A χ2-test

showed that the composition of amino acids was the same for all sequences. For the

substitution process the mtREV model was selected as is was specifically developed

to describe the evolution of amino acids encoded on mtDNA (Adachi and Hasegawa,

1996b). For rate heterogeneity three models were considered, the two-rate model tak-

ing into account invariable sites (I), a discrete Γ-model with four categories (II), and a

mixed model (III) combining models I and II. The parameters corresponding to each

model of rate heterogeneity were estimated using the neighbor-joining procedure P2,

either with computation of exact maximum-likelihood branch lengths or applying pro-

cedure P1. The results of the various methods are shown in Table 3.2.

The best fit to the data according the maximum-likelihood value was obtained when

θ̂ and α̂ were simultaneously determined without applying P1 (last line in Table 3.2).

It’s noteworthy that the fit did not improve when more than four categories were al-
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lowed in the discrete Γ-distribution. The confidence interval for the total rate hetero-

geneity ρ was similar in all estimations for models II and III, regardless whether exact

or approximate maximum-likelihood branch lengths were computed. In contrast, the

two-rate model produced much smaller values for ρ̂. However, the corresponding like-

lihoods (I) indicated that this model is inferior to the others. It was also not possible to

obtain a simultaneous estimate of θ and α by applying procedure P1. This was already

observed earlier in the simulation study. Very interestingly, the likelihood values for

models II and III were all very similar despite their drastically different estimates α̂.

This reveals a general property of the models of rate heterogeneity. When invariable

sites are admitted (III) the rate heterogeneity induced by the Γ-distribution is smaller

and the parameter α is correspondingly larger. On the other hand, if invariable sites are

not considered (II) the Γ-distribution takes care for them by a smaller α.

3.5 Conclusion

We have presented simple strategies to speed up maximum-likelihood estimation of

the parameters of models of substitution and rate heterogeneity. In order to evaluate

their performance we have conducted a computer simulation and examined an align-

ment of 19 amino acid sequences from mitochondrial DNA If only t and γ need to

be estimated the quartet-sampling procedure in combination with computation of ap-

proximate maximum-likelihood branch lengths (procedure P1) is sufficient. However,

to infer parameters of rate heterogeneity an overall tree topology, most conveniently

determined by a non-maximum-likelihood method, is necessary. We suggest to use

neighbor-joining as applied in procedure P2. As model of rate heterogeneity we rec-

ommend the Γ-model. It produces results comparable to the more elaborate mixed

model where the fraction of invariable sites is determined as well. In contrast to the

mixed model it can also be used in conjunction with procedure P1. The simple two-rate

model is not recommended as its fit to the data is insufficient and as it underestimates

the total amount of rate heterogeneity.
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Chapter 4

Quartet Puzzling

In this chapter we introduce a novel and versatile method, the so-called quartet-

puzzling, to reconstruct the topology of a phylogenetic tree based on DNA or amino

acid sequence data. This method applies maximum-likelihood tree reconstruction to

all possible quartets that can be formed from N sequences. The quartet trees serve

as starting points to reconstruct a set of optimal N -sequence trees. The majority-rule

consensus of these trees defines the quartet-puzzling tree and shows groupings that are

well supported. Computer simulations show that the performance of quartet-puzzling

to reconstruct the true tree is always equal to or better than that of neighbor-joining.

For some cases with high bias in the expected Ts/Tv ratio quartet-puzzling outperforms

neighbor-joining by a factor of more than 10. The application of quartet-puzzling to

mitochondrial RNA and tRNAVal sequences from amniotes demonstrates the power of

the approach. Using quartet-puzzling we confirm the African origin of human mito-

chondrial D-loop sequences.

4.1 Introduction

In recent years the maximum-likelihood method for reconstructing phylogenetic re-

lationships (Felsenstein, 1981) has become more popular due to the arrival of pow-

erful computers. The main advantage of a maximum-likelihood approach is the ap-

plication of a well defined model of sequence evolution to a given data set (Felsen-

stein, 1988). Although the application of the maximum-likelihood method to biologi-

cal data is now widespread, its computational complexity prevents computation for a

large number of sequences. Generally, only slow programs for analyzing nucleotide
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or amino acid sequences are available (Felsenstein, 1993; Yang, 1997) although it is

possible to speed up calculations by parallelizing the algorithm or using approxima-

tive techniques (Olsen et al., 1994; Adachi and Hasegawa, 1996a). Still, large trees can

only be analyzed on massively parallel systems or by constraining the tree topology.

The principal goal of a maximum-likelihood analysis is the determination of a

tree and corresponding branch lengths that have the greatest likelihood of generating

the data. This task can be split into two parts: determining a tree topology and sub-

sequently assigning branch lengths to the topology to obtain a maximum-likelihood

estimate. Because the number of possible tree topologies grows exponentially with

the number of sequences, all tree reconstruction methods that optimize an objective

function have to rely on heuristic searches to find the best topology. Moreover, the op-

timization of branch lengths for a given topology is a tedious procedure for maximum-

likelihood-based tree reconstruction methods and consumes a lot of computing time

(Olsen et al., 1994). While maximum-likelihood procedures are generally slow for

the general case of N sequences, the determination of the maximum-likelihood tree

based on DNA or amino acid sequences poses no problem for four sequences. On the

other hand, methods abound that try to reconstruct a tree topology considering only the

branching pattern of the
(

N
4

)
different quartet trees that can be constructed from N se-

quences (Sattath and Tversky, 1977; Fitch, 1981; Dress et al., 1986; Bandelt and Dress,

1986). It has been shown (Schöniger and von Haeseler, 1993) that these distance-based

methods exhibit performance similar to neighbor-joining (Saitou and Nei, 1987) while

generally being much slower.

In this chapter we describe a new method, quartet-puzzling, for reconstructing

phylogenetic relationships. This method reconstructs the maximum-likelihood tree for

each of the
(

N
4

)
possible quartets. In a so-called puzzling step the resulting quartet

trees are then combined to an overall tree. During the puzzling step sequences are

added sequentially in random order to an already existing subtree. The position of a

new sequence is determined by a voting procedure, considering all quartets. Finally, an

intermediate tree relating N sequences is obtained. In general, there is no N -sequence

tree that fits all the
(

N
4

)
different quartet trees. Therefore the puzzling step is repeated

several times thereby elucidating the landscape of possible optimal trees. The quartet-

puzzling tree is obtained as a majority-rule consensus (Margush and McMorris, 1981)

of all trees that result from multiple runs of the puzzling step. Depending on the phy-

logenetic information contained in the data, this tree may be binary or multifurcating.
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Figure 4.1: The three unrooted trees Ti and the four graphs for a quartet of sequences

(A, B, C, D), and the corresponding discrete weights (w1, w2, w3).

In addition to the tree topology the quartet-puzzling tree also shows reliability values

for each internal branch.

4.2 The quartet-puzzling algorithm

Quartet-puzzling essentially is a three-step procedure, first reconstructing all possible

quartet maximum-likelihood trees (maximum-likelihood step), then repeatedly com-

bining the quartet trees to an overall tree (puzzling step), and finally computing the

majority-rule consensus of all intermediate trees giving the quartet-puzzling tree (con-

sensus step).

The first step in the quartet-puzzling analysis is the reconstruction of the branching

pattern of all possible
(

N
4

)
quartets with maximum-likelihood. For each quartet (A, B,

C, D) three different fully-bifurcating tree topologies T1, T2, T3 (Figure 4.1) exist with
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corresponding maximum-likelihood values L1, L2, L3. Note that L1 + L2 + L3 ¿ 1.

Evaluation via Bayes’ theorem of the three tree topologies given uniform prior infor-

mation leads to posterior probabilities

pi =
Li

L1 + L2 + L3
(4.1)

for each quartet Ti (Lindgren, 1976; Kishino and Hasegawa, 1989), with p1 + p2 +

p3 = 1. Usually, one of the maximum-likelihood values Li is much larger than the

other two. Then pmax ≈ 1, pother ≈ 0 and the optimal topology Tmax is stored for the

puzzling step.

However, if sequences are short or very closely related and if therefore not all

quartet trees can be confidently resolved, the Bayesian posteriors pi may deviate sub-

stantially from this simple picture (Strimmer et al., 1997). In this case the probabilities

pi help us to correctly choose more than one Ti from the quartet trees. It is well-known

that for four sequences there are not only three different unrooted binary trees but also

three partially resolved quartet trees as well as one completely unresolved tree (Eigen

et al., 1988). Toeach corresponds a set of discrete weights wi (Figure 4.1), according to

which bifurcating trees may be obtained by resolving the partially resolved networks.

When quartets are examined in the maximum-likelihood step of the quartet-puzzling

algorithm we choose among these seven permitted sets of weights by selecting that

which minimizes the least-squares distance

d =
3∑

i=1

(pi − wi)
2. (4.2)

Thus, we approximate the Bayesian probabilities pi by one of the seven sets of discrete

weights wi. In the end, all topologies Ti that correspond to a non-zero discrete weight

are stored for the puzzling step. Note that the special case of one large maximum-

likelihood value with pmax ≈ 1, pother ≈ 0 is also correctly treated with this procedure.

If there is more than one best topology stored, the branching pattern of the quar-

tet (A, B, C, D) is not uniquely defined. In this case we randomly choose among

the available topologies each time the branching pattern of (A, B, C, D) is needed.

Thus, maximum-likelihood tree reconstruction induces a neighbor relation ||ml be-

tween any four sequences A, B, C, D (Bandelt and Dress, 1986). The neighbor relation

AB ||ml CD implies that sequences A and B and sequences C and D are neighbors

with respect to each other. Note that in the corresponding tree T1 (Figure 4.1) the paths

connecting the sequences A and B and the sequences C and D are disjoint.
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Figure 4.2: Addition of sequence E to the already existing four-sequence tree (a). The

neighbor relations are given by AE ||ml BC, AE ||ml BD, AC ||ml DE, and BD ||ml CE.

The relation AE ||ml BC implies that the branches connecting B and C each get a

penalty of 1 (b). (c) shows the penalty of the branches if AE ||ml BD is evaluated. If all

four quartets are analyzed, the branch leading to sequence A shows the lowest penalty

(d). Hence, E is inserted at this branch (e).
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Next, in the puzzling step, we aim to combine the quartet trees to an overall N -

sequence tree. Generally the neighbor relation ||ml on the set of all N sequences is not

tree-like (Bandelt and Dress, 1986), therefore it is necessary to apply approximation

methods to obtain an overall tree topology (Sattath and Tversky, 1977; Fitch, 1981;

Dress et al., 1986; Bandelt and Dress, 1986). We suggest the following simple algo-

rithm. First, the input order of the N sequences is randomized; let us assume that the

order is A, B, C, D, E, . . . . The branching pattern of the quartet (A, B, C, D) is now

used as a seed for the overall N -sequence tree. Then sequence E is added to the sub-

tree according to the following voting procedure: The neighbor relation ||ml induces

for every quartet (i, j, k, E) a clustering i, j versus k, E, for example. It is obvious that

sequence E should not be placed on a branch that lies on the path connecting i and j

in the subtree. The edges where E should not be placed in the subtree are marked for

every quartet (i, j, k, E). Thus, every branch in the subtree is assigned a penalty. If all

different quartets containing sequence E and three sequences of the subtree are eval-

uated, sequence E is inserted at that branch in the tree that shows the lowest penalty.

If the minimal penalty is attained for more than one edge, the sequence is inserted

randomly at one of the equally good branches. Figure 4.2 illustrates the procedure for

five sequences. The addition of a single sequence is repeated until an overall tree of

N sequences is obtained. The randomized sequential insertion of sequences may not

always lead to the same tree topology for different runs of the puzzling step. There-

fore, step two is repeated as often as possible, thereby elucidating the landscape of all

possible optimal trees. Generally, the more sequences involved the more runs of the

puzzling step are advised.

In the third step of the quartet-puzzling algorithm a majority-rule consensus (Mar-

gush and McMorris, 1981) is computed from the intermediate trees resulting from

the puzzling steps. We call this consensus tree the quartet-puzzling tree. Depending

on the phylogenetic information contained in the data the quartet-puzzling tree is ei-

ther completely resolved or shows multifurcations. In addition to the tree topology the

quartet-puzzling tree also provides information about the number of times a particular

grouping occurred in the intermediate trees. If the resolution of phylogenetic relation-

ships between a subset of sequences is unclear, the consensus tree will indicate it by

displaying small reliability values for the corresponding internal branches. The re-

peated randomization of the input order of the sequences and subsequent computation

of an intermediate tree results in a collection of locally optimal trees that are generated
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independently of each other. In contrast, a collection of trees derived by procedures

like branch-swapping from one starting tree produces non-independent trees (Penny

et al., 1995). Thus, given the independence, the consensus tree gives a summary of all

groups that occur in the majority of the intermediate trees.

The reliability values, i.e. the number of times the group is reconstructed during the

puzzling steps, allow a simple interpretation of the phylogenetic information present

in the data. Every intermediate tree represents a solution from the set of optimal trees.

If we were able to compute all optimal trees, then all clusters that appear in more than

50% of the optimal trees fit into an overall tree (Margush and McMorris, 1981). This

not necessarily bifurcating tree represents the total phylogenetic information. However,

due to the limited number of puzzling steps, only a subset of all optimal trees are found.

Therefore it is advisable to trust only reliability values that are well above 50%. Note

that the suggested reliability measure should not be confused with the usual bootstrap

values. Whereas reliability values are an intrinsic result of the quartet-puzzling algo-

rithm, bootstrapping is an external procedure that can be applied to any tree building

method. Quite remarkably however, it seems that both measures are highly correlated.

Quartet-puzzling therefore is a simple method to get a phylogenetic tree and simul-

taneously an impression how well the data are suited for a phylogenetic reconstruction.

4.3 Efficiency of quartet-puzzling

It is easy to prove that quartet-puzzling reconstructs the underlying tree if the neigh-

bor relation ||ml is tree-like (Bandelt and Dress, 1986). However, real data hardly

ever are tree-like. To study the efficiency of our approach we employed a computer

simulation. We compared the efficiency of quartet-puzzling with the performance of

neighbor-joining and maximum-likelihood. The simulation settings are analogous to

that employed in (Schöniger and von Haeseler, 1993). Maximum-likelihood was used

as implemented in the PHYLIP (Felsenstein, 1993) program DNAML version 3.5,

quartet-puzzling as implemented in version 2.5 of the PUZZLE program. The results

for the performance of neighbor-joining are adopted from Schöniger and von Hae-

seler (1993). The two investigated evolutionary histories H1 and H2 are displayed in

Figure 3.1. For each of the two evolutionary scenarios a variety of branch lengths

a and b were assumed. Sequences were evolved according to the JC model (Jukes

and Cantor, 1969) and the Km model (Kimura, 1980). The expected Ts/Tv ratio t
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Table 4.1: Percentage of correctly reconstructed trees assuming clock-like evolution

according to tree H1.

Sequence evolution: JC (t = 1/2) Km (t = 4)

l a/b NJ QP ML NJ QP ML

500 0.01/0.07 70.5 79.6 87 56.6 69.8 70

0.02/0.19 52.0 69.7 63 23.1 63.3 48

0.03/0.42 8.2 28.5 9 1.4 33.4 15

1,000 0.01/0.07 94.7 93.5 96 87.3 89.2 93

0.02/0.19 86.8 91.5 85 59.3 85.0 85

0.03/0.42 38.3 52.9 34 10.8 57.2 38

(Abbreviations) NJ: neighbor-joining, QP: quartet-puzzling, ML: maximum-likelihood, l: se-

quence length, a and b: branch lengths, t: expected Ts/Tv ratio. Estimates of efficiencies are

based on 1,000 simulations (NJ, QP) and 100 simulations (ML).

equals t = 1/2 in the Jukes-Cantor and t = 4 in the Kimura case. Simulations were

carried out with sequences of lengths 500 and 1,000. For each setting 1,000 simu-

lations were done. For DNAML, however, only 100 simulations were possible due

to the large computational costs involved. All programs were run with their defaults

except for the transition-transversion ratio parameter that was set both in DNAML

and PUZZLE equal to 1/2 or 4, according to the mode of assumed sequence evolution.

Quartet-puzzling was performed with 1,000 puzzling steps and using only approximate

maximum-likelihood branch lengths for the quartet trees. Neighbor-joining results are

displayed using Kimura corrected distances (Kimura, 1980).

The results are shown in Tables 4.1 and 4.2. It is obvious that maximum-likelihood

generally outperforms neighbor-joining and that its efficiency is similar to or better

than quartet-puzzling. Unfortunately, the computational costs of DNAML are pro-

hibitively high when the number of sequences is large. The performance of neighbor-

joining and quartet-puzzling is different depending on the choice of parameters. As

expected, an increase in sequence length leads to a better performance of each method.

If sequences evolved according to a Jukes-Cantor model, both methods show a more

or less identical efficiency. Quartet-puzzling is slightly superior if the clock assump-

tion is violated and if branch lengths are large. If sequences evolved under a Kimura

model evolution with an expected Ts/Tv ratio of t = 4, the quartet-puzzling method
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Table 4.2: Percentage of correctly reconstructed trees for non-clock-like evolution as-

suming tree H2.

Sequence evolution: JC (t = 1/2) Km (t = 4)

l a/b NJ QP ML NJ QP ML

500 0.01/0.07 79.7 86.0 91 71.7 80.5 94

0.02/0.19 64.8 84.9 93 38.6 77.4 92

0.03/0.42 18.1 47.2 72 3.5 52.1 73

1,000 0.01/0.07 96.1 97.3 99 91.8 95.4 98

0.02/0.19 91.3 96.2 99 67.6 91.5 99

0.03/0.42 37.9 69.6 92 7.7 73.6 96

Abbreviations are the same as in Table 4.1.

outperforms neighbor-joining, irrespective whether the tree follows a molecular clock

(H1) or not (H2). For a high rate of substitutions the efficiency of quartet-puzzling is

more than 10 times better than that of neighbor-joining.

4.4 Phylogeny of amniotes

We have reanalyzed the concatenated sequences of amniote mitochondrial 12S rRNA,

16S rRNA, and tRNAVal genes (Hedges, 1994) with the quartet-puzzling method. The

data set comprises 15 species, among them six placental mammals, four reptiles, one

bird, one frog and three lungfish sequences. More specifically, the species involved

are Neoceratodus forsteri (lungfish, Australia), Lepidosiren paradoxa (lungfish, South

America), Protopterus sp. (lungfish, Africa), Xenopus laevis (frog), Trachemys scripta

(turtle), Sphenodon punctatus (sphenodontid), Sceloporus undulatus (lizard), Alligator

mississippiensis (crocodilian), Gallus gallus (bird), Homo sapiens (human), Phoca vit-

ulina (seal), Bos taurus (cow), Balaenoptera physalis (whale), Mus musculus (mouse),

and Rattus norvegicus (rat). In addition the corresponding sequences from Didelphis

virginiana (opossum) (Janke et al., 1994) and Ornithorhynchus anatinus (platypus)

(Janke et al., 1996) were included in the analysis. The 17 sequences were aligned us-

ing CLUSTAL W (Thompson et al., 1994) resulting in an alignment of length 2,903.

After removing ambiguous alignment positions as well as gaps 1,998 sites remained

for further analysis. In the PUZZLE program the HKY model of sequence evolu-
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Figure 4.3: Quartet-puzzling tree topology based on 1,000 puzzling steps. The relia-

bility value of each internal branch indicates in percent how often the corresponding

cluster was found among the 1,000 intermediate trees. The lungfishes are used as out-

group to root the tree of the amniotes.
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tion (Hasegawa et al., 1985) was selected and uniform rates over sites were assumed.

The transition-transversion ratio parameter t = 1.28 was estimated from the data by

maximum-likelihood.

A total of 2,380 four-sequence maximum-likelihood trees were reconstructed in

the first step of the quartet-puzzling algorithm. Among all quartet trees there was

only one quartet (Sphenodontid-Lizard-Bird-Human) with a completely unresolved

branching structure. In this case the corresponding posterior probabilities take on val-

ues pi ≈ 1/3. A high percentage of quartets of this kind usually indicates that the data

set is not very well suited for a phylogenetic analysis. If more than 10–15% completely

unresolved quartets are present the quartet-puzzling tree is in general not completely

resolved. For the amniote data the number of completely unresolved quartets is negli-

gible and hence the sequences are suitable for a phylogenetic analysis. The notion of

unresolved quartets is also important for likelihood-mapping (Chapter 5).

The resulting quartet-puzzling tree, after performing 1,000 puzzling steps, is shown

in Figure 4.3. The tree topology coincides more or less with the already published

tree (Hedges, 1994). Our analysis supports the view that crocodilians are the clos-

est living relatives of birds. In 100% of trees underlying the quartet-puzzling tree the

bird-crocodilian clade is found, indicating the clear separation from the remaining se-

quences in the tree. This high support from our analysis is matched by a high boot-

strap support (Hedges, 1994). Incidentally, the alternative clade placental mammals-

bird was never detected in any of the 1,000 intermediate trees. The positions of sphen-

odontid, lizard and turtle are less clear from the analysis. Though bird, crocodilian, and

sphenodontid seem to form a monophyletic group the corresponding reliability value

of 64% is quite low. Similarly, the phylogenetic relationship among this group, lizard,

and turtle cannot be resolved because of a relatively low reliability of 65% for the

corresponding internal branch. Contrary to the tree published in (Hedges, 1994), our

branching pattern suggests that within the radiation of placental mammals the rodents

branch off first and the humans are a sister group of the Ferungulata, a result in perfect

agreement with other studies (Janke et al., 1994). Our results also support the sister

group relationship of marsupials and monotremes (Janke et al., 1996). Thus, quartet-

puzzling analysis confirms the close relationship of birds and crocodilian and proposes

a branching pattern of placental mammals which coincides with other analyses (Janke

et al., 1994; Janke et al., 1996).
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4.5 African origin of human mtDNA

Quartet-puzzling allows the analysis of data sets with a large number of sequences.

To investigate the phylogenetic history of human mitochondrial D-loop sequences we

reconstructed a quartet-puzzling tree from 45 human sequences and one chimpanzee

sequence (Figure 4.4). The latter was used to root the tree of the human sequences. The

data set consisted of 15 American, 15 Asian, and 15 European individuals for which

both the hypervariable region I and II are known. For inclusion in the alignment of

length 691 bp, kindly provided by Oliva Handt, sequences that contained as few un-

known positions as possible were selected from the data sets of Anderson et al. (1981),

Vigilant et al. (1991), and Mountain et al. (1995). HKY assuming rate homogeneity

over sites was chosen as model of sequence evolution, the transition-transversion ratio

parameter t = 18.5 was estimated from the data by quartet-sampling. After computing

100,000 puzzling steps a highly multifurcating but nevertheless very structured tree

was obtained (Figure 4.4).

The 30 European and Asian sequences of the data set form a group. The quartet-

puzzling reliability value of the corresponding internal branch is 83%. With a reliabil-

ity of 74% the European, Asian, and central African lineages form a cluster, separated

from the sequences of southern Africa. It is interesting to observe this general structure

in the quartet-puzzling tree, especially as the phylogenetic information contained in the

hypervariable regions I and II of human mtDNA sequences is relatively low (Takahata,

1995). The most basal groups in the tree are sequences from Africa whereas the non-

African sequences originate later and show a common ancestor with central African

lineages. This configuration confirms the hypothesis of an African origin of human

D-loop sequences (Vigilant et al., 1991; Penny et al., 1995).

4.6 Discussion

We have presented the quartet-puzzling method to reconstruct tree topologies from

sequence data. This method computes the maximum-likelihood tree for all possible

quartets. An intermediate N -sequence tree is computed in the so-called puzzling step.

The repeated application of the puzzling step allows an assignment of reliability values

to the groupings in the final quartet-puzzling tree, a consensus tree built from all inter-

mediate trees. If groups are found only occasionally in different runs of the puzzling
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Figure 4.4: Quartet-puzzling tree from human mtDNA D-loop sequences rooted by a

chimpanzee. Sequences are labeled by their geographic origin.
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step, they will obtain a low reliability value. In those situation it is more realistic to

assume a multifurcation rather than a bifurcation.

Moreover, we have shown that quartet-puzzling either shows performance compa-

rable to or better than neighbor-joining. If sequences evolved according to the Jukes-

Cantor model and obeyed a molecular clock both methods have a similar efficiency. In

situations where neighbor-joining performs badly, quartet-puzzling has the advantage

of not falling into the traps provided by the complex landscape of the tree space. The

repeated application of the puzzling step prevents the method from getting trapped in

local optima. This “trap avoiding” property stems from the various averaging proce-

dures that are present in quartet-puzzling. Finally, our analysis of amniote and human

mtDNA sequence data shows that quartet-puzzling also performs very well for real

data sets.
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Chapter 5

Likelihood Mapping

We introduce a graphical method, likelihood-mapping, to visualize the phylogenetic

content of a set of aligned sequences. The method is based on an analysis of the

maximum-likelihood values for the three different completely resolved tree topologies

that exist for four sequences. The three maximum-likelihood values are represented as

one point inside an equilateral triangle. The triangle is partitioned in different regions.

One region represents star-like evolution, three regions represent a well-resolved phy-

logeny,and three regions reflect the situation where it is difficult to distinguish between

two of the three trees. The location of the likelihoods in the triangle defines the mode

of sequence evolution. If N sequences are analyzed then the likelihoods for each sub-

set of four sequences are mapped onto the triangle. The resulting distribution of points

shows whether the data are suitable for a phylogenetic reconstruction.

5.1 Introduction

The sequence-based study of phylogenetic relationships among different organisms

has become routine. Parallel to the increasing amount of sequence information avail-

able a variety of methods have been suggested to reconstruct a phylogenetic tree

(Swofford et al., 1996) or a phylogenetic network (Bandelt and Dress, 1992; Dopazo

et al., 1993; von Haeseler and Churchill, 1993). So far, few approaches have been pro-

posed to elucidate the phylogenetic content in a set of aligned sequence a priori (Eigen

et al., 1988; Eigen and Winkler-Oswatitsch, 1990). The so-called statistical geometry

in sequence space analyses the distribution of numerical invariants for all possible sub-

sets of four sequences. The resulting distributions make it possible to distinguish be-
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tween tree-, star-, and net-like geometry of the data. Moreover, based on the averages

of the invariants, the method allows to draw a graph illustrating the mode of evolu-

tion. While the description of this diagram is straightforward if sequences consist only

of purines and pyrimidines, it gets difficult if more complex alphabets (nucleotides,

amino acids) are used (Nieselt-Struwe et al., 1996). Statistical geometry in sequence

space has been successfully applied to study the evolution of tRNAs (Eigen et al.,

1989) or HIV (Eigen and Nieselt-Struwe, 1990).

Here we present an alternative approach, likelihood-mapping, to display phylo-

genetic information contained in a sequence alignment. The method is applicable to

nucleotides sequences, amino acid sequences, or any other alphabet for which a model

of sequence evolution (Swofford et al., 1996; Zarkikh, 1994; Schöniger and von Hae-

seler, 1994) exists. Our approach allows to visualize the tree-likeness of all quartets

in a single graph and therefore provides a tool for a quick interpretation of the phylo-

genetic content. We exemplify the method by applying it to simulated sequences that

evolved on a star-tree or on a completely resolved tree. The analysis of two biological

data sets (Zischler et al., 1995; Friedrich and Tautz, 1995) concludes the chapter.

5.2 Method

5.2.1 Four sequences

Let us consider a set of four sequences, a so-called quartet. For this quartet the

maximum-likelihood values belonging to the three possible fully resolved tree topolo-

gies (Figure 4.1) are computed using any model of sequence evolution (Swofford et al.,

1996; Zarkikh, 1994; Schöniger and von Haeseler, 1994). Let Li be the maximum-

likelihood of tree Ti where i = 1, 2, 3. Then we can compute posterior probabilities pi

for each tree (Equation 4.1).The probabilities (p1, p2, p3) can be viewed as the barycen-

tric coordinates of the point P belonging to the two-dimensional simplex

S2 = {
3∑

i=1

piei | p1 + p2 + p3 = 1, pi ≥ 0}, (5.1)

where the ei are real valued and independent. They point to the three corners of the

simplex. As a special case S2 can be illustrated as an equilateral triangle. This con-

struction allows an easy geometric interpretation of the pi values. For a given point

P ∈ S2 the pi are simply the lengths of the perpendiculars from the point P to the

38



P

p1
p2

p3

T1 T2

T3

Figure 5.1: Map of the probability vector P = (p1, p2, p3) onto an equilateral triangle.

Barycentric coordinates are used, i.e. the lengths of the perpendiculars from point P to

the triangle sides are equal to the probabilitiespi. The cornersT1, T2, T3 represent three

quartet topologies with corresponding coordinates (1, 0, 0), (0, 1, 0), and (0, 0, 1).

three sides of the triangle (Figure 5.1). In the context of population genetics triangular

coordinates of this kind are known as De Finetti diagrams (De Finetti, 1926).

If P is close to one corner of the triangle, the likelihoods (p1, p2, p3) are clearly

favoring one tree over the two others. Thus, every corner of the triangle corresponds to

one of the three quartet topologies T1, T2, T3. In a typical maximum-likelihood analysis

the tree Ti is chosen with

pi = max{p1, p2, p3}. (5.2)

It is easy to compute the corresponding basins of attraction for each tree topology

(Figure 5.2 A). The location of a point P in the simplex gives an immediate impression

which tree is preferred.

Unfortunately, this picture is too optimistic. For real data it is not always possible to

resolve the phylogenetic relationships of four sequences. This is either a consequence

of limiting resolution due to short sequences (“noise”) or the true evolutionary tree

was a star phylogeny. To account for this case, we introduce a region in the triangle

S2 representing the star phylogeny. The center c of the simplex is the point where all

probabilities take on the value pi = 1/3 which means that the three trees are equally
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Figure 5.2: (A) Basins of attraction for the three topologies T1, T2, and T3. The grey

area shows the region where the probability for tree T1 is largest. In the center c =

(1/3, 1/3, 1/3) all trees are equally likely, at the points x12 = (1/2, 1/2, 0), x13 =

(1/2, 0, 1/2), and x23 = (0, 1/2, 1/2) two trees have the same likelihood whereas the

remaining one has probability 0. (B) shows the seven basins of attraction allowing

not only fully resolved trees but also the star phylogeny and three regions where it is

not possible to decide between two topologies. The dots indicate the corresponding

seven attractors. A1, A2, A3 are the tree-like regions. A12, A13, A23 represent the net-

like regions and A123 is the star-like area.

likely. Thus, if P is near the center the phylogenetic relationship cannot be resolved and

is better displayed by a star phylogeny. On the other hand it also might be possible that

one of the three trees can be excluded but the two others still remain undifferentiated.

This is the case, if T1 and T2 show probabilities p1 = p2 = 1/2 and if p3 = 0,

for example. Near point x12 (see Figure 5.2 A) the phylogenetic relationship is best

displayed by a net-like geometry that excludes tree T3. Similarly, near points x13 and

x23 it is impossible to unambiguously favor one tree. Based on these seven attractors in

the triangle (marked with dots in Figure 5.2 B) the corresponding basins of attraction

are easily computed. Each point in one of the seven regions has smallest Euclidean

distance to its attractor. By A123 we denote the region where the star tree is the optimal

tree. Its area equals the sum of the areas of A1, A2, A3, the regions where one tree is

clearly better then the remaining ones. The regions Aij represent the situation where

we can not distinguish trees Ti and Tj . The area of Aij equals the sum of the area of

Ai and Aj.
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There is yet another way to describe the basins of attraction. If the three-

dimensional simplex S3 is considered where the fourth corner represents the star phy-

logeny the basins of attraction can be viewed as projections of their corresponding

volumes of the tetrahedron S3 onto the two-dimensional plane.

5.2.2 The general case

For a set of N aligned sequences there are exactly
(

N
4

)
different possible quartets of se-

quences. To get an overall impression of the phylogenetic signal present in the data we

compute the probability-vectors P for the quartets and draw the corresponding points

in the simplex. If only few sequences are analyzed, P vectors of all
(

N
4

)
quartets are

considered, otherwise a random sample of, e.g., 1,000 quartets is sufficient to obtain

a comprehensive picture of the phylogenetic quality of the data set. The resulting dis-

tribution of points in the triangle S2 forms a distinct pattern allowing us to predict a

priori whether an N -sequence tree will show a good resolution. If most of the points

P are found, e.g., in regions A12, A13, A23, or in the star-tree region A123, it is clear

that the overall tree will be highly multifurcating. That is, evolution was either star-like

or not tree-like at all. However, the opposite conclusion is not necessarily true. Even

if all quartets are completely resolved, that is almost all P-vectors are in A1, A2, A3,

it is possible that the overall N-sequence tree is not completely resolved (Bandelt and

Dress, 1986).

5.2.3 Four-cluster likelihood-mapping

Instead of looking at all quartets, the analysis of tree-likeness for four disjoint groups

of sequences (clusters) is also possible. Let C1, C2, C3, and C4 be a set of four clusters

with c1, c2, c3, and c4 sequences. Then, we compute the probability-vectors P for the

c1 · c2 · c3 · c4 possible quartets and plot the corresponding points on the triangle S2.

While the pi values are randomly assigned to the trees T1, T2, T3, when all quartets are

studied, the assignment of pi to tree Ti is now fixed. Each tree represents one of the

three possible phylogenetic relationship among the clusters. As an illustration, think of

the A, B, C, D at the T1, T2, T3 (Figure 4.1) as a representative of the clusters Ci. The

distribution of the c1 · c2 · c3 ·c4 probability vectors over the basins of attractions allows

not only to identify the correct phylogenetic relationship of the four clusters but also

shows the support for this and alternative groupings. This type of likelihood-mapping
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Table 5.1: Distribution of likelihood vectors P over the basins of attraction as a func-

tion of sequence length.

star tree bifurcating tree

length
∑

Ai
∑

Aij A123
∑

Ai
∑

Aij A123

50 17.9 4.8 77.3 61.1 6.8 32.1

100 16.2 4.2 79.6 82.0 3.7 14.3

200 11.1 3.6 85.3 91.5 3.3 5.2

500 9.8 3.7 86.5 100.0 0.0 0.0

Occupancies are shown as cumulative percentages for the three resolved regions (A1, A2, A3),

the three net-like regions (A12, A13, A23), and the star-like region (A123). Simulation of the

data assumed a star phylogeny or a perfectly bifurcating tree.

analysis is a helpful tool to illustrate how well supported an internal branch of a given

tree topology is.

5.3 Results

5.3.1 Simulation studies

Figure 5.3 displays the result of a typical likelihood-mapping analysis. A simulated set

of 16 DNA-sequences was used to show the distribution of probability vectors P as a

function of sequence length and the evolutionary history.

If evolution was according to a star topology then the probability-vectors are con-

centrated in the center of the simplex with rays emanating to the corners of the triangle.

This picture does not change with increasing sequence length. However, the proportion

of quartets found in area A123 increases (Table 5.1). If sequence evolution followed a

completely resolved tree then the proportion of points P located inside A1 + A2 + A3

increases with longer sequences, as an indication that noise due to sampling artifacts

is diminished. Correspondingly, the number of quartets in the remaining regions de-

creases. For sequences of length 500 base pairs the non tree-like regions of the triangle

are empty (Table 5.1). Thus, Figure 5.3 illustrates that likelihood-mapping enables

an easy distinction between star-like or tree-like evolution. The influence of sequence

length (“noise”) on tree-likeness of the data is easily recognized.
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Figure 5.3: Effect of sequence length (50, 100, 200, and 500 bp) on the distribution

of P-vectors for a simulated data set with 16 sequences. (Upper) Sequences evolving

along a perfect star phylogeny. (Lower) Sequences evolving along a completely re-

solved tree. Sequences evolved according to the Jukes-Cantor model. The number of

substitutions per site and per branch was 0.1. Each triangle shows a result of one sim-

ulation where all possible 1,820 P-vectors were computed. If tree-like data were gen-

erated (Lower) the number of P-vectors seems to decrease with increasing sequence

length. This effect is due to the fact that identical P-vectors fall on top of each other.

Longersequences increase the probability that one of the tree favored equals one. That

is, most of the 1,820 P-vectors superimpose each other in the corners of the triangles

(cf. Table 5.1).

5.3.2 Data analysis

We illustrate the power of likelihood-mapping using two data sets published recently

(Zischler et al., 1995; Friedrich and Tautz, 1995). The first set (Zischler et al., 1995)

comprises eight partial cytochrome-b sequences (135 bp) and nine putative dinosaur

sequences (Woodward et al., 1994). The second alignment (1,850 bp) consists of

ribosomal DNA from major arthropod classes (three myriapods, two chelicerates,

two crustaceans, three hexapods) and six other sequences (human, Xenopus, Tubifex,

Caenorhabditis, mouse, and rat). Likelihood-mapping suggests (Figure 5.4) that the

Zischler et al. (1995) data show a fair amount of star-likeness with 17.5% of all quar-
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Figure 5.4: Likelihood-mapping analysis for two biological data sets. (Upper) The

distribution patterns. (Lower) The occupancies (in percent) for the seven areas of at-

traction. (A) cytochrome-b data (Zischler et al., 1995). (B) Ribosomal DNA of major

arthropod groups (Friedrichand Tautz, 1995).

tet points in region A123 in contrast to only 0.2% for the ribosomal DNA. This result is

corroborated by a bootstrap analysis (Zischler et al., 1995; Friedrich and Tautz, 1995).

Because of the short sequence length the percentage of quartets mapped into regions

A12, A13, and A23 is with 10.1% for the sequences from Zischler et al. (1995) very

high compared to 1.6% for the rDNA sequences. However, the cytochrome-b data still

contain a reasonable amount of tree-likeness as 72.4% of all quartets are placed in

the areas A1, A2, and A3. The tree-likeness of the ribosomal DNA is extremely high

(A1+A2+A3 = 98.3%). The a posteriori analysis based on bootstrap values (Friedrich

and Tautz, 1995) shows that all groupings in the tree receive high support.
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Figure 5.5: Four-cluster likelihood-mapping of ribosomal DNA (Friedrich and Tautz,

1995). Sequences were split in fourdisjoint groups, misc. represents the non-arthropod

sequences. The corners of the triangle are labeled with the corresponding tree topolo-

gies.

5.3.3 Four-cluster likelihood-mapping

A further application of likelihood-mapping allows testing of an internal edge of a

tree as given from any tree reconstruction method. As an example we consider the

sister group status of myriapods and chelicerates as suggested by Friedrich and Tautz

(1995). Figure 5.5 shows that 90.4% of all quartets between the four corresponding

clusters support the branching pattern that groups chelicerates and myriapods versus

crustaceans, hexapods and the remaining sequences. We find only very low support

(6.9%) for the topology that pairs myriapods with crustaceans plus hexapods rather

than with chelicerates or with the rest. Based on likelihood-mapping we can not reject

the hypothesis of monophyly of myriapods and chelicerates. However, the outcome of

statistical tests as suggested in Rzhetsky et al. (1995) remains to be seen.
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5.4 Discussion

The evaluation of the phylogenetic contents in a data set is of prime importance to

avoid false conclusions about evolutionary relationships among organism. Methods

abound that evaluate the reliability of a reconstructed tree a posteriori (Swofford et al.,

1996). Likelihood-mapping can be viewed as a complementary approach to existing

methods of a priori or a posteriori evaluations of tree-likeness. Our method may be

helpful when analyzing controversial phylogenies. Similar to statistical geometry in se-

quence space (Eigen et al., 1988; Eigen and Winkler-Oswatitsch, 1990; Nieselt-Struwe

et al., 1996) likelihood-mapping is based on the analysis of quartets, the basic ingre-

dients to reconstruct trees (Bandelt and Dress, 1986). Moreover, the description of

seven basins of attraction (Figure 5.2 B) that can be characterized as fully resolved

(A1, A2, A3), intermediate between two trees (A12, A13, A23), or star-like (A123) is also

of great importance in the quartet-puzzling tree search algorithm (Chapter 4).

Here, we have provided a simple, but versatile, approach to visualize the phyloge-

netic content of a data set. We have shown that the method has reasonable predictive

power. While we have presented only a visual tool to analyze the phylogenetic signal

of sequences it is certainly necessary to develop solid statistical tests that provide ev-

idence as to the significance of clusters (Rzhetsky et al., 1995) or to a deviation from

tree-likeness. For example, the assumption of equal prior probability for the trees may

be debatable. It remains to be seen how approaches like Jeffrey’s prior (Lake, 1995)

or the inclusion of the variance of likelihood estimates (Hasegawa and Kishino, 1989)

will influence the analysis.

Finally, it should kept in mind that the interpretation of the result of a likelihood-

mapping analysis strongly depends on sequence length. The alignment of human mito-

chondrial control-region data (Vigilant et al., 1991) comprises 1,137 positions. 82.5%

of the quartets belong to the regions that represent fully resolved trees. Thus, the result

suggests that the data are very well suited to reconstruct a well resolved tree. However,

we observe 8.3% of all quartets in the star-like region A123 of the triangle. This value

is too high for a completely resolved phylogeny (see Table 5.1). Therefore, we expect

a phylogeny that is well resolved in certain parts of the tree only.
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Chapter 6

Summary

In this doctoral thesis a variety of new methods for molecular phylogenetics based on

maximum-likelihood were introduced:

Tree reconstruction: Quartet-puzzling, a fast and efficient heuristic tree search pro-

cedure for maximum-likelihood was developed. This method does not only de-

termine a tree topology but in addition estimates local support values for internal

branches. Moreover, in contrast to many other maximum-likelihood methods it

is well-suited to compute trees for large data sets.

Data assessment: Likelihood-mapping, a novel technique to analyze and to visualize

the phylogenetic content of a sequence alignment was presented. This method

can be viewed as complementary approach to statistical geometry in sequence

space. Likelihood-mapping is applicable to large data sets as well.

Intra-tree relationships: New measures for the reliability of internal branches were

introduced. Quartet-puzzling support values are a helpful additional tool similar

to bootstrap values. Four-cluster likelihood-mapping enables the estimation of

the support of a single hypothesized internal branch without reconstructing an

overall tree.

Parameter estimation: To speed up maximum-likelihood estimation of the parame-

ters of a model of sequence evolution a number of useful simplification were

proposed. The procedures allow the quick and reliable determination of the pa-

rameters of the model of the substitution process and of rate heterogeneity.
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These methods were implemented in a computer program:

Software: PUZZLE, a user-friendly and platform-independent maximum-likelihood

program was developed. It is distributed free of charge over the Internet (see

Appendix A). PUZZLE is one of the fastest maximum-likelihood programs for

molecular phylogeny currently available.

Data analysis: All computations in this thesis were done using PUZZLE except

where indicated. The suitability of PUZZLE to study biological questions was

illustrated by studying mitochondrial and ribosomal DNA sequences.
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Appendix A

The PUZZLE Software

A PHYLIP (Felsenstein, 1993) compatible program PUZZLE has been developed

to analyze nucleotide, two-state, and amino acid sequence data by the maximum-

likelihood methods presented in this doctoral thesis.

A.1 Description

PUZZLE is a computer program to reconstruct phylogenetic trees from molecular se-

quence data by maximum likelihood. It implements a fast tree search algorithm, quartet

puzzling, that allows analysis of large data sets and automatically assigns estimations

of support to each internal branch. PUZZLE also computes pairwise maximum likeli-

hood distances as well as branch lengths for user specified trees. Branch lengths can be

calculated under the clock-assumption. In addition, PUZZLE offers a novel method,

likelihood mapping, to investigate the support of a hypothesized internal branch with-

out computing an overall tree and to visualize the phylogenetic content of a sequence

alignment. PUZZLE also conducts a number of statistical tests for the data set, e.g., a

χ2-test for homogeneity of base composition over sequences, a likelihood ratio clock

test (Felsenstein, 1988), and a test for comparison of different tree topologies (Kishino

and Hasegawa, 1989). The models of substitution provided by PUZZLE are TN, HKY,

F84, SH for nucleotides, Dayhoff, JTT, mtREV, BLOSUM 62 for amino acids, and

F81 for two-state data. Rate heterogeneity is modelled by a discrete Γ-distribution and

by allowing invariable sites. The corresponding parameters can be inferred from the

data set.

PUZZLE is written in ANSI C and runs on all popular platforms (MacOS, Win-
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dows 95/NT, UNIX, VMS). Further details about PUZZLE program can be found in

its online manual

http://www.zi.biologie.uni-muenchen.de/˜strimmer/manual.html .

A.2 Distribution

PUZZLE is distributed over the Internet. It is available free of charge from a number

of servers. Currently the official home page of PUZZLE is located at the Institute of

Zoology of the University of Munich (Germany)

http://www.zi.biologie.uni-muenchen.de/˜strimmer/puzzle.html .

In addition, PUZZLE also is distributed by the European Bioinformatics Institute

(United Kingdom)

ftp://ftp.ebi.ac.uk/pub/software/ ,

by the Institut Pasteur (France)

ftp://ftp.pasteur.fr/pub/GenSoft/ ,

and by the IUBio archive at the University of Indiana (USA)

http://iubio.bio.indiana.edu/soft/molbio/evolve/ ,

ftp://iubio.bio.indiana.edu/molbio/evolve/ .
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