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Abstract
The technical advancements in genomics, functional magnetic-resonance and other
areas of scientific research seen in the last two decades have led to a burst of interest in
multiple testing procedures.
A driving factor for innovations in the field of multiple testing has been the problem
of large scale simultaneous testing. There, the goal is to uncover lower–dimensional
signals from high–dimensional data. Mathematically speaking, this means that the
dimension d is usually in the thousands while the sample size n is relatively small (max.
100 in general, often due to cost constraints) — a characteristic commonly abbreviated
as d� n.
In my thesis I look at several multiple testing problems and corresponding procedures
from a false discovery rate (FDR) perspective, a methodology originally introduced in a
seminal paper by Benjamini and Hochberg (2005).
FDR analysis starts by fitting a two–component mixture model to the observed test
statistics. This mixture consists of a null model density and an alternative component
density from which the interesting cases are assumed to be drawn.
In the thesis I proposed a new approach called log–FDR to the estimation of false
discovery rates. Specifically, my new approach to truncated maximum likelihood
estimation yields accurate null model estimates. This is complemented by constrained
maximum likelihood estimation for the alternative density using log–concave density
estimation.
A recent competitor to the FDR is the method of “Higher Criticism”. It has been and
strongly advocated in the context of variable selection in classification which is deeply
linked to multiple comparisons. Hence, I also looked at variable selection in class
prediction which can be viewed as a special signal identification problem. Both FDR
methods and Higher Criticism can be highly useful for signal identification. This is
discussed in the context of variable selection in linear discriminant analysis (LDA), a
popular classification method.
FDR methods are not only useful for multiple testing situations in the strict sense, they
are also applicable to related problems. I looked at several kinds of applications of FDR
in linear classification. I present and extend statistical techniques related to effect size
estimation using false discovery rates and showed how to use these for variable selection.
The resulting fdr–effect method proposed for effect size estimation is shown to work as
well as competing approaches while being conceptually simple and computationally
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inexpensive.
Additionally, I applied the fdr–effect method to variable selection by minimizing the
misclassification rate and showed that it works very well and leads to compact and
interpretable feature sets.
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1 Introduction

The technical advancements in genomics, functional magnetic-resonance and other areas
of scientific research seen in the last two decades have lead to a burst of interest in
multiple testing procedures [Benjamini, 2010a]. Since these procedures mostly deal
with multiple comparisons, the terms ”multiple testing procedures“ and ”multiple
comparison procedures“ (MCP) are used synonymously in general [Shaffer, 1995]. In
2008, almost 8% of all publications in top statistical journals devoted to statistical
methodology were concerned with procedures for multiple comparisons as shown in
Fig. 1.1.

A driving factor for innovations in the field of MCP has been the problem of large scale
simultaneous testing. There, the goal is to uncover lower–dimensional signals from high
dimensional data. Mathematically speaking, this means that the dimension d is usually
in the thousands while the sample size n is relatively small (max. 100 in general, often
due to cost constraints) — a characteristic commonly abbreviated as d� n. Observe
that this is in stark contrast to traditional applications of multiple testing in e.g. ANOVA
post–hoc tests where usually less than 20 group comparisons are performed [Rüger,
2002]. Today, we face very high dimensional problems, where very often conventional
statistical tools no longer work satisfactorily. Nonetheless, the high dimension also has
its benefits: It allows to estimate certain model parameters from data.

A case in point for high dimensional multiple comparisons are DNA microarray experi-
ments which have revolutionized genomic research in the last twenty years by allowing
the measurement of gene activity for thousands of genes simultaneously [Dudoit et al.,
2003]. In a microarray experiment, gene activity, which is commonly referred to as “gene
expression”, is measured by RNA concentration. An important task arising in these
kind of experiments is the identification of differentially expressed genes, that is, genes
whose expression levels are associated with a response or covariate of interest.

This variable is very often dichotomous, e.g. indicating for each sample whether a
sample originates from normal or cancer tissue. The biological question of differential
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Chapter 1. Introduction

expression can be recasted as a multiple testing problem: the simultaneous test for each
gene of the null hypothesis of no association between the expression and the response.
This is usually assessed by performing a (regularized) t–test for each gene. In this way,
a ranking of the genes according to their discriminatory power is obtained. Multiple
testing methodologies then help to find the “right” cutoff, separating signal from noise.

However, the covariate can also have multiple levels. In this case, the biological question
at hand is the development of so–called “molecular signatures” characterizing (for
example) subtypes of a disease [Alizadeh et al., 2000]. In this scenario, the covariate
represents the different subcases. Here multiple testing can help to identify a (compact)
set of genes that differ strongly in expression between the different subtypes. This set
then characterizes the different classes on a molecular level. From a statistical point of
view, the characterization of subtypes using a compact set of genes is equivalent to the
problem of variable selection in classification (= class prediction). Here, multiple testing
procedures are also extremely helpful.

In this thesis, I will mostly consider multiple testing problems arising from microarray
data. Note however that multiple comparisons are also a very important issue in
other areas. Examples include recommender systems and even business analytics: In
a thought–provoking article, Polson and Scott [2012] use multiple testing approaches
which are conceptually similar to the ones presented in this thesis to filter out successful
firms from a plethora of several ten thousand candidates. Perhaps surprisingly, only a
small fraction of the companies commonly considered as leading organizations appears
on the upper echelons of their final results.

Guideline through the Thesis

In the course of this thesis, I will look at several multiple testing problems and procedures
from a false discovery rate (FDR) perspective, a methodology originally introduced in a
seminal paper by Benjamini and Hochberg [1995]. The FDR approach aims at controlling
the expected number of false positives among all null hypotheses rejected. It is generally
much less conservative than the traditionally employed family wise error rate (FWER),
the probability of performing at least one false rejection. This makes the FDR highly
suitable for high dimensional multiple comparisons, where the control of the FWER
usually leads to very strict procedures. Most of my considerations in the thesis will be
based on a Bayesian perspective on FDR methods, originally introduced by Efron et al.
[2001] as well as Storey [2003], and well summarized by Efron [2008].

A recent competitor to the FDR in the field of MCP is the method of “Higher Criticism”
(HC), originally introduced by Tukey [1976] in order to perform a multiple testing
correction for the original p–values obtained from original test statistics. It has been
strongly advocated by Donoho and Jin [2008, 2009] in the context of variable selection

2
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Figure 1.1: Distribution of articles related to multiple comparison procedures (MCP) in
top statistical journals, adapted from Benjamini [2010a].

in classification, which is deeply linked to multiple comparisons. Hence, I will also
look at variable selection in class prediction, which can be viewed as a special signal
identification problem. Both FDR methods and Higher Criticism can be highly useful
for signal identification. This will be discussed in the context of variable selection in
linear discriminant analysis (LDA), a popular classification method. A specimen of
this method called “Nearest Shrunken Centroids” (NSC) has been widely used in the
characterization of disease subtypes [Tibshirani et al., 2003].

Chapter Summaries

• An introduction to false discovery rate methods is given in Chapter 2. The classical
Benjamini–Hochberg procedure is introduced and empirical Bayes analyses of the
FDR is treated in some detail.

• Chapter 3 treats the estimation of false discovery rates in detail. Specifically,
truncated maximum likelihood estimation of the null model and non–parametric
estimation of the alternative model are discussed. The chapter recapitulates es-
tablished methods but also presents new techniques for the estimation of the
FDR.

• In Chapter 4, application areas of the FDR in linear classification are treated. FDR
methods are used to estimate effect sizes and to select variables, respectively.
Specifically, a simple and heuristic but nonetheless competitive empirical Bayes
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approach to the estimation of effect sizes is presented and several thresholding
methods for variable selection are compared. The introduced effect size estimates
are used to derive a variable selection threshold based on an approximation of
a prediction error. This is then compared to thresholding using the method of
Higher Criticism (HC) and thresholding based on false discovery rates.

• Signal identification in large–dimensional settings, of which variable selection can
be viewed as a special case, is a challenging problem in biostatistics. The method
of Higher Criticism (HC) was shown to be an effective means for determining
appropriate decision thresholds. In Chapter 5, HC is studied from a false dis-
covery rate perspective. It is shown that the HC threshold may be viewed as an
approximation to a natural class boundary (CB) in two–class discriminant analysis,
which, in turn, is expressible as an FDR threshold.

• In Chapter 6, the work is summarized and several important aspects of the pre-
ceding chapters are once again highlighted. Furthermore an outlook is given and
some directions for future research are indicated.

Contributions of the Thesis

This section gives an overview of the contributions of this thesis.

Contributions of Chapter 3

(i) A new approach to the estimation of the truncation–point necessary for empirical
null estimation (section 3.1.2).

(ii) Application of a log–concave density estimator to the estimation of the alternative
model, leading to a “smoother” density estimate without any additional tuning
parameters (part of section 3.2.2).

(iii) A study of FDR estimation using threshold functions (section 3.3).

(iv) A detailed comparison of the variability and accuracy of several FDR estimation
methods (section 3.7).

Contributions of Chapter 4

(i) A new conceptually simple and computationally efficient method for effect size
estimation in linear discriminant analysis (LDA, section 4.2.1).

(ii) An extended version of missclassification rate based variable selection, allowing
fast variable selection for any number of classes in LDA (section 4.3.2).
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(iii) Demonstration of the connection between missclassification rate based variable
selection and Higher Criticism thresholding (section 4.4).

Contributions of Chapter 5

(i) A non–technical and accessible introduction to the method of Higher Criticism
(HC) on both the sample and the population level (section 5.1).

(ii) A “class boundary” (CB) FDR–based threshold is introduced and compared to the
Kolmogorov-Smirnov (KS) and HC thresholds (sections 5.2 and 5.3).

(iii) It is shown that in a so called “rare–weak” setting, if signal identification is possible,
the CB and HC thresholds are practicably indistinguishable. Thus HC thresholding
is in this case identical to using a simple FDR cutoff (section 5.4).

Publications

Parts of this thesis have already been already published. Section 3.3 is based on the article
“Learning false discovery rates by fitting sigmoidal threshold functions” [Klaus and
Strimmer, 2011].

Chapter 4 is essentially an extended version of the ArXiv preprint “Effect size es-
timation and misclassification rate based variable selection in linear discriminant
analysis” [Klaus, 2012]. It additionally contains material from the conference contri-
bution “Thresholding methods for feature selection in genomics: higher criticism
versus false non-discovery rates” [Klaus and Strimmer, 2010].

The final chapter 5 is based on the article “Signal identification for rare and weak
features: higher criticism or false discovery rates?” [Klaus and Strimmer, 2012].

Software implementing the approaches presented in this thesis is described in Appendix
A. Summaries of all the publications described here can be found in Appendix B.
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2 False Discovery Rates (FDR)

2.1 Classical FDR Analysis – the BH Procedure

False discovery rate analysis has its origin in an influential paper by Schweder and
Spjøtvoll [1982], see also Benjamini [2010b]. Schweder and Spjøtvoll looked at the
classical multiple testing situation of d tested hypotheses of which only a number d0 < d
were true. It is illustrative to look at their method in some detail. Remember that for
a collection of continuous null distributions the corresponding p–values are uniform.
Let test statistics s1, . . . , sd have continuous null distributions F0,1, . . . , F0,d. Suppose H0,i

gets rejected when s0,i is large. Then the corresponding p–values are pi = 1− F0,i(pi). If
si does not correspond to a true null hypothesis, the corresponding p–value pi will be
very small. Let Np be the number of p–values that are greater than p. For large p–values
which likely will correspond to true null hypotheses it then holds that

E(Np) = d0(1− p) .

Large (probably non–null) p–values will thus be close to a straight line with slope d0.
Accordingly, small p–values (probably null) will deviate from that line. Fig. 2.1 shows
such a plot for 200 p–values drawn from the mixture model 0.75N(0,1) + 0.25N(2,1),
with d0 = 150. Schweder and Spjøtvoll now suggest to reject all p–values that deviate
“strongly” from the line. From the inspection of Fig. 2.1 we can infer a cutoff of roughly
175, i.e. we reject the 25 smallest p–values. While being both easy to implement and
intuitive, Schweder and Spjøtvoll’s method is rather ad–hoc and subjective. Furthermore,
the operating characteristics of the procedure are unclear.

Benjamini and Hochberg [1995] — hereafter BH — proposed a more precise procedure to
evaluate many p–values simultaneously. Their method aims at controlling the BH false
discovery rate (FDRBH), the expected ratio E(V/R) of the number of falsely rejected
hypotheses V among all tests R declared significant. If R = 0,V/R is set to 0. The
quantity E(V/R) is called BH false discovery rate — FDRBH — here to avoid confusion,

7



Chapter 2. False Discovery Rates (FDR)
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Figure 2.1: The Schweder and Spjøtvoll approach applied for 200 p–values from the
mixture model 0.75N(0,1) + 0.25N(2,1).

since additional Bayesian false discovery rate definitions will be introduced below. As
usually E(V/R)≤ prob(V ≥ 1)(= family wise error rate, FWER) holds, controlling the
FDRBH is less conservative than controlling the FWER [Dickhaus, 2008]. BH introduced
the following linear step–up procedure to control the FDRBH at a desired level q when
the statistics s1, . . . , sd (and therefore also the corresponding p–values p1, . . . , pd) are
independent:

1. The p–values are ordered so that p(1) ≤ . . .≤ p(d).

2. Each value p(i) is compared with q i
d .

3. Setting k := maxi p(i) ≤ q i
d all hypotheses belonging to p(1), . . . , p(k) are rejected.

The values q i
d are referred to as Simes’ critical values in the literature [Dickhaus, 2008].

Observe that the empirical cumulative density function (ecdf) of the p–values F̂ fulfills
F̂(p) = order(pi)

d . Hence the p–values are compared to qF̂(.) rather than to d0(1− p) as in
the Schweder and Spjøtvoll approach. Here order(pi) equals one for the smallest and
d for the largest p–value, respectively. Interestingly, applied to the simulated p–values
of Fig. 2.1 using a FDRBH level of q = 10% the BH–procedure yields 21 rejections. Both
approaches therefore give similar results in this example.
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2.2. Empirical Bayes FDR Analysis

The FDRBH step up procedure can be reformulated into a correction procedure for
p–values:

pBH
i = pi

d
order(pi)

, i = 1, . . . ,d. (2.1)

Using a significance level q for these corrected values will control the FDRBH at level q.
For comparison, the standard Bonferroni correction [Bonferroni, 1935] is pBf

i = pi · d, and
hence pi ≤ pBH

i ≤ pBf
i .

There are a couple of extensions of the BH linear step up procedure, see e.g. Finner et al.
[2009]. In this thesis, however, I will mostly discuss empirical Bayes approaches to the
estimation of false discovery rates. The focus of the BH and related procedures lies on
the control of the false discovery rate. However, when analyzing high dimensional data
usually at least several hundred hypotheses tests are performed. This, in fact, allows to
estimate rather than only to control the false discovery rate. It will turn out that Bayesian
approaches are highly appropriate here. However no “full” Bayesian modeling will
be performed. Model parameters are estimated from data rather than inferred from
posterior distributions, hence the name for these methodologies is “empirical Bayes”.
The next section will introduce the key concepts starting with a data example from
microarray analysis.

2.2 Empirical Bayes FDR Analysis

A typical scenario encountered in microarray data analysis is a gene–wise comparison of
two sample groups. Fig. 2.2 shows a histogram of 2000 two–sample t–scores measuring
differential gene expression between cancer (40 samples) and healthy tissue (22 samples)
in a colon cancer microarray study [Alon et al., 1999]. For every gene, each sample
group is assumed to follow a normal distribution and the null hypothesis is that there
is no differential expression between the sample groups. Due to the large number of
degrees of freedom, the t–scores can be assumed to be normally distributed under the
null hypothesis for this data set. In general, when faced with smaller sample sizes, the
two sample t–statistics can easily be transformed to the normal scale. Let n1 and n2 be
the sizes of group 1 and 2, respectively, and Fdf the cumulative distribution function
(cdf) of a Student’s t distribution with df degrees of freedom. Then the t–scores can be
transformed to z–scores by the following transformation:

zi := Φ−1 [Fn1+n2−2(ti)] , (2.2)

where Φ denotes the cdf of the standard normal distribution. Thus we will always
assume that our gene–wise comparisons yield z statistics z1, . . . ,zd. Under the null
hypothesis of no differential expression, the statistics should follow a standard normal
distribution, i.e. zi ∼ N(0,1).
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Chapter 2. False Discovery Rates (FDR)

In microarray experiments, a common and realistic assumption is that for “most” (≥ 75%)
genes the null hypothesis is true since it is very unlikely that several thousand genes
are involved in the genesis of a disease at the same time. Therefore. the central region
of the z–value histogram in Fig. 2.2 should roughly correspond to a standard normal
distribution. However, this is clearly not the case. Unfortunately, our theoretical null
distribution N(0,1) turns out to be more theoretical than we might have anticipated.
Efron [2008] and Benjamini [2008] state a couple of typical reasons for this common
phenomenon:

1. The assumption of a normal distribution in each sample group might not be valid
for all genes.

2. There might be unobserved covariates, e.g. age, sex and eating habits that affect
the expression of particular genes in a study.

3. The samples might not be independent: In microarray experiments so–called
“batch effects” are very often observed, i.e. samples coming from the same labora-
tory are usually correlated with each other.

4. Genes work together in groups so we expect them to be correlated. This can both
increase or decrease the variance of the null distribution [Efron, 2007a].

5. Benjamini [2008] indicates that set of statistics used for the final analysis have
usually already been preselected from the original set measured. A typical mi-
croarray platform can measure up to 20,000 genes. However, typically only a
couple of thousand genes are considered in the final analysis. This preselection
possibly distorts the center of the histogram, since generally a large number of
genes showing no differential activity have already been filtered out before any
false discovery rate analysis is performed.

These problems indicate that the theoretical null model is very often not appropriate for
high dimensional testing situations. But thanks to the large number of hypothesis tests,
we can actually estimate an appropriate null distribution and the FDR. This is best done
in the context of a simple two–groups model, which will be introduced next.

2.2.1 The Two–Groups Model and a Generalized Test Statistic

Estimation of FDR typically starts by fitting a two–component mixture model to the
observed test statistics [Efron, 2008]. This mixture consists of a null model density f0

(and corresponding distribution F0) and an alternative component density fA (and cor-
responding distribution FA) from which the “interesting” or “non–null” (corresponding
to the alternative component) cases are assumed to be drawn. In this thesis, I mostly
will use a general test statistic y≥ 0, with large values of y indicating an “interesting”
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Figure 2.2: A histogram of z–scores obtained from colon cancer data [Alon et al., 1999].

and small values close to zero an “uninteresting” (corresponding to the null component)
case. Examples for suitable statistics y include:

• y = 1− p where p is a p–value,

• y = |z| where z is a normal score,

• y = |r| where r is a correlation, and

• y = |t| where t is a t–score.

See also Strimmer [2008b]. We can write the mixture model in terms of densities as

f (y) = η0 f0(y) + (1− η0) fA(y) (2.3)

and using distributions as

F(y) = η0F0(y) + (1− η0)FA(y) . (2.4)
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Chapter 2. False Discovery Rates (FDR)

The parameter η0 is the true proportion of the null statistics. From a given mixture
model using Bayes’ rule, the so–called local FDR (= fdr) is readily obtained by

fdr(y) = prob(“null”|Y = y)

= η0
f0(y)
f (y)

(2.5)

and the tail–area–based FDR (= Fdr), also known as q–value, is defined by

Fdr(y) := prob(“null”|Y≥ y)

= η0
1− F0(y)
1− F(y)

.
(2.6)

Note that the “Bayesian” Fdr defined in Eq. 2.6 corresponds to estimating the ratio
E(V)/E(R), while the BH procedure controls E(V/R). However, these quantities are
equivalent under independence assumptions. See Storey [2003], theorem 1 and corollary
1 for details. Specifically, if η0 < 1 then the following relations hold approximately:

FDRBH = E(V/R) = E(V/R|R > 0)Pr(R > 0)≈ E(V)/E(R) = Fdr.

There is another interesting connection between the BH rule Eq. 2.1 and definition Eq. 2.6.
The former can be interpreted as a non–parametric empirical estimator of Fdr:

Fdr(1− pi) = Prob(“null”|1− P≥ 1− pi)

= η0
1− (1− pi)

1− F(1− pi)
= η0

pi

1− F(1− pi)
.

Plugging in the ecdf F̂(1− pi) = 1− order(pi)
d as an estimator of F(1− p) and using the

conservative guess η̂0 = 1 yields:

F̂dr(1− pi) =
η̂0 pi

1− F̂(1− pi)
= pi

η̂0d
order(pi)

= pi
d

order(pi)
.

It follows that using the above estimator and controlling F̂dr at level q is equivalent to
the BH–rule Eq. 2.1 for the same level q.

The mixture models of Eq. 2.3 and Eq. 2.4 also allow the definition of the false non
discovery rate (FNDR) [Genovese and Wassermann, 2002]. Here, the roles of null and
alternative are interchanged. The local false non discovery rate (fndr) is given by:

fndr(y) := prob(“alternative”|Y = y)

= (1− η0)
fa(y)
f (y)

= 1− fdr(y)
(2.7)
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2.2. Empirical Bayes FDR Analysis

Table 2.1: Definitions of FDR and FNDR on the y scale.

Quantity Definition

Specificity(y) = prob(Y≤ y|“null”) = F0(y)
Power / Sensitivity(y) = prob(Y≥ y|“alternative”) = 1− FA(y)

Fdr(y) = prob(“null”|Y≥ y) = η0
1−F0(y)
1−F(y)

Fndr(y) = prob(“alternative”|Y≤ y) = (1− η0)
FA(y)
F(y)

fdr(y) = prob(“null”|Y = y) = η0
f0(y)
f (y)

fndr(y) = prob(“alternative”|Y = y) = (1− η0)
fa(y)
f (y) = 1− fdr(y)

All expressions are defined on the y scale. Fdr and Fndr are based on distributions
(capital “F”) whereasfdr and fndr are computed from densities (lower case “f”).

and the tail area based FNDR (=Fndr), is defined by

Fndr(y) := prob(“alternative”|Y≤ y)

= (1− η0)
FA(y)
F(y)

.
(2.8)

Tab. 2.1 summarizes the definitions given above. In this work, the term F(N)DR will
abbreviate false (non) discovery rates in a general sense, including both local and tail
area based definitions, while quantities derived from densities will begin with a lower
case “f” and correspondingly quantities derived from distributions will begin with a
capital “F”.

It is instructive to compare the definitions of Fdr and Fndr for a given threshold y with
those of sensitivity and specificity — see Tab. 2.1. The order of conditioning is reversed
in the two instances; apart from that, the definitions are very similar. Furthermore,
both Fdr–Fndr and sensitivity–specificity can be used as risk measures for a testing
procedure. In a conventional testing situation, the threshold y is chosen to maximize
both sensitivity and specificity (i.e. typically specificity is fixed and power is maximized).
Analogously, in an FDR analysis, one seeks to minimize Fdr and Fndr (e.g; by fixing
Fndr and minimizing Fdr). Hence, there is a tradeoff between Fndr and Fdr, just as there
is a tradeoff between sensitivity and specificity.

2.2.2 Technical Assumptions and Monotonicity of False Discovery Rates if
the Null Model is Known

Most MCPs are based on p–values and hence implicitly assume that a null model is
known. In this subsection, I will also make this assumption. The null model will
assumed to be known and all calculations will be based on p–values.
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Table 2.2: Definitions of FDR and FNDR on the p–value scale using the models of
Eq. 2.10 and Eq. 2.11. Observe that when the null model is known, statistics can always
be transformed to p–values, see Eq. 2.9.

Quantity Definition

Specificity(p) = prob(P≥ p|“null”) = 1− F0(p) = 1− p
Sensitivity(p) = prob(P≤ p|“alternative”) = FA(p)

Fdr(p) = prob(“null”|P≤ p) = η0F0(p)
F(p) = η0 p

F(p)

Fndr(p) = prob(“alternative”|P≥ p) = (1− η0)
1−FA(p)
1−F(p)

fdr(p) = prob(“null”|P = p) = η0 f0(p)
f (p) = η0

f (p)

fndr(p) = prob(“alternative”|P = p) = (1−η0) fA(p)
f (p) = 1− fdr(p)

All expressions are defined on the p–value scale. Fdr and Fndr are based on
distributions (capital “F”) whereas fdr and fndr are computed from densities (lower

case “f”).

Once a (possibly empirical) null model has been specified and f0/F0 is known, we can
transform our test statistics into p–values via the transformation

p = 1− F0(y) . (2.9)

Since p–values are uniform under the null hypothesis, the null density becomes f0(p) =
1, and the null distribution is F0(p) = p. Note that Eq. 2.9 results in a reformulation of
the models Eq. 2.3 and Eq. 2.4 as

f (p) = η0 + (1− η0) fA(p) (2.10)

and

F(p) = η0 p + (1− η0)FA(p) , (2.11)

respectively. Now, small values of p indicate ”interesting“ cases. This does not change
the essence of the mixture models introduced but results in slightly different formulae
than setting y = 1− p in Eq. 2.3 and Eq. 2.4. For convenience, Tab. 2.2 gives Tab. 2.1
on the p–value scale. Assuming the null model as known allows to derive several
interesting properties of the FDR estimates.

Firstly, identifiability of the mixture weight (proportion of true null hypotheses) η0 of
the mixture models Eq. 2.10 and Eq. 2.11 is assured if the alternative density is assumed
to vanish near 1, i.e. fA(p→ 1) = 0. Then we have from Eq. 2.10 that:

f (p→ 1) = η0 + (1− η0) fA(p→ 1) = η0 ,
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2.3. Empirical Null Modeling

and hence η0 can be identified and it follows that fdr(1) = 1. Similarly, we have Fdr(1) =
η0.

Secondly, it is desirable to obtain monotone FDR values, since in this way the original
ordering of the p–values (and correspondingly the test statistics) remains unchanged, i.e.
FDR(p1)≤ FDR(p2) for p1 ≤ p2 holds. Note that, this is not the case for the BH proce-
dure. Therefore concavity constraints are often imposed on the marginal distribution F
on the p–value scale. Specifically, if F is concave and sufficiently smooth, such that f (p)
is a monotonically decreasing density, Fdr(p) and fdr(p) are monotonically increasing
with p. Additionally, it holds that 0≤ fdr(p)≤ 1 and 0≤ Fdr(p)≤ η0 .

In order to see that Fdr(p) is monotonically increasing with p, note that since F is
concave it holds for any p ∈ [0,1] that F(p) ≥ pF(1) = p = F0(p). Therefore, F′(p) =
f (p) ≥ 1 = f0(p) while F(0) = 0 = F0(0). Hence, F grows faster than F0(p) = p (or as
fast as F0(p)) while both have the same starting point. Thus, p

F(p) is always smaller than
or equal to 1. Since fA is monotonically decreasing and fA(p→ 1) = 0, the growth speed
of F decreases monotonically and approaches that of F0(p) = p for p→ 1. It follows
that F(p) − p ≥ 0 is monotonically decreasing with p. Therefore, p

F(p) is obviously
monotonically increasing with p.

In theory, it suffices to impose restrictions on the alternative density only. If we assume
sufficient smoothness of FA(p), then fA(p) is a monotonically decreasing density, if and
only if, FA(p) is concave. In the literature, usually the concavity assumption is made.
This also implies that the alternative and the null model are stochastically ordered with
FA(p)≥ F0(p) = p for all p [Langaas et al., 2005, Strimmer, 2008b]. However, in practice
it is generally easier to impose monotonicity restrictions on the marginal density f .

2.3 Empirical Null Modeling

Efron [2004] has shown that problems with theoretical null model F0/ f0 as exemplified
in Fig. 2.2 can be elegantly avoided by estimating the parameters of the null model
in Eq. 2.3 and Eq. 2.4. Let these parameters be denoted by θ, i.e. f0(y) = f0(y;θ) and
F0(y) = F0(y;θ). In this thesis, θ will denote a variance parameter and centered test
statistics will be assumed (unless stated otherwise). Intriguingly, this empirical null
modeling is greatly facilitated by high dimensions. Here high–dimensionality is not
a curse but a blessing. The truncated maximum likelihood empirical null modeling
approach presented in this section follows the presentation of Strimmer [2008b]. It is
implemented in the R–package [R Development Core Team, 2012] fdrtool [Strimmer,
2008a].

For empirical null modeling, suitable estimates of the parameters θ and η0 are necessary.
In other words, the null sub–density η0 f0(y;θ) of the two–component model (Eqs. 2.3

15
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and 2.4) needs to be fit to the observed test statistics. This is more or less straightforward
in fully parametric models such as BUM [Pounds and Morris, 2003] or the mixture
models of McLachlan et al. [2006] and Muralidharan [2010]. McLachlan et al. [2006] use
a two–component normal mixture including null parameters for location and scale, Mu-
ralidharan [2010] uses mixtures of multiple components. Unfortunately, even maximum
likelihood estimates of simple mixtures models can exhibit pathological behavior, e.g.
an infinite likelihood at some points in the parameter space [Le Cam, 1990, example
1]. There is, however, another, more pronounced problem with mixture models. Their
parameters are not necessarily identifiable. This means that several different parame-
ter sets may lead to the same model. The following example illustrates this behavior.
Assume that the following normal mixture is given

η0N(µ1,1) + (1− η0)N(µ2,1) .

When µ1 = µ2 = µ, the mixture reduces to the single distribution N(µ, 1). The parameter
η0 has disappeared. Similarly, when η0 = 1, the parameter µ2 disappears. This means
that there are subspaces of the parameter space where the family is not identifiable. It
indicates in particular that the proportion of the null model is generally not identifiable
if the null model is not known beforehand. Additionally, since the null and alternative
densities are usually not clearly separated in high dimensional multiple testing problems,
classic estimation strategies for mixture models such as the EM–algorithm cannot be
directly applied: Estimates have to be penalized or other modifications need to be made
[cf. section 3.5.2, Muralidharan, 2010].

Accordingly, it is often preferred to leave fA unspecified and to estimate it non–parametrically
imposing shape constraints such as monotonicity. This will be explained in detail in the
next chapter (see section 3.2). Due to the non–parametric estimation of fA, standard pro-
cedures for inferring mixture models cannot be applied. Instead, a truncated maximum
likelihood approach is necessary. The data are censored using some threshold yt, so that
only test statistics smaller than the threshold, corresponding to the set yt = {yi : yi < yt},
are retained. The underlying assumption is that for yi < yt, (nearly) all data points
belong to the null part. This is called the “(strong) zero assumption” in Turnbull [2007]
and Efron [2008]. The truncated null density then can be written as:

f t
0(y;θ) =

[
f0(y;θ)/F0(yt;θ) for y < yt,

0 otherwise.
(2.12)

In equation (2.12), F0(yt;θ) plays the role of a normalization factor, insuring that the
truncated density integrates to 1. Maximization of the corresponding likelihood function
returns θ̂ as well as an estimate of its asymptotic error. Once the null model parameters
θ and a suitable cutoff yt are known, the proportion of null values η0 can be inferred by
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assuming a simple binomial model for dt = |yt|, i.e.

dt ∼ Binom (d,η0) ,

which leads to the estimate

η̂0 = min{1,
dt

dF0(yt; θ̂)
} (2.13)

plus an associated error. In order to see why this estimate of η0 makes sense, observe that
if the zero assumption indeed holds, it should be possible to separate null and alternative
density at least approximately using a truncation point yt. That is, there is a value yt for
which the alternative distribution function is very small and F(yt;θ)≈ η0F0(yt;θ) holds.
Then the equation

dt = F(yt;θ) · d≈ η0F0(yt;θ) · d

is valid and Eq. 2.13 is an almost unbiased estimate for η0. Truncated maximum likeli-
hood is used in the locfdr [Efron, 2007b, Turnbull, 2007, section 3.5.1] and the fdrtool
[Strimmer, 2008a] algorithms. If the test statistics are p–values, the truncated maxi-
mum likelihood algorithm is equivalent to the simple cutoff technique used in qvalue

[Storey and Tibshirani, 2003] and most other p–value based FDR estimation software
packages. This cutoff technique works as follows: Let λ be covering the range [0;1], e.g.
λ = 0,0.05,0.1, . . . ,0.95. At first

η̂0(λ) =
|{p > λ}|
d(1− λ)

(2.14)

is calculated. Observe that Eq. 2.14 is essentially a cutoff dependent version of Eq. 2.13
with λ = 1− yt. Furthermore, if {p > λ} contained only null statistics, then Eq. 2.14
would give an unbiased estimator of η0. Since most of the alternative p–values are close
to 0, Eq. 2.14 will overestimate η0 especially for small λ. Having obtained an estimate
for each λ value from Eq. 2.14, there are different ways of furnishing a final estimate of
η0. In Storey and Tibshirani [2003], a spline l is fit through the pairs (λ,η0(λ)). The final
estimate of η0 is then given by η̂0 = l(1). Here λ is 1 and η0 is estimated for the case of
complete truncation, i.e. yt = 0. This will lead to a minimal bias of the estimate: For λ

close to 1 in Eq. 2.14 there is little contamination from the alternative model in the set
{p > λ} leading to an almost unbiased estimate of η0. In Strimmer [2008b], an estimate
of η0 is computed by using the 0.1 empirical quantile of distribution of η0(λ) resulting
from Eq. 2.14.
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Chapter 2. False Discovery Rates (FDR)

Selection of a Suitable Truncation Point

Estimating the null model parameters θ and the proportion η0 of true null hypotheses
by truncated maximum likelihood requires a suitable truncation point yt. It has to be
small enough to ensure that the zero assumption is met and that there are relatively few
observations from the alternative fA in the set yt. On the other hand, yt should not be
too small since dt has to be large enough to allow a reliable estimation of θ and η0. As a
rule of thumb, dt should be at least 200. There are various ideas on how to compute an
optimal cutoff. All of them are closely linked to the overall process of estimation of false
discovery rates and hence will be treated in the next chapter.
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3 Estimation of FDR

In this chapter, the estimation of false discovery rates will be treated. Specifically, I am
going to take a look at several methods of estimating the null model and the marginal
density f of the mixture model in Eq. 2.3. Estimating densities is harder than estimating
distributions. Thus, once the density estimation problem is solved, the corresponding
distribution functions (Eq. 2.4) are easily obtained with most of the methods considered
in this work. Often, both of them are even estimated simultaneously. I will begin with
the treatment of the estimation of the null model. However, it is important to note that
the estimation of the null and alternative model can never be completely separated. The
techniques presented in the following sections will finally be summarized in a general
FDR estimation algorithm in section 3.4.1.

3.1 Estimation of the Null Model

First of all, for estimating the null model parameters θ and the proportion η0 of true null
hypotheses by truncated maximum likelihood (Eq. 2.12) a suitable truncation point yt is
needed.

3.1.1 The Fndr Approach

Strimmer [2008b] uses a simple procedure that enforces the “zero assumption” by
requiring that the tail area based false non discovery rate (Fndr) is minimized. The
truncation point yt is chosen such that Fndr(yt) is small. Unfortunately, this leads to the
following circular inferential problem: In order to determine a suitable truncation point
yt, the Fndr must be known, yet, to compute Fndr and other FDR quantities, a suitable
value for yt must be specified so that truncated maximum likelihood estimation can be
performed. Fortunately, in most situations the location of the truncation point yt does
not need to be known exactly.
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Chapter 3. Estimation of FDR

The Fndr–strategy employed in the algorithm fdrtool [Strimmer, 2008a], implementing
the approach of Strimmer [2008b], proceeds in two steps. In the first step, the null
model is fit approximately. This is achieved by matching its median F−1

0 (1/2;θ) with
that of the observed statistics yi (Note that the median for the half–normal distribution
corresponds to the interquartile range (IQR) of the corresponding normal with mean
zero). Subsequently, after converting the test statistics into p–values (via Eq. 2.9), an
estimate of the null proportion is determined by using the 0.1 empirical quantile of the
distribution of η0(λ) computed according to Eq. 2.14. This then leads to an approximate
Fndr curve from which an optimal yt is obtained. Finally, truncated maximum likelihood
estimation on the basis of this truncation point yt is used for a refined fit of the null
model via Eq. 2.12. This, in turn, allows to compute FDR quantities of interest after the
marginal density has been estimated.

3.1.2 Heuristic Truncation Point Finding by Smoothing

In Fig. 3.1, the η0 estimate for the mixture model 0.8N(0,4) + 0.1Unif(−5,10)
+0.1Unif(5,10), depending on the truncation point yt, is shown. Unless otherwise noted,
the null model parameter θ estimated for a normal null distribution is the standard
deviation. In most cases, it is not necessary to estimate its mean since this can easily be
estimated by computing the median of the raw test statistics.

It is intuitively clear that η0 should be monotonically increasing with increasing yt

— at least for large enough yt, for which the parameter θ of the null density can be
reliably estimated. The greater yt is, the more important will be the number of non–null
hypotheses within the set yt. Therefore, dt will be significantly larger than η0F0(yt;θ) ·
d and hence from Eq. 2.13 it can be seen that η0 is overestimated. Usually for too
small yt, the variance estimate of the null model is very unstable, and hence also the
corresponding η0 estimate is very variable. However, if the zero assumption is met, there
should exist a region where null and alternative distribution are at least approximately
separated. In this “stability region”, the estimate of η0 should be roughly constant.
One can see from Fig. 3.1 that in our example this is fulfilled for a truncation point
between 3 and 5. Indeed all truncation points from this interval yield an η̂0 of ≈ 0.8 and
a corresponding estimated variance of σ̂≈ 2. In the “separation” area between null and
alternative hypothesis, both slope and curvature will be close to zero. However, without
smoothing the (yt, η̂0) curve, this area is usually hard to identify, and it is impossible to
compute the derivative of the η̂0 –curve.

In Fig. 3.1, the curve has been smoothed using a cubic B-spline system with spline
breakpoints placed on the 30–99% quantiles of the test statistics in 1% steps. This is done
by computing a penalized spline function. The least squares fit is penalized by a term
depending on the second derivative:
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Figure 3.1: Raw and smoothed η̂0 curve depending on the truncation point yt for 200
statistics from the mixture model 0.8N(0,4) + 0.1Unif(−5,10) + 0.1Unif(5,10).
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Let bm be the cubic B–spline (see e.g. section 3.5 of Ramsay and Silverman [2005]) basis
functions with compact support on the sampling interval and am the vector of their
coefficients. Denote by B the 70× K matrix of the values of the M basis functions on the
70 sampling points, b the M–vector of the basis functions bm and a the K–vector of the
coefficients am. Then η̂0 is essentially approximated by the B–spline as

η̂0(yt) = aTb(yt). (3.1)

In order to fit this model, the following penalized least squared estimate is computed

(η̂0 − Ba)T(η̂0 − Ba) + λ
∫ [

aT ∂b(yt)

∂2yt

]2

d yt. (3.2)

It uses a penalty based on the second derivative of the basis functions b and a tuning
parameter λ. Especially if the null and the alternative are overlapping, the “stability
region” containing a constant η̂0 can be very small–sized, so that the tuning parameter λ

is best set close to zero, yielding only a mild penalization (Ramsay and Silverman [2005],
section 5.2). In conjunction with the densely spaced breakpoints this leads to a smoothed
η̂0 curve that follows the data points closely. This allows for the identification even of
tiny areas of small slope and curvature. Since the second derivative of cubic spline is
piecewise constant, the “stability region” is found by identifying local minima of the
first derivative of the smoothed η0 curve. Then their median is used as the truncation
point. A detailed description of the algorithm can be found in section 3.4.2.

3.2 Estimation of the Alternative Density

After having introduced truncated maximum estimation of the null model, I now will
describe approaches to the estimation of the alternative density and distribution function.
Shape constraints such as monotonicity have to be imposed on the overall density (see
section 2.2.2). Consequently, it is usually easier to compute the marginal density than to
compute the alternative density directly. Taking the estimated null model into account
leads to certain constraints on the marginal density derived in the following subsection.

3.2.1 Technical Constraints for the Marginal Density

Before methods for the estimation of the alternative density fA are considered, I am
going to look at some boundaries that the marginal distribution has to observe. They
are best described on the p–value scale. That is, the test statistics yi are transformed in p–
values, using the estimated null model and Eq. 2.9. The key problem can be understood
best by going back to Eq. 2.11, the mixture model for the marginal cdf on the p–value
scale. This equation leads to two constraints that any distribution must satisfy in order
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3.2. Estimation of the Alternative Density

to be compatible with the two-component model:

(a) Obviously, the cdf has to fulfill the condition

F(p)≥ η0 p, since F(p) = η0 p + (1− η0)FA(p).

(b) Additionally, the inequality

1− F(p)≥ η0(1− p)

or equivalently

F(p)≤ 1− η0(1− p)

must be met, due to

1− F(p) = η0(1− p) + (1− η0)(1− FA(p)).

Conditions (a) and (b) essentially define a “tunnel” that the estimated marginal distribu-
tion functions must not leave, where the width of the tunnel depends on the estimated η0.
The second constraint is not particularly obvious but important as Fig. 3.2 illustrates. The
model used to generate the data in Fig. 3.2 is 0.8N(0,4)+ 0.1Unif(−5,10)+ 0.1Unif(5,10)
and the cdf is estimated from 200 statistics. The left panel shows a “raw” cdf F. As it can
be easily seen, it substantially violates the upper bound. On the right panel, a corrected
version is displayed. Both of them were computed using the log–concave estimator that
will be discussed in section 3.2.2. Observe that the upper boundary (b) ensures that the
minimum possible slope equals η0. This boundary implies that

f (p)≤−η0(−1) = η0

is valid.

3.2.2 Estimating the Marginal Density and Distribution with Constrained
Maximum Likelihood

After the null model has been fit, p–values can be computed via Eq. 2.9 and the marginal
density f can be fit to these p–values. As elucidated in section 2.2.2, we require a
monotone marginal density and consequently a concave marginal distribution function
in order to obtain monotone FDR values that respect the ordering of the test statistics. A
simple way of obtaining monotone density estimates is to impose shape constraints on
the maximum likelihood estimation of the density. A straightforward monotone density
estimation procedure is provided by the Grenander density estimator [Grenander, 1956].
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Figure 3.2: Raw and corrected F̂ for 200 statistics from the mixture model 0.8N(0,4) +
0.1Unif(−5,10) + 0.1Unif(5,10).

24



3.2. Estimation of the Alternative Density

It not only gives a monotone density but also estimates both f and F simultaneously. For
FDR analysis, the Grenander estimator has been first suggested by Langaas et al. [2005]
and Broberg [2005]. It is also used by the fdrtool algorithm Strimmer [2008a,b]. The
Grenander estimator is the non–parametric maximum likelihood estimator of a density
under the constraint of monotonicity.
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Figure 3.3: Grenander density and distribution function estimate for 200 statistics from
the mixture model 0.8N(0,4) + 0.1Unif(−5,10) + 0.1Unif(5,10).

Fig. 3.3 illustrates the density and distribution function estimate for 200 statistics from
the mixture model 0.8N(0,4) + 0.1Unif(−5,10) + 0.1Unif(5,10) on the p–value scale.
Principally, the Grenander density estimator is composed of decreasing piecewise–
constant functions. They are equal to the slopes of the least concave majorant (LCM)
of the empirical cdf. A detailed derivation of its computation and properties (among
them consistency) can be found in the accessible teaching manuscript of Jankowski
[2009]. The left part of the figure shows the estimated monotonically decreasing density
and the right part the corresponding empirical cumulative distribution. Note that
the resulting distribution F is piecewise linear, whereas the density f is piecewise
constant. Although the Grenander estimate is easy to obtain and requires no tuning
parameters, it is sometimes desirable to have a “smoother” estimate. Since the estimated
marginal density f is piecewise constant, using the Grenander estimate obviously leads
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Chapter 3. Estimation of FDR

to constant fdr–values for certain groups of test statistics. This can be undesirable since
these statistics do not necessarily have the same value.

The indicated shortcoming can be elegantly fixed by imposing a log–concavity constraint
on the density estimation. More precisely, first the p–values are turned into half–normal
(and therefore positive) z–values by the transformation

z(p) = Φ−1(1− p/2) . (3.3)

Then, these z–values are “mirrored” and the data {−z(p)} ∪ {z(p)} are used as the
starting point of a log–concave density estimation. Just as the estimation under mono-
tonicity constraints, log–concave density estimation is fully automatic and does not
necessitate any choice of a tuning parameter (penalty, bandwidth etc.). A density f is
called log–concave if it may be written as

f (x) = exp[ϑ(x)], x ∈R , (3.4)

for some concave function ϑ. Based on data x1, . . . , xd (e.g. our transformed p–values
{−z(p)} ∪ {z(p)}), this density is estimated by maximizing the log likelihood

l(ϑ|xi) = d−1
d

∑
i=1

log f (xi) = d−1
d

∑
i=1

ϑ(xi)

over all concave functions ϑ, subject to
∫

exp[ϑ(x)]d x = 1. Let x(1), . . . , x(d) be the ordered
observations. In Dümbgen and Rufibach [2009], it is shown that the maximizer of l is
unique, piecewise linear on the interval [x(1), x(d)] and ϑ =−∞ elsewhere. Additionally,
it has breakpoints (points of changing slope) only at some of the data points x(i) and is
consistent. Many parametric families include log–concave densities, e.g. the normal,
uniform, Gamma(a,b) (for a ≥ 0) and Beta(a,b) (for a,b ≥ 1) distributions. A log–
concave density is always unimodal (the reverse is not true) and since the logarithm of
the maximum likelihood density is piecewise linear the distribution function is easily
computed from the density. A review of log–concave densities can be found in Walther
[2009]. Dümbgen and Rufibach [2011] and the references therein discuss optimization
algorithms for computing the maximum likelihood estimator and give all important
formulae. In this thesis, an iterative convex minorant algorithm will be used to perform
the computations. It is implemented in the R–package logcondens [R Development
Core Team, 2012, Dümbgen and Rufibach, 2011].

The log–concave density estimate will usually have its mode at 0. More precisely, the
estimate will very often be constant around its maximum, i.e. it will have a “cap” at 0.
If the maximum z–value is not at or around 0 the corresponding values will simply be
interpolated linearly to preserve monotonicity. This is important since only the estimated
density on the negative values {−z(p)} will be used to furnish the final estimate. This
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3.2. Estimation of the Alternative Density

corresponds to the “left side” of the density curve depicted in the left panel of Fig. 3.4.
Furthermore, the technical constrains of section 3.2.1 are fulfilled by multiplying ϑ̂

with a factor λ. This gives a density with slightly sharper descent, and hence a more
slowly growing distribution function estimate. See Fig. 3.2. Having obtained the final
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Figure 3.4: Log–concave density on function estimate for 200 statistics from the mixture
model 0.8N(0,4) + 0.1Unif(−5,10) + 0.1Unif(5,10) on the z– and p–values scales.

log–concave density estimate f̂z on the z–value scale for our data {−z(p)} ∪ {z(p)}, it
can simply be transformed into the p–value scale via the following formula

f̂p(p) =
f̂z[−z(p)]

2ϕ(−z(p))
, (3.5)

where [2ϕ(−z(p))]−1 is the volume element − ∂z
∂p computed from Eq. 3.3. Note that the

minus sign in Eq. 3.5 is due to the change of the integration direction. Large z–values
correspond to small p–values and vice versa, so the inverse transformation of Eq. 3.3
would lead to a p–value density integrating from large to small p–values. In order to
reverse this, the minus sign is required.

27



Chapter 3. Estimation of FDR

3.3 FDR Estimation via Threshold Curves

In an interesting comment, Rice and Spiegelhalter [2008] reverse the traditional view
on FDR estimation followed in the previous sections. Rather than assuming a two
groups model (a null and an alternative model) to derive FDR curves as in section 2.2.1,
they proceed by specifying a null model plus a parametric family for the fdr threshold
function. The advantage of this procedure is that the alternative model does not need to
be specified explicitly, and that at the same time monotonicity of FDR is automatically
enforced. In this section, I will investigate the Rice–Spiegelhalter approach by studying
two different choices of threshold functions. Two simple models for threshold curves are
considered, the beta–uniform mixture (BUM) and the half–normal decay (HND) model.

The approach to FDR estimation presented by Rice and Spiegelhalter [2008] suggests to
viewing the null model f0 plus the fdr curve defined by fdr(y) as the primary objects,
rather than the two densities f0 and fA. From Eq. 2.5, we obtain the marginal distribution
as

f (y) =
η0 f0(y)
fdr(y)

, (3.6)

which is here represented as a function of the null model and the fdr. Similarly, the
alternative component is given by

fA(y) =
η0

1− η0

1− fdr(y)
fdr(y)

f0(y) . (3.7)

Furthermore, as f (y) is a density with
∫ ∞

0 f (y)dy = 1 we get the relationship

η0 =

(∫ ∞

0

f0(y)
fdr(y)

dy
)−1

. (3.8)

As a consequence, specifying f0(y) together with fdr(y) is equivalent to the standard
two-component formulation, but with η0 and fA(y) viewed as derived rather than
primary quantities. Eq. 3.6 also plays an important role in the general algorithm for FDR
estimation (cf. section 3.4.1; step G).

3.3.1 Models for fdr Threshold Curves

In this section I study the estimation of FDR using two continuous variants of threshold
curves for fdr(y). Specifically, the half–normal decay (HND) model by Rice and Spiegel-
halter [2008] and the beta–uniform mixture (BUM) model of Pounds and Morris [2003]
are considered. There are two natural properties for such curves. First, the function
should be monotonically decreasing, so that the FDR values lead to the same ranking as
the raw statistics y (cf. section 2.2.2). Second, on a |z|–score scale (y = |z|), the shape of
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3.3. FDR Estimation via Threshold Curves

the curve should be sigmoidal ranging from fdr(0) = 1 onwards to fdr(y→∞) = 0. The
beta–uniform mixture (BUM) and the half–normal decay (HND) model, as well as their
generalizations, satisfy these criteria.
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Figure 3.5: Examples of the BUM and HND model for η0 = 0.8. The first row shows the
corresponding joint, null and alternative densities. The second row displays the fdr–
and Fdr–values on the standard normal z–score scale. The third row shows fdr and Fdr
values on the p–value scale.

3.3.2 Beta–Uniform Mixture (BUM) Model

The BUM model was proposed in the context of FDR estimation from p–values [Pounds
and Morris, 2003]. It is based on a random variable Y ∈ [0,1] with uniform distribution
as null model. The null density is therefore

f0(y) = 1

and the corresponding distribution

F0(y) = y .
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The BUM fdr function is given as a one parameter family

fdrBUM(y|s) = s
s + a(1− s)(1− y)a−1 .

Note that a is not a parameter but a small constant so that approximately fdrBUM(0|s)≈ 1
(a = 0.001 is used throughout). From Eq. 3.8 we find the identity

η0 = s ,

which greatly facilitates the interpretation of the parameter s. The marginal density in
the BUM model is therefore (Eq. 3.6)

f (y) = η0 + a(1− η0)(1− y)a−1 .

Similarly, the alternative density is

fA(y) = a(1− y)a−1

and the alternative distribution

FA(y) = 1− (1− y)a .

The resulting marginal distribution is

F(y) = η0y + (1− η0)(1− (1− y)a) ,

which leads with Eq. 2.6 to the following expression for the q-value

Fdr(y) =
η0

η0 + (1− η0)(1− y)a−1 ,

which has Fdr(0) = η0 as required.

The BUM model can also be trivially reformulated using p–values (y(p) = 1− p). Al-
ternatively, as null statistic, one can also use standard normal z–scores with y(z) =
2Φ(|z|)− 1. Observe that this is the inverse transformation of Eq. 3.3. The Fdr and fdr
curves are invariant against reparameterization, i.e. Fdr(z) = Fdr(y(z)) and fdr(z) =
fdr(y(z)). The marginal density is computed as f (z) = η0 f0(z)/fdr(y(z)) and thus re-
quires as an additional factor the volume element (which is hidden in the transformation
from f0(y) to f0(z)). In Fig. 3.5, the BUM model and the associated Fdr and fdr values
are shown for η0 = 0.8, both on a p–value scale and on a standard normal z–score scale.
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3.3.3 Half–Normal decay (HND) model

The half–normal decay model was first described by Rice and Spiegelhalter [2008]. Its
starting point is the random variable Y drawn from standard half–normal distribution.
Thus, the observations y ∈ [0,∞] have the null density

f0(y) =

√
2
π

e−y2/2

and corresponding distribution function

F0(y) = 2Φ(y)− 1.

The fdr curve is given by a one parameter family

fdrHND(y|s) =
[

1 , for y≤ s
e−(y−s)2/2 , for y > s .

The parameter s has a natural interpretation as cut-off threshold below which there are
no “interesting” cases. This specification of null model and fdr curve results in

η0 =

(
2φ(s)− 1 +

√
2
π

e−s2/2−log s
)−1

.

This equation is invertible, hence the parameter s has a one-to-one correspondence to
the proportion of the null features η0. In the HND model, the marginal density is

f (y) =

 η0

√
2
π e−y2/2 , for y≤ s

η0

√
2
π es2/2−ys , for y > s

and the alternative density

fA(y) =

 0 , for y≤ s
η0

1−η0

√
2
π (e

s2/2−ys − e−y2/2) , for y > s .

Finally, the marginal distribution function is

F(y) =

 η0(2φ(y)− 1) , for y≤ s

η0

(
2φ(s)− 1 +

√
2
π es2/2−log s(es2 − e−sy)

)
, for y > s,

which, together with F0(y), allows to compute the tail-area-based Fdr via Eq. 2.6.
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The HND model can also be expressed in terms of p–values, using the transformation
y = ϕ−1(1− p/2), cf. Eq. 3.3. In Fig. 3.5, the HND model for η0 = 0.8 (or equivalently
s = 0.862) is shown and contrasted with the notably different BUM model.

3.3.4 Generalizations and Problem of Confounding

The BUM and HND fdr threshold functions are one parameter families indexed by the
parameter s, which in both models has a one–to–one mapping onto the true proportion
of null hypotheses η0. In order to allow for more flexibility, it is useful to introduce
additional parameters, either in the null density f0(y) for empirical null modeling, or in
the fdr function fdr(y). That is, no truncated maximum likelihood estimation is required
for empirical null modeling here a priori. For example, both the BUM and HND model
can be employed with an additional scale parameter σ in the null model. Specifically, it
is assumed that the null density is a normal distribution N(0,σ2) with mean zero and
variance σ2 so that for the HND model y = |z/σ| and for BUM y = 2ϕ(|z/σ|)− 1, where
z is the observed test statistic. Additionally, if the alternative density is not flexible
enough, this may be fixed by introducing extra parameters into the fdr curve. However,
in generalizing null models and fdr functions, particular care is necessary because of
potential confounding of parameters, especially if the null model and the fdr threshold
function are extended simultaneously.

For example, the fdr curve of the standard HND model has an inflection point at
y0 = z0 = s + 1 with fdr value e−1/2 ≈ 0.6 and slope −e−1/2 ≈−0.6. The extended HND
model with additional scale parameter σ in the null model leads to an fdr curve with
inflection point z0 = σ(s + 1) with a corresponding fdr value of e−1/2 ≈ 0.6 and slope
−e−1/2/σ≈−0.6/σ. Thus, the scale parameter of the null model determines directly
the slope of the fdr curve at its inflection point, which implies that scale and slope
parameters are confounded.

3.4 Workflow of an FDR Estimation Algorithm

In this section, the results of the previous sections will be summarized and embedded in
a general workflow of an FDR estimation algorithm. The algorithm includes empirical
null modeling and simultaneous estimation of fdr and Fdr. For general test statistics yi,
it can be put together as follows:

3.4.1 The General Algorithm

(A) Determine a suitable truncation point yt. Possible options are:

(a1) via Fndr optimization as explained in section 3.1.1
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(a2) via smoothing as explained in section 3.1.2.

(B) Estimate the null model and its parameters via truncated maximum likelihood,
yielding η̂0 and θ̂.

(C) Convert test statistics into p–values via Eq. 2.9: pi = 1− F0(y|θ̂).

(D) Estimate the marginal density f̂p(p) and cdf F̂p(p) on the p–value scale using the
methods discussed in section 3.2.2:

(d1) the modified Grenander estimator

(d2) the modified log–concave estimator.

Observe that this requires η̂0.

(E) Compute estimates of Fdr and fdr values based on p–values:

f̂drp(p) =
η̂0

f̂p(p)
,

F̂drp(p) =
η̂0 p

F̂p(p)
.

(F) Compute estimated Fdr and fdr values as a function of the original test statistics y:

f̂dr(y) = f̂drp(1− F̂0(y)) ,

F̂dr(y) = F̂drp(1− F̂0(y)) .

(G) Compute cdf and marginal density on the y-scale:

f̂ (y) = η̂0
f̂0(y)

f̂dr(y)
,

F̂(y) = 1− η̂0
1− F̂0(y)

F̂dr(y)
.

Note that this transformation is directly derived from the definition of fdr and Fdr
in Eqs. 2.5 and 2.6.

(H) Estimate alternative sub-density:

F̂A(y) =
F̂(y)− η̂0F̂0(y)

1− η̂0
,

f̂A(y) =
f̂ (y)− η̂0 f̂0(y)

1− η̂0
.

Alternatively, steps (C)–(F) can be replaced by the threshold curve methodology pre-
sented in 3.3, where fdr curves are directly computed. In step (C), the estimated null
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parameters can be used to obtain half normal statistics for the HND model via Eq. 3.3.
Additionally, the null model step (B) can be performed by directly optimizing a threshold
curve model with additional parameters as discussed in section 3.3.4. However, empiri-
cal null modeling does not work very well for threshold curve models. Especially the
BUM model gives disappointing results, see section 3.6 for details. The newly proposed
FDR estimation via heuristic truncation point finding and constrained log–concave den-
sity estimation (using Options (a2) and (d2) above) will be termed the log–FDR approach
henceforth. A more detailed description of the technical details of a FDR estimation
algorithm implementing the log–FDR approach is given in the next section.

3.4.2 Some Implementation Details of a log–FDR Algorithm

Step (a2) of the general algorithm is performed by computing the null model using
truncated maximum likelihood (Eq. 2.12) for truncation points yt varying from the 30%
to the 99% quantile of the data in 1% steps. Thereafter, models with very large or very
small η0 values are removed. Specifically, all truncation points yielding an estimated η0

smaller than the 10% quantile or greater than the 90% quantile of all 70 estimated η0s
are removed. If this filters out to many potential truncation points (> 60), this usually
means that η0 is in fact 1, i.e. there is no alternative present. In this case the filtering
step is skipped. A smooth η0 curve as depicted in Fig. 3.1 is obtained by computing a
penalized B–spline of order 4 (see Eq. 3.2) with a penalty parameter of λ = 0.01 and all
the potential truncation points as breakpoints. In order to achieve this, the R–package [R
Development Core Team, 2012] fda is used.

Subsequently, local minima of the smoothed η0 curve are found using the function
turnpoints from the R–package pastecs [R Development Core Team, 2012] implement-
ing the method of finding “significant” turning points of Ibanez [1982]. The default
p–value cutoff of 0.05 is used. Finally, the median of the identified minima is used as a
truncation point. In step (d2) the log–concave density estimation is performed with the
R–package [R Development Core Team, 2012] logcondens on the mirrored half–normal
z–values obtained from the p–values computed in step (C). Then the preliminary esti-
mate ϑ̂ is multiplied with a factor λ so that the Euclidean norm of the deviations from
the “tunnel” constraints presented in section 3.2.1 is less than 0.05. An illustration of a
raw and a corrected cdf is given in Fig. 3.2.

3.5 Other State of the Art Estimation Algorithms

In the upcoming section 3.6 the approaches summarized in the general algorithm of
section 3.4.1 will be compared to the two current FDR estimation algorithms locfdr and
MixFdr. They are described in some detail in this section.
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3.5.1 fdr Estimation with locfdr

The algorithm locfdr as implemented in an R–package [R Development Core Team, 2012]
of the same name was first described in Efron [2004] and summarized in Efron [2008].
A more thorough discussion is found in Efron [2007b]. Efron’s algorithm is based on
z–values and hence starts with assuming a (not necessarily standard) normal null

f0(z)∼ N(µ0,σ2) ;

locfdr then uses two different approaches to the estimation of the null parameters µ0, σ2

and η0. When using “Central Matching”, (CM) the logarithm of the estimated marginal
density log f̂ (z) is quadratically approximated using a Taylor series around z = 0. In
principle, f̂ (z) itself is estimated using an exponential regression with seven parameters

fβ(z) = cβ exp{
7

∑
j=1

β jzj} .

In the actual implementation, a natural spline basis with 7 degrees is used as a default
instead of the polynomial, but this does not alter the general idea. Therefore, the
attention is restricted to the polynomial case here. For the quadratic approximation only,
the first three β–coefficients are used. The null subdensity is assumed to be given by this
approximation:

log(η̂0 f̂0(z)) = β0 + β1z + β2z2.

Since f0(z)∼ N(µ0,σ2), the parameters µ0, σ2 and η0 are easily computed from the above
equation. Since with Central Matching the zero assumption is enforced by looking at an
approximation around z = 0, it will usually work best for large η0 > 0.90. Additionally,
it tends to overestimate η0 [Efron, 2007b].

The second and newer method used in the locfdr algorithm is “MLE fitting”. It is
based on a truncated null model and conceptually identical to the truncated maximum
likelihood estimation of the null model parameters introduced in section 2.3. The
truncation point zt, which is necessary in order to construct the set zt = {zi : |zi| < zt} of
z–values used to compute the null model parameters, differs among the versions of the
locfdr R–packages. Possible choices of zt are displayed in Tab. 3.1. It can be seen that no
adaptive choice of the threshold is performed. The threshold used in the current version
of locfdr is derived from the mixture model 0.9N(0,1) + 0.05N(−3,1) + 0.05N(−3,1)
on a theoretical basis [Turnbull, 2007]. Nonetheless, it works rather well in most cases.
According to Efron [2007b], MLE fitting generally gives more stable parameter estimates
than CM. Therefore, it is the default method used in locfdr. Due to its non–parametric
spline estimate of the marginal density f (z), locfdr only computes local FDR values.
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Table 3.1: Various choices of normal truncation points implemented in locfdr according
to Strimmer [2008b].

Version Released Truncation Point Reference
1.1-1 July 2006 zt = 2
1.1-3 December 2006 zt = µ̂ + bσ̂

with b = 3.55− 0.44log10(d),
µ̂ = median(zi) and
σ̂ = IQR(zi)/1.349.

1.1-6 November 2007 as in version 1.1-3, Turnbull [2007]
but with b = max(1,4.3d−0.112966)

1.1-7 February 2011 as in version 1.1-6

Note that µ̂ and σ̂ are robust location and scale estimates, respectively.

3.5.2 FDR Estimation with MixFdr

The MixFdr algorithm introduced by Muralidharan [2010] estimates both tail–area based
FDR and fdr. It is inspired by Efron’s effect size model of section 4.2.1. The following
hierarchical model is assumed

δ∼ g(δ) =
J−1

∑
j=0

πj ϕ(δ;µj,σ2
j ),

z|δ∼ N(δ,1).

Here ϕ denotes the normal distribution density, J is the total number of mixture com-
ponents and πj are the mixture proportions with π0 corresponding to η0. The assumed
model leads to the following marginal density f :

f (z) =
J−1

∑
j=0

πj ϕ(z;µj,σ2
j + 1) .

If µ0 and σ0 are set to 0, a theoretical null is imposed. The false discovery rates are then
readily obtained by the formulae

Fdr =
π0
(
1−Φ(z;µ0,σ2

0 + 1) + Φ(−z;µ0,σ2
0 + 1)

)
1− F(z) + F(−z)

,

and

fdr =
π0ϕ(z;µ0,σ2

0 + 1)
f (z)

,

respectively. The mixture model is fit using a penalized EM–algorithm. Thereby, the null
proportion π0 is increased by a constant P in the maximization step of the algorithm.
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The penalization can be determined by a bootstrap algorithm, its standard value is
P = d/5. Muralidharan [2010] suggests using J = 3 components in general, one for the
null model, one for the negative and one for the positive effects.

3.6 Data Analysis and Simulation Studies

In this section, results from the analysis of synthetic data will be shown. Both an
overlapping as well as a well separated scenario are considered. In the first case, the
null and alternative group are relatively easy to separate. In the second case they are
closer to each other, which makes FDR estimation much harder. Muralidharan [2010]
notes that truncated maximum likelihood estimation of the null model (via Eq. 2.12) and
constrained maximum likelihood estimation of the marginal density can lead to highly
variable fdr estimates. This claim will be investigated using test statistics distributed
according to the HND model. In this situation, a generalized HND model including a
variance parameter should perform best, giving a “gold-standard” in terms of accuracy
and variability of the fdr estimates. Finally, the simulated data analyses will be followed
by a reanalysis of four real world data sets from Rice and Spiegelhalter [2008].

3.6.1 Setup of the Overlapping and Well Separated Scenarios

For the data generation of the overlapping and well separated scenarios, I followed the
simulation setup for z scores described in Strimmer [2008b]:

• Well Separated Scenario
Data z1, . . . ,z200 were drawn from a mixture of the normal distribution N(µ =

0,σ2 = 4) with the symmetric uniform alternatives Unif(−10,−5) and Unif(5,10)
and a null proportion of η0 = 0.8, i.e. 0.8N(0,4) + 0.1Unif(−5,10) + 0.1Unif(5,10).

• The sampling was repeated B = 1000 times.

Observe that the alternative density of this model does not match the implied alter-
native density fA of neither the BUM nor the HND parametrizations. Thus, with this
simulation setup it can be investigated how the fdr threshold models perform under
misspecification. The data for an overlapping alternative and the null model are:

• Overlapping Scenario
Setup as above, but with Unif(−10,−2) and Unif(2,10) as alternative distribution,
i.e. 0.8N(0,4) + 0.1Unif(−2,10) + 0.1Unif(2,10).

This scenario leads to a marginal density that is similar in shape to the HND model. In
the subsequent step of comparison of resulting FDR values and model parameters, two
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different strategies for fitting the parameters for the threshold models BUM and HND
are employed.

1. External estimation: The parameters of the fdr threshold models σ and η0 are
estimated using heuristic truncation point finding by smoothing as in log–FDR
(sections 3.1.2 and 3.4.2). They are then plugged into the corresponding equations
of the BUM and HND models. This allows to assess the influence of null model
estimation on the threshold models. Furthermore, it allows for a direct comparison
with results obtained using the log–FDR approach.

2. Empirical null model: The parameters of fdr threshold models are estimated by
maximizing the marginal likelihood of the BUM and HND models. I refer to these
estimated models as BUM–native and HND–native (abbreviated as –nat). This
allows to compare the estimated null models of all algorithms considered and to
evaluate the effect of misspecification on parameter estimation for the BUM and
HND models.

In each case I computed the Fdr– and fdr–values of all d = 200 hypotheses for all
B = 1000 repetitions and compared these estimates with the true Fdr and fdr values as
given by the true known mixture model.

3.6.2 Results for the Overlapping and Well Separated Scenarios

In Fig. 3.6, the results from the comparison of true and estimated FDR–values are shown
using the following abbreviations for the investigated algorithms: fdrtool corresponds to
using the fdrtool software [Strimmer, 2008a,b], with constrained maximum likelihood
estimation for the null model and constrained Grenander density estimation for the
marginal density. This corresponds to the options (a1) and (d1) in the general algorithm
(section 3.4.1). BUM and HND denote the two fdr threshold methods with the null
model given by log–FDR; and BUM–native and HND–native correspond to the two
fdr threshold methods with empirical null model (i.e. including an extra standard
deviation parameter σ). Furthermore, the state of the art fdr estimation algorithm locfdr
as implemented in the locfdr R–package [R Development Core Team, 2012] is used
in the comparisons [Efron, 2004, 2007b, 2008, section 3.5.2)]. This algorithm does not
compute Fdr values. So it is not included in the Fdr comparisons.

The results can be summarized as follows: For fdr (first column in Fig. 3.6) the HND
model, locfdr and log–FDR are on top. Intriguingly, however, HND–native exhibits
a dramatic reduction of accuracy in fdr estimation if the null and alternative are well
separated (upper left image). On the other hand, if the null and the alternative are
overlapping, the HND–native approach performs well (albeit with a large variance).
The BUM model performs worst, both with and without empirical null model. For
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(b) Overlapping scenario

Figure 3.6: Comparison of the accuracy of fdr and Fdr estimates for the simulated data: (a) well
separated case, and (b) overlapping scenario.
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tail-area based FDR (second column in Fig. 3.6) both fdrtool and log–FDR perform
similar to BUM and HND. However, again there is a drastic reduction in accuracy for
HND–native and BUM–native in the case of clear separation of null and alternative
density (upper right image). Overall, log–FDR performs best, although the number of
outliers is relatively large. This may be due to the complicated and thus variable null
estimation process. The similar number of outliers of the HND and BUM approaches
hints to this since these algorithms use the same null model estimation as log–FDR.
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Figure 3.7: Comparison of the accuracy of parameter estimates for the simulated data: (a) well
separated case, and (b) overlapping scenario.

Fig. 3.7 shows the accuracy of the estimated null models for fdrtool, BUM–native,
HND–native, locfdr and log–FDR. In the first column, boxplots for the estimated null
proportion η̂0 are shown. With the true value of η0 = 0.8 it is evident that BUM–native
always overestimates η0, whereas HND–native mostly underestimates η0. The second
column shows that the scale parameter σ is also always overestimated by BUM–native
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and mostly underestimated by HND–native. Fdrtool, locfdr and log–FDR show similar
results for both η0 and σ in the overlapping case, while log–FDR is almost unbiased in the
well separated case. As in Fig. 3.6, the impact of the misspecification on HND–native can
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Figure 3.8: Comparison of the accuracy of fdr estimates for the simulated data for the
subset of large |z| with |z| ≥ 2. The left figure shows the results for the overlapping
scenario while the right one gives the results for the well separated case.

be clearly seen. If the null and alternative densities are well separated, the HND–native
model is not appropriate, but in the more difficult case of overlapping mixture compo-
nents, HND–native performs rather well. This conclusion is further strengthened by
looking at the fdr estimates on the subset of large statistics, corresponding to potentially
“significant” cases. Fig. 3.8 shows the same plots as the right column of Fig. 3.6 for all
statistics z with |z| ≥ 2 . It can be noticed that in both scenarios, HND–native has large
variation. Again, log–FDR performs intriguingly well, especially in the overlapping
case, while in the well separated scenario locfdr is a bit ahead. In summary, the HND
model works well for both Fdr and fdr estimation if the correct parameters for the null
model are being supplied. HND–native estimation of the empirical null requires that
model and data are not misspecified. In contrast, the BUM model is only suited for Fdr
estimation and empirical null estimation failed for both investigated scenarios. Fdrtool
and locfdr yield good results in general, however, log–FDR usually has at least a small
lead over the competing algorithms, its sole downside being the more variable null
model estimation process.

3.6.3 Empirical Null Analysis of Real Data

Tab. 3.2 shows the estimated null model for four experimental data sets concerning
prostate cancer, education (mathematics competency), breast cancer and HIV already
analyzed by Rice and Spiegelhalter [2008]. Additionally, the number of “significant”
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Table 3.2: Empirical null parameter estimates obtained for four real data sets.

Prostate Education BRCA HIV

η̂0:

fdrtool 0.9855 0.9671 1 0.9587
locdr 0.9981 0.9436 1.0388 0.9342
BUM–native 1 1 1 0.9984
HND–native 0.9829 0.9536 1 0.9370
MixFdr 0.9504 0.9171 0.9876 0.8285
log–FDR 0.9966 0.9657 1 0.9053

σ̂:

fdrtool 1.0649 1.7204 1.5730 0.7999
locdr 1.0871 1.6549 1.5752 0.9342
BUM–native 1.1350 1.9911 1.4313 0.9220
HND–native 1.0588 1.6810 1.4311 0.7652
MixFdr 1.0699 1.6903 1.4298 0.7001
log–FDR 1.0843 1.7152 1.7678 0.7297

No. of statistics with fdr≤ 0.2 :

fdrtool 49 62 0 99
locdr 19 74 0 160
BUM-native 0 0 0 0
HND-native 12 63 0 155
MixFdr 19 67 0 117
log–FDR 0 49 0 208

statistics given an fdr cutoff of 0.2 is displayed for each model. In this section, a
short description of the data sets are given. In general, these data correspond to the
overlapping case common in real high dimensional data, i.e. null and alternative model
are close to each other.

First, I investigated the prostate cancer data set of Singh et al. [2002]. This consists of
gene expression measurements of d = 6033 genes for n = 102 patients, of which 52 are
cancer patients and 50 are healthy. The z–scores are based on two sample t–statistics
comparing the two categories.

The education data set consists of 3748 California high schools. The test statistics are
based on a binomial test of proportion of advantaged vs. disadvantaged students
passing mathematics competency tests.

The HIV data are taken from van ’t Wout et al. [2003] and consists of 7680 z–scores
stemming from a microarray study comparing four HIV–positive patients with four
HIV–negative controls. The goal is to detect genes which are differentially expressed
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between the two groups.

In agreement with the simulations in section 3.6.2, Tab. 3.2 shows that BUM–native
performs rather poorly, while HND–native and especially MixFdr underestimate η0

relative to fdrtool, locfdr and log–FDR. However, in these data examples all methods
except for BUM–native are more or less in broad agreement, which implies that the
implicit alternative density of the HND model is appropriate here. The analysis fur-
thermore proves that empirical truncation point finding by smoothing, used as a null
model estimation method by log–FDR, also works satisfactorily on real data sets. The
number of statistics considered significant is also quite similar among the methods.
Notably, however, the η0 estimates of the HIV data are in disagreement, with estimates
ranging from 82% (MixFdr) to 95% (fdrtool). This also results in a large span of genes
considered as differentially expressed between the two groups, ranging from 99 up to
208. In conclusion, the real data analysis conducted shows the applicability of fdrtool,
locfdr and log–FDR in real data analysis. Since with all data sets null and alternative
can be considered as overlapping, HND–native performs satisfactorily as well.

3.7 Accuracy and Variability of fdr Estimates for Various Algo-
rithms

In this section, test statistics distributed according to the HND model will be simulated
and several fdr estimation techniques will be compared with respect to their bias and
variability. The motivation for this study Muralidharan’s [2010] observation that con-
strained maximum likelihood estimation of the marginal density can lead to highly
variable fdr estimates, while algorithms such as locfdr (cf. section 3.5.1) and the author’s
own MixFdr (cf. section 3.5.2) algorithm are supposed to show less bias and variability
than constrained maximum likelihood estimation. The attention is limited to local FDR
(fdr) here, since it is based on densities and thus much harder to estimate than the tail
area based Fdr. Algorithms that estimate fdr well will thus also be able to estimate the
Fdr easily.

MixFdr (cf. section 3.5.2) uses a normal mixture model to estimate Eq. 2.3 and Eq. 2.4.
The number of mixture components has to be defined beforehand in MixFdr, with one
of them being the null model. Then the whole model is fit to the data at hand using a
penalized EM algorithm. I will use three components and an penalization parameter
of P = 50 throughout. As Muralidharan [2010] shows in his simulation studies, the
choice of the penalization parameter is of minor importance, so fixing it is justified. Note
that MixFdr was not included in previous comparisons because it does not work well
for moderate sample sizes (< 1000). The claim about high variability of nonparametric
estimation methods made in Muralidharan [2010] is based on simulations using a normal
mixture. Here the HND model is used instead. It does not correspond directly to the
assumptions of any of the algorithms considered except for HND–native. Thus HND–
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native should perform best and all other approaches can be judged according to their
behavior relative to HND–native. HND–native can therefore be viewed as the “gold
standard” in this section. Again, B = 1000 runs are performed but this time 1000 instead
of 200 test statistics are generated at each run.
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Figure 3.9: Comparison of the of σ and η0 estimates for 1000 statistics sampled from the
HND model.

Fig. 3.9 shows that HND–native gives unbiased null model parameter estimates — as
one would expect. In Fig. 3.10, we see that the same is true for the fdr estimates of
HND–native. Log–FDR and HND share the second position with regard to the bias.
Intriguingly, log–FDR is able to capture the shape of the true fdr curve perfectly yielding
almost the same result as the parametric HND model. MixFdr performs worst — yet
another indication that EM type algorithms do not work reliably in FDR estimation,
while fdrtool and locfdr give satisfying results. Fig. 3.11 shows a graphical comparison
of the fdr estimation results, which is similar to the plots in section 3.6.2. Lastly, the
standard deviation of the fdr estimates is studied in Fig. 3.12. Interestingly, MixFdr
has the highest standard deviation of all algorithms, while all the other ones except
for log–FDR, show a distinctively lower variability. log–FDR has a variability that is
similar to HND for small test statistics. For larger test statistics, its variability is similar
to that of MixFdr. In summary, the constrained log–concave estimation of log–FDR
shows considerable variability, especially for large |z|–values. However, MixFdr is even
more variable. Therefore, it can be concluded that the claims made in Muralidharan
[2010] cannot be confirmed. Constrained maximum likelihood estimation does not
automatically lead to a high bias and variance of the fdr estimates. Surprisingly, MixFdr
even shows the highest variance of all methods considered. Additionally, it exhibits a
considerable bias when applied to data generated from the HND model.
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Figure 3.10: Comparison of the of fdr estimates for 1000 statistics sampled from the
HND model.
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Figure 3.11: Comparison of the standard deviation of the fdr estimates for 1000 statistics
sampled from the HND model using boxplots as in section 3.6.2.
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4 Effect Size Estimation and Variable
Selection in Linear Discriminant
Analysis
After the introduction of false discovery rates, I now want to focus on their applica-
tions. Specifically, I will look at variable ranking and selection in the context of linear
discriminant analysis (LDA), which is a simple, yet very effective, approach to linear
classification [Hand, 2006].

In this chapter, several fundamental notions related to LDA will be established and the
estimation of effect sizes will be discussed. A competitor to FDR methods called “Higher
Criticism” (HC) will be introduced and discussed in great detail in chapter 5. In this
chapter, I will focus on variable selection by thresholding using false discovery rates,
HC and the misclassification rate.

A particularly interesting area of application for variable selection is modern medical
research, which has been revolutionized by the possibility of characterizing diseases at a
molecular level using microarrays. This classification of biological samples based on
their gene expression continues to be a field of active research, cf. Pang et al. [2009], Cao
et al. [2011], Xiaosheng and Simon [2011] and Shao et al. [2011]. Current reviews of the
subject can be found in Schwender et al. [2008], Slawski et al. [2008] as well as in Kim
and Simon [2011].

In order to develop classifiers which are potentially useful for molecular diagnostics, it is
important to construct them based on a selection of genes (variables) strongly associated
with the respective class labels (e.g. cancer and healthy tissue). These genes have a large
effect size which is generally measured by standardized differences.

Three distinct, but closely related, objectives need to be achieved to identify a group of
genes with high effect sizes [Ahdesmäki and Strimmer, 2010, Matsui and Noma, 2011]:

(i) to establish a reliable variable ranking,

(ii) to provide a reasonable estimate of the effect size for each gene, and
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(iii) to find a suitable cutoff point that allows to disregard (the usually large) number
of noise-features.

Problems (ii) and (iii) are the main concerns of the current chapter. For the ranking
problem (obj. (i)), I will rely on correlation adjusted t–scores (a.k.a. “cat” – scores)
introduced by Zuber and Strimmer [2009]. The cat–score is a t–type statistic which
takes correlation into account and has been shown to induce a reliable variable ranking
even in the presence of correlation among the variables. I therefore am going to use
cat–scores to obtain effect size estimates (obj. (ii)). Based on these estimates, a nominal
prediction error is computed. It is dependent on the number of variables included.
Variable selection is then performed (ob. (iii)) by determining the number of variables
necessary to achieve a certain nominal error level.

The approach presented here is similar to that of Efron [2009] and Dabney and Storey
[2007]. However, in contrast to Efron [2009], my method applies to any number of
classes and allows empirical null modeling. In contrast to Dabney and Storey [2007], it
does not need a computationally expensive greedy algorithm to select variables due to
the variable ranking performed beforehand.

The chapter is organized as follows: I will present basic theory on LDA in chapter
4.1, then I obtain effect size estimates based on cat–scores and compare them to other
effect size estimation approaches in section 4.2. Notably, the methods of Efron [2009]
and Matsui and Noma [2011] are presented in a unifying way using cat–scores, which
sheds new light on their similarities. Section 4.3 shows how to perform variable ranking
and selection using different methods based on a variable ranking. Results of variable
selection methods on simulated and real data are then presented in chapter 4.5.

4.1 Linear Discriminant Analysis (LDA) and its Misclassifica-
tion Rate

4.1.1 LDA and Effect Sizes

LDA forms the basis of most classification algorithms currently employed, e.g. Nearest
Shrunken Centroids commonly abbreviated as NSC, and also known as PAM [Tibshirani
et al., 2003], Shrinkage Discriminant Analysis — SDA [Ahdesmäki and Strimmer, 2010]
— and many more. It starts by assuming a mixture model for the d-dimensional data x

f (x) =
K

∑
k=1

πk f (x|k),
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where each class k is represented by a multivariate normal density

f (x|k) = (2π)−d/2|Σ|−1/2 × exp{−1
2
(x− µk)

TΣ−1(x− µk)} ,

with group–specific centroids µk and a common covariance matrix Σ. A sample x is
assigned to the class yielding the highest LDA discriminant score defined as the log
posterior probability dLDA

k (x) = log{prob(k|x)}. This score can be written as

dLDA
k (x) = µT

k Σ−1x− 1
2

µT
k Σ−1µk + log(πk) . (4.1)

The standard form of the LDA predictor function shown in Eq. 4.1 can be transformed
into a scalar product which is given by

∆LDA
k (x) =

(
ω(k,pool)

)T
δk(x) + log(πk). (4.2)

See Ahdesmäki and Strimmer [2010] for details. In Eq. 4.2 we have an inner product of
Mahalanobis transformed variables (commonly called features ) δ(x) and a correspond-
ing feature weight vector ω(k,pool) given by

δk(x) = P−1/2V−1/2
(

x−
µk + µpool

2

)
(4.3)

and

ω(k,pool) = P−1/2V−1/2(µk − µpool) , (4.4)

respectively. In this equation, the pooled mean is calculated as µpool = ∑K
k=1

nk
n µk and the

covariance matrix Σ is decomposed as: Σ = V1/2PV1/2, with a diagonal matrix contain-
ing the variances V = diag{σ2

1 , . . . ,σ2
d} and the correlation matrix P = (ρij). Remarkably,

both ω(k,pool) and δk(x) are vectors and not matrices.

The decomposition in Eq. 4.2 shows that ω(k,pool) gives the influence of the trans-
formed variables δ(x) in prediction. Zuber and Strimmer [2009] have shown that this
Mahalanobis–transformation leads to an improved ranking of the original variables since
it removes the effect of correlation. Thus, as in Ahdesmäki and Strimmer [2010], the
feature weights ω will serve as a measure of variable importance and the terms variables
and features will be used interchangeably in the following sections.

Additionally, from Eq. 4.4 it can be seen that the components of ω(k,pool) are decorrelated
and standardized differences (i.e. effect sizes) between the class k and the “pooled
class” [Matsui and Noma, 2011]. This is readily generalized. The effect size vector ω(k,l)

between any two classes k and l is defined as the difference between the two respective

49



Chapter 4. Effect Size Estimation and Variable Selection in Linear Discriminant
Analysis

feature weight vectors ω(k,pool) and ω(l,pool)

ω(k,l) := ω(k,pool) −ω(l,pool) = P−1/2V−1/2(µk − µl) . (4.5)

Note that ω(k,l) is up to the scale factor (1/nk + 1/nl)
−1/2 equivalent to the cat–score

vector between the classes k and l on the population level, i.e. assuming known model
parameters [Zuber and Strimmer, 2009]. Hence there is a close relationship between test
statistics and effect sizes: The effect size is simply a sample size independent version of
the test statistic. The statistic is denoted by a “cat” subscript in this article, i.e.

ω
(k,l)
cat = (1/nk + 1/nl)

−1/2ω(k,l) .

4.1.2 The Misclassification Rate of Linear Discriminant Analysis

In this section, I am going to look at an unconditional (i.e. not depending on the
data) misclassification error of LDA on the population level. This quantity is called
(unconditional) misclassification rate in the literature [Dabney and Storey, 2007, Shao
et al., 2011].

Let x(k) be a sample vector drawn from the multivariate normal distribution N(µk,Σ) as-
sociated with class k. In the LDA algorithm, it is assigned to the class yielding the highest
score (Eq. 4.1). Using the scalar product of Eq. 4.2 a misclassification (on the population
level) of x(k) occurs if [ω(k,pool)]Tδk(x(k)) + log(πk) < maxl [ω

(l,pool)]Tδl(x(k)) + log(πl).
It is easily verified that this is equivalent to the condition

min
l 6=k

[ω(k,l)]T[P−1/2V−1/2
(

x(k) − µk+µl
2

)
] + log

(
πk
πl

)
√
[ω(k,l)]T[ω(k,l)]

< 0.

Since x(k) ∼ N(µk,Σ) holds for all k ∈ {1, . . . ,K}, the unconditional (i.e. expected) proba-
bility of misclassifying a sample from class k into a wrong class j 6= k can be deduced
from the above formula as:

prob(j 6= k|k) = Φ
(
−min

l 6=k

[ω(k,l)]T[ω(k,l)] + 2log
(

πk
πl

)
2
√
[ω(k,l)]T[ω(k,l)]

)
.
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This results in a misclassification rate (total error probability) of

prob(error) =
K

∑
k=1

prob(j 6= k|k)× prob(k)

=
K

∑
k=1

Φ
(
−min

l 6=k

[ω(k,l)]T[ω(k,l)] + 2log
(

πk
πl

)
2
√
[ω(k,l)]T[ω(k,l)]

)
× πk . (4.6)

Observe that Eq. 4.6 is the result of applying an expectation operator twice, once with
regard to the model parameters ω(k,l) and once with regard to the transformed data
δk(x(k))− δl(x(k)) = P−1/2V−1/2

(
x(k) − µk+µl

2

)
. The first application leads to the popu-

lation version of the statistical model, with ω̂(k,l) replaced by ω(k,l), the second results in
an unconditional (not dependent on the data) error rate.

4.2 Effect Size Estimation in LDA

For two given classes k and l, a feature i with a large corresponding effect size ω
(k,l)
i is

most influential in differentiating between class k and l. However, a “naive” estimation
of ω

(k,l)
i (e.g. estimation by plug-in estimates) suffers from the so–called “selection bias”:

Estimates of ω
(k,l)
i are biased upwards in general. For example, an estimated effect

size of 1.5 based on t–scores might correspond to a true effect size of 0.7, see Fig. 4.1.
Therefore, reliable estimates of ω

(k,l)
i are needed in order to furnish a good estimate of

Eq. 4.6.

4.2.1 Three Empirical Bayes Approaches

Bayesian approaches are “immune” to selection effects [Dawid, 1994, Senn, 2008]. Thus,
Efron [2009] as well as Matsui and Noma [2011] employ empirical Bayes estimates to
tackle the estimation of effect sizes.

I am going to present their ideas in a unified way using cat–scores. This will show
similarities between the two methods that are not readily apparent from studying the
two original papers. Therefore, both methods are presented in considerable detail in
order to clearly demonstrate the conceptual overlap between them. This will also help
to indicate their respective weaknesses.

Furthermore, the current section can be read as a concise and yet comprehensive review
of both methods, which can be of great help to the interested reader. The empirical
Bayes estimator presented in section 4.2.1 is an attempt to combine the strengths of both
approaches while adressing their shortcomings.
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Let k and l be any two classes. For the sake of simplicity, the feature index i (i ∈ {1, . . . ,d})
will be dropped in the upcoming subsections.

Efron’s Method

Efron [Efron, 2009] begins by transforming the statistics ω
(k,l)
cat into z–scores via a t–

distribution with nl + nk − 2 degrees of freedom:

z = Φ−1
(

Fnl+nk−2(ω
(k,l)
cat )

)
,

where Fnl+nk−2 denotes the distribution function of a t–distribution with nl + nk − 2
degrees of freedom. He then assumes a prior density g on ω

(k,l)
cat given by the mixture

g(ω(k,l)
cat ) = η0 I0(ω

(k,l)
cat ) + (1− η0)gA(ω

(k,l)
cat ) , (4.7)

where I0 is a delta-function at 0 and η0 the proportion of genes having a true effect size
of zero. The alternative group, i.e. the nonzero effect sizes are represented by gA. In the
following, I will in general abbreviate conditioning on the alternative group with an “A”
subscript. The statistic z is assumed to be distributed as

z|ω(k,l)
cat ∼ N(ω

(k,l)
cat ,1).

Together with Eq. 4.7, this results in the following mixture model for z

f (z) = η0ϕ(z) + (1− η0) fA(z) , (4.8)

where ϕ(z) is the normal distribution density and fA is a mixture of the densities
ϕ(z−ω

(k,l)
cat ):

fA(z) =
∫ ∞

−∞
ϕ(z−ω

(k,l)
cat )gA(ω

(k,l)
cat )dω

(k,l)
cat .
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Eq. 4.8 is a typical case of two–groups mixture model as introduced in section 2.2.1.
It consists of a theoretical (i.e. no additional parameters) “null” model f0 = ϕ and
an alternative component fA from which the “interesting” cases are assumed to be
drawn [Efron, 2008]. Note, however, that in contrast to section 2.2.1 the original signed
z–values are used. In order to present the ideas of both Matsui and Noma [2011] and
Efron [2009] in a unified fashion, I will start with computing the posterior density
conditioned on the alternative i.e. f (ω(k,l)

cat |z,z ∈ “alternative”) = f (ω(k,l)
cat |z,ω

(k,l)
cat 6= 0).

As introduced above, the “A” subscript indicates conditioning on the alternative so that
fA(ω

(k,l)
cat |z) = f (ω(k,l)

cat |z,z ∈ “alternative”). Finally, using Bayes’ rule this density can be
computed as

fA(ω
(k,l)
cat |z) =

fA(z|ω(k,l)
cat ) · gA(ω

(k,l)
cat )

fA(z)

= exp(ω(k,l)
cat z− log{ fA(z)/ϕ(z)})[exp{−(ω(k,l)

cat )2/2)}]gA(ω
(k,l)
cat ) .

It has the form of a natural exponential family with natural parameter ω
(k,l)
cat , sufficient

statistic z and cumulant generating function log{ fA(z)/ϕ(z)}= log{[(1− fdr(z))/fdr(z)]} ·
η0(1− η0)}, where

fdr(z) = prob(“null”|z) = η0
ϕ(z)
f (z)

= η0
f0(z)
f (z)

(4.9)

is the local false discovery rate [Efron, 2008, cf. Eq. 2.5]. Conditional on the alternative
component, this leads to an effect size estimate of the simple form

EA

(
ω(k,l)|z

)
=−(1/nl + 1/nk)

1/2 d
dz

log
(

1− fdr(z)
fdr(z)

η0

1− η0

)
. (4.10)

Since by Eq. 4.9 the relationship prob(“alternative”|z) = 1−prob(“null”|z) = 1− fdr(z)
holds, the unconditional effect size estimate is:

E
(

ω(k,l)|z
)
= EA{ω(k,l)|z}{1− fdr(z)}

=−(1/nl + 1/nk)
1/2 d

dz
log{1− fdr(z)

fdr(z)
η0

1− η0
}{1− fdr(z)} , (4.11)

which after some further calculations becomes

E
(

ω(k,l)|z
)
=−(1/nl + 1/nk)

1/2 d
dz

log{fdr(z)} . (4.12)

Note that if one used an empirical null N(0,σ2) with estimated σ as null density f0,
the connection to the natural exponential family would be lost. Then both the natural
parameter and the sufficient statistic would depend on σ.
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Unfortunately, in this case the elegant formula (4.12) no longer holds. This basically is
the only downside of Efron’s approach: It is conceptually simple and computationally
efficient but it is not possible to include an additional variance parameter in the null
model without “destroying” Eq. 4.12.

Matsui and Noma’s Method

Matsui and Noma [2011] introduce empirical null modeling into the approach of Efron
[2009] via an empirical Bayes method. They start with a similar z–score transform.
However, as a starting point absolute values are used:

z = Φ−1
[
1− 2 · {1− Fnl+nk−2

(
|ω(k,l)

cat |
)
}
]

.

Additionally, only a prior on the absolute non-null effect sizes gA

(
|ω(k,l)

cat |
)

is assumed.
The non–null z have the conditional density

fA

(
z| |ω(k,l)

cat |
)
= ϕ

 |ω(k,l)
cat | − z

V
(
|ω(k,l)

cat |
)
 .

The variance function V and the prior gA are estimated from the data. As in Efron [2009],
they also assume a two-group mixture model for the z–scores:

f (z) = η0ϕ

(
z− µ0

σ0

)
+ (1− η0) fA(z) .

The null density is (in contrast to Efron) an empirical null, i.e. mean and variance are
estimated from the data: f0(z) = ϕ ((z− µ0)/σ0). The alternative density fA is computed
as:

fA(z) =
∫ ∞

0
fA

(
z| |ω(k,l)

cat |
)

gA

(
|ω(k,l)

cat |
)

d |ω(k,l)
cat |

=
∫ ∞

0
ϕ

 |ω(k,l)
cat | − z√

V
(
|ω(k,l)

cat |
)
 gA

(
|ω(k,l)

cat |
)

d |ω(k,l)
cat | .
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The application of Bayes’ rule gives a posterior expectation of |ω(k,l)
cat | which is unfortu-

nately not as simple as Eq. 4.10:

EA

(
|ω(k,l)

cat | |z
)
=
∫ ∞

0
|ω(k,l)

cat |
fA

(
z| |ω(k,l)

cat |
)

gA

(
|ω(k,l)

cat |
)

fA(z)
d |ω(k,l)

cat |

=
∫ ∞

0
|ω(k,l)

cat |

ϕ

(
|ω(k,l)

cat |−z√
V
(
|ω(k,l)

cat |
)
)

gA

(
|ω(k,l)

cat |
)

fA(z)
d |ω(k,l)

cat | .

The statistic |ω(k,l)
cat | is then transformed back into an absolute value effect size:

EA

(
|ω(k,l)| |z

)
= (1/nl + 1/nk)

1/2F−1
nl+nk−2

(
1− 1

2

[
1−Φ{EA

(
|ω(k,l)

cat | |z
)
}
])

.

As in Eq. 4.12, the final effect size estimate is:

E
(
|ω(k,l)| |z

)
= EA

(
|ω(k,l)| |z

)
(1− fdr(z)) . (4.13)

In contrast to Efron’s method, the approach of Matsui and Noma [2011] allows empirical
null modeling and thus leads to better effect size estimates in general, as Matsui and
Noma [2011] convincingly show in their article.

However, this increased accuracy comes at a price. The estimation of variance function
V can take up to two hours. Furthermore, it has to be estimated for every number
of class samples nk and nl separately. This makes cross-validation based assessment
of predictive accuracy extremely time consuming. Additionally, even if V has been
computed for fixed nk and nl , the estimation of the final effect size will take up to
several minutes.

In summary, while Matsui and Noma [2011] provide a method that is superior to Efron’s
method in terms of bias, it is at the same time computationally very demanding.

A Simple Empirical–Bayes Approach

In this section I will derive another more heuristic approach to the reliable estimation
of effect sizes that tries to combine the advantages of Matsui and Noma’s [2011] as
well as Efron’s [2009] methods. Empirical null modeling will be included, it will be
computationally tractable and provide sufficient accuracy.

Observe that in non–empirical Bayes frameworks, reliable estimation of effect sizes is
generally achieved by shrinking initial estimates of statistics playing the same role as
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ω
(k,l)
cat . For example, in the popular PAM algorithm [Tibshirani et al., 2003], the estimated

t–scores are shrunk using a parameter λ estimated by cross validation.

Therefore, an appropriate adaptive shrinkage of the original should provide us with
reasonable effect size estimates. As it turns out, this adaptive shrinkage can easily be
achieved by employing false discovery rates.

The first step in my heuristic approach to achieve a shrinkage of ω(k,l) is the assumption
of a two–component mixture model on the effect sizes:

f (ω(k,l)
cat ) = η0 f0(ω

(k,l)
cat ) + (1− η0) fA(ω

(k,l)
cat ) , (4.14)

leading to corresponding fdr estimates of Eq. 4.9. Assuming a centered null distribution,
we can now make use of the “naive” estimates EA

(
ω(k,l)

)
= ω(k,l) and correspondingly

E0

(
ω(k,l)

)
= 0 (since f0 is centered). The 0 subscript indicates a conditioning on the null

distribution, E0

(
ω(k,l)

)
= E

(
ω(k,l) |ω(k,l) ∈ “null”

)
. It now holds by the law of total

probability and Eq. 4.9 that the effect size is given by

E
(

ω(k,l)
)
= (1/nl + 1/nk)

1/2{E0

(
ω

(k,l)
cat

)
· prob

(
ω

(k,l)
cat ∈ “null”|ω(k,l)

cat

)
+ EA

(
ω

(k,l)
cat

)
· prob

(
ω

(k,l)
cat ∈ “alternative”|ω(k,l)

cat

)
}

= (1/nl + 1/nk)
1/2EA

(
ω

(k,l)
cat

)
· prob

(
ω

(k,l)
cat ∈ “alternative”|ω(k,l)

cat

)
= EA

(
ω(k,l)

)
·
(

1− fdr(ω(k,l)
cat )

)
= ω(k,l)

(
1− fdr(ω(k,l)

cat )
)

. (4.15)

Eq. 4.15 is very similar to Eq. 4.13 and Eq. 4.11, however, no full Bayesian posterior
is computed. Instead, simple non–Bayesian estimates for the expectations in the two–
groups model Eq. 4.14 are employed. This makes the implementation of Eq. 4.15 com-
putationally efficient.

There is an obvious downside though: Large (with respect to their absolute value)
statistics usually have a high fdr value close to 0. Therefore, they are hardly shrunk at
all although their effect size is usually grossly overestimated. Thus, it is necessary to
impose a minimum shrinkage. From the results of the real data analysis in table 1 of
Matsui and Noma [2011], it can easily be seen that the empirical Bayes method that these
authors apply imposes a shrinkage of at least 50% on the top 5 test statistics. I therefore
also set the minimum shrinkage to 50% leading to the formula

ω
(k,l)
fdr = ω(k,l) ·min{0.5; [1− fdr(ω(k,l)

cat )]} . (4.16)
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Figure 4.1: Comparison of effect size estimates on simulated data following the Smyth
[2004] model.

I call this fdr–effect size estimation (fdr–effect) and abbreviate ω(k,l)
(

1− fdr(ω(k,l)
cat )

)
by ω

(k,l)
fdr . Note that a fdr cutoff of 50% is conceptually very close to Higher Criticism

Thresholding, see chapter 5 and Klaus and Strimmer [2012].

Perhaps surprisingly, in next section it will be shown that it is competitive with regard
to the attained accuracy, even though no sophisticated posterior estimates are used. The
adaptive shrinkage performed in Eq. 4.16 can be interpreted as being in between the
full empirical Bayes approaches of Efron [2009] or Matsui and Noma [2011] and soft
thresholding using a single shrinkage parameter for all statistics as in Tibshirani et al.
[2003].

4.2.2 Evaluation of Effect Size Estimation Methods on Real and Simulated
Data

A comparison of effect size estimation methods using simulated data is shown in
Fig. 4.1. Specifically, I will compare the effect size estimation using “naive” approaches
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(simple cat and t–scores) and the more sophisticated ones described in the previous
section abbreviated as MatsuiNoma, Efron and fdr–effect, respectively. For the methods
MatsuiNoma and Efron, I use the implementations offered by the authors, for fdr–effect,
I perform cat–score and fdr estimation using the R–packages [R Development Core Team,
2012] st and fdrtool [Strimmer, 2008a]. In the real data analysis displayed in Fig. 4.2,
the package locfdr [Efron, 2004, 2007b, 2008, section 3.5.1] is applied since this allows a
straightforward use of an empirical null as it has been suggested in Matsui and Noma
[2011] and Efron [2004] for this data set.

I am going to follow closely the setup used in Smyth [2004], Opgen-Rhein and Strimmer
[2007] and Zuber and Strimmer [2009] to simulate gene expression data. The parameters
are chosen in such a way that effect sizes between 1 and 3 are obtained, which roughly
corresponds to the range considered in the simulation studies of Matsui and Noma
[2011].

The number of statistics was fixed at d = 1000 with 200 statistics designated to be
differentially expressed. The variances across genes were drawn from a scale–inverse–
chi–square distribution Scale–inv–χ2(d0, s2

0) with s2
0 = 1 and d0 = 1, i.e. the variances

vary moderately from gene to gene. Furthermore, the difference of means for the
differentially expressed genes (1–200) were drawn from a normal distribution with
mean zero and the gene-specific variance multiplied with a scale factor set to 0.3. For
the non–differentially expressed genes (201–1000), the difference was set to zero. The
data were generated by drawing from group–specific multivariate normal distributions
with the given variances and means employing a block diagonal correlation structure
intended to mimic gene expression data. This structure was generated as in Guo et al.
[2007] with block size 100 and block entries equal to 0.9|i−j|. Furthermore, the sample
sizes n1 and n2 are equal with n1 = n2 = 8.

The effect size estimates are plotted in Fig. 4.1 according to their rank. It is important
to note that this does not tell us whether the respective ranking is correct. Thus, even
though the effect size estimates of the cat–score and an ordinary t–score are very similar,
this does not mean that their induced ranking is comparable. Efron’s and Matsui and
Noma’s method will also change the ranking of the supplied cat–scores at least slightly.

It can be seen that fdr–effect and MastsuiNoma yield good results, while Efron’s method
has a higher bias for effect sizes up to 1, a phenomenon already observed by Matsui
and Noma [2011]. The “naive” approaches (cat–scores and t–scores) are far off for effect
sizes up to 1.5. However, all methods overestimate large effect sizes. It follows that
variable selection methods relying on effect size estimates will generally have a tendency
of choosing only a relatively small number of variables in data sets with large effects.

This is in fact a phenomenon already observed by Ahdesmäki and Strimmer [2010]
for the Efron algorithm applied to the Singh [Singh et al., 2002] prostate cancer gene
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Figure 4.2: Comparison of effect size estimates for the Singh et al. [2002] data.

expression data. This data consists of gene expression measurements of d = 6033 genes
for n = 102 patients, of which 52 are cancer patients and 50 are healthy. It has already
been analyzed in Efron [2009] and Matsui and Noma [2011]. Fig. 4.2 shows the analysis
results. As in the simulated data, the “naive” approaches are far off, while Efron and
MatsuiNoma are quite similar. Note, however, that MatsuiNoma gives significantly
lower estimates of large effect sizes than Efron. This is a phenomenon already noted in
Matsui and Noma [2011]. The fdr–effect method yields similar results to MatsuiNoma
for large effect sizes but reaches zero estimates much faster than MatsuiNoma and Efron.
In conclusion, all empirical Bayes methods considered seem to give sound results here,
while the empirical methods are probably grossly overestimating the effect sizes.

4.3 Variable Ranking and Selection

4.3.1 Variable Ranking

Before being able to select variables, a variable ranking needs to be established (obj. (i)).
In the two class case, this is straightforward since the feature weight vector for class one
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ω(1,pool) is up to a scale factor of n2/n equal to the effect size vector ω(1,2) (ω(1,pool) =

(n2/n)ω(1,2)). Correspondingly, the feature weight vector for class two ω(2,pool) is equal
to the effect size vector −ω(1,2) up to a scale factor of n1/n (ω(2,pool) = (−n1/n)ω(1,2)).
Thus, variables can be ranked according to the absolute value of ω(1,2). In the the case
of multiple classes, the situation is more complicated. The feature weight vectors of
the different classes need to be summarized in a certain way to obtain the importance
of each feature i in class prediction. Here, I am going to use the summary statistic Si

proposed by Ahdesmäki and Strimmer [2010] and given by

Si =
K

∑
k=1

(
ω

(k,pool)
cat,i

)2
, (4.17)

where ω
(k,pool)
cat,i = (1/nk − 1/n)−1/2ω

(k,pool)
i . Since false discovery rates are generally

assumed to be monotone, Eq. 4.15 shows that using fdr–effect effect size estimates
ω

(k,pool)
fdr would produce the same ranking as the cat–scores if they were used instead

of ω
(k,pool)
cat to compute Si in Eq. 4.17. Observe further that the statistics Si fullfill the

properties of a generalized test statistic as introduced in section 2.2.1.

4.3.2 Misclassification Rate Based Variable Selection

Having obtained estimates ω̂
(k,l)
fdr of ω

(k,l)
fdr and π̂k of πk, we can now compute an estimate

of the misclassification rate using Eq. 4.6. Let ω̂
(k,l)
fdr (t) be the vector of the t top–ranked

variables according to the ranking induced by the vector S of all statistics Si given by
Eq. 4.17. This gives an estimate of the misclassification rate, which depends on t:

p̂rob(error)(t) =
K

∑
k=1

Φ
(
−min

l 6=k

[ω̂
(k,l)
fdr (t)]T[ω̂(k,l)

fdr (t)] + 2log
(

π̂k
π̂l

)
2

√
[ω̂

(k,l)
fdr (t)]T[

̂
ω

(k,l)
fdr (t)]

)
× π̂k . (4.18)

Efron performs feature selection by choosing a level α = 0.05 as a target misclassification
rate for the estimate in Eq. 4.18. Although one could view α as a tuning parameter, I
follow his suggestion in this regard. Experiments with lower α led to very large feature
sets showing only a negligible improvement of the classification performance.

After the target error α has been set, a feature threshold t∗ is obtained by including as
many features as necessary to reach it, i.e. p̂rob(error)(t∗) = α. Since usually a lot of
features are shrunken to zero, it is possible that the target error can not be reached. Then,
all the features will be included. This, however, is extremely unlikely to happen in real
high dimensional data analysis. Finally, all features fulfilling Si ≥ S∗t are included in the
classifier. I call the approach presented in this section misclassification rate (MR) based
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variable thresholding (MRT).

4.3.3 Variable Selection via fndr Thresholding

An optimal threshold for the statistic Si of Eq. 4.17 can also be found by false discovery
rates. FDR has its “classic” application area in genomics, especially in the detection of
differentially expressed genes.

A standard approach to obtain an FDR threshold to identify differentially expressed
genes is to refer to the rule of Benjamini and Hochberg [1995] with a cutoff such as
Fdr≤ 0.05. Alternatively, an fdr cutoff of 0.2 has been suggested in Efron et al. [2001].

However, it is important to observe that in the problem of constructing classifiers the
FDR approach cannot be applied in the same fashion as in differential expression. In the
latter case, the aim is to compile a set of genes one has confidence in to be differentially
expressed. This is controlled by a tight FDR criterion, e.g. fdr< 0.2 as in Tab. 3.2.

In contrast, when constructing classifiers one aims to identify the set of null features that
are not informative with regard to group separation in order to eliminate them from
the classifier. This is best done by controlling the fndr. Ahdesmäki and Strimmer [2010]
suggest to include all genes with fndr(Si) < 0.2 in the classifier. The local false discovery
and local false non discovery rates add up to one, fndr(Si) = 1− fdr(Si). Hence, the set
of features to be retained in the classifier has local false discovery rates smaller than 0.8
— instead of 0.2. This way, the features included in the predictor form a superset of the
differentially expressed variables.

4.3.4 Variable Selection by HC–Thresholding

Donoho and Jin [2008] proposed the Higher Criticism–HC approach to variable thresh-
olding. Here the test statistics S1, . . . ,Sd are first transformed into p–values via a (possibly
empirical) null model using Eq. 2.9.

HC Thresholding (HCT) then works as follows. First, the p–values are arranged from
smallest to largest: p(1), . . . , p(d). Then, each p–value is centered and standardized using
the expected mean (i/d) and standard deviation of the corresponding order statistic
(
√

i/d(1− i/d)/d). This results in the HC statistic

HC(p(i)) =
p(i) − i/d√

i/d(1− i/d)/d
.
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Finally, the maximizing argument pHC

pHC = arg max
i∈1,...,d

HC(p(i))

is taken as the HC decision threshold for variable selection. Then, all variables with
pi < pHC are included in the classifier. HCT is a conceptually simple procedure that
nonetheless works remarkably well. It has a close relationship to fdr thresholding and
misclassification rate based variable selection. A more detailed exposition of these
connections will be given in section 4.4 and chapter 5.

4.3.5 Estimation of the Prediction Rule and FDR

For the estimation of the prediction rule (Eq. 4.2), I will mostly employ James-Stein-type
estimators as in shrinkage discriminant analysis — SDA, Ahdesmäki and Strimmer
[2010]. The group centroids µk are estimated by the empirical means, for the correlations
P the ridge-type estimator from Schäfer and Strimmer [2005] is used and the variances
V are estimated by the shrinkage estimator from Opgen-Rhein and Strimmer [2007].
Finally, the proportions πk are obtained by using the frequency estimator from Hausser
and Strimmer [2009]. For SDA, I am going to employ the implementation provided by
the R-package [R Development Core Team, 2012] sda. The local false discovery rates
used in the fdr–effect approach are learned by using the Grenander density estimator and
truncated maximum likelihood for the empirical null as presented in sections 3.1.1 and
3.2.2. As in section 4.2, the implementation offered by the R– package [R Development
Core Team, 2012] fdrtool is employed.

4.4 The Relationship Between MR–Based Variable Selection
and HCT

In this section, it will be shown that the HCT approach to variable selection can also
be interpreted as a variant of MR–based variable selection (section 2.2.1) in the case of
K = 2 classes.

The case K = 2 entails that thresholding the feature weight vector ω1 is equivalent to
thresholding the vector ω(1,2) = −ω(2,1) (cf. section 4.3.1). Let ω := ω(1,2) and ω(t)
be the vector of effect sizes under the influence of feature selection as in section 4.3.2.
Remember that then features with |ω| ≥ωt are included in the classifier, while features
with |ω| ≤ωt are excluded and hence set to zero in ω(t).

Supposing a two–groups model (Eq. 2.3 and Eq. 2.4) on ω the (expected) fractions of
true positives (TP), true negatives (TN), false negatives (FN) and false positives (FP)
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depending on the cutoff ωt are given by the formulae

TP(ωt) = (1− η0)(1− FA(ωt)), TN(ωt) = η0F0(ωt),

FN(ωt) = (1− η0)FA(ωt) and FP(ωt) = η0(1− F0(ωt)).

These quantities will be used to connect HCT with MRT. This will show that the HC
criterion can be viewed as an approximation of the misclassification rate under the
influence of feature selection.

To demonstrate this connection, I first go back on the expectation performed with respect
to the data x in order to obtain Eq. 4.6. This gives the conditional (i.e. depending on the
data x) population level error rate:

Pr(error | x ) = Φ
(
−
[ω(1,2)(t)]T[δ1(x)− δ2(x)] + 2log

(
π1
π2

)
2
√
[ω(1,2)(t)]T[ω(1,2)(t)]

)
× π1+

Φ
(
−
[ω(2,1)(t)]T[δ2(x)− δ1(x)] + 2log

(
π2
π1

)
2
√
[ω(2,1)(t)]T[ω(2,1)(t)]

)
× π2 .

If equal class probabilities are assumed, the class frequencies can be dropped from the
model and the abbreviation ω = ω(1,2) introduced above can be used. This leads to the
formula:

Pr(error | x ) ∝ Φ
(
− [ω(t)]T[δ1(x)− δ2(x)]

2
√
[ω(t)]T[ω(t)]

)
.

Furthermore, it is assumed that all features posses the same strength, i.e. ωi = c for all
i ∈ 1, . . . ,d. Additionally, assume that the true null variables are known. Applying the
expectation with respect to the x the entries of the vector E[δ1(x)− δ2(x)] will then equal
µ1−µ2

2 if they belong to the alternative (are true positives) and 0 otherwise. Therefore,

E[δ1(x)− δ2(x)] = 0.5c · TP(ω) ,

and correspondingly

[ω(t)]TE[δ1(x)− δ2(x)] = 0.5c[µ1 − µ2]dTP(ω(t)) .
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This gives

Pr(error ) ∝ Φ
(
− c0.5[µ1 − µ2]dTP(ω(t))√

d · c2(TP(ω(t)) + FP(ω(t)))

)
= Φ

(
−0.5

√
d[µ1 − µ2]

TP(ω(t))√
TP(ω(t)) + FP(ω(t))

)
.

Donoho and Jin [2009] show (their Eq. 5.1) that the HC objective function approximates
the fraction

TP(ω(t))√
TP(ω(t)) + FP(ω(t))

.

Hence, Higher Criticism thresholding can be viewed as a very special case of MR–based
thresholding under relatively strong assumptions such as equal effect sizes for all non–
null features. However, HCT nonetheless has competitive operating characteristics, as
demonstrated in chapter 5.

4.5 Analysis of Real and Simulated Data

4.5.1 Simulations

In this section, I will compare variable selection based on the misclassification rate
(MR) with several other state of the art thresholding variable selection approaches,
namely false-non discovery rate (FNDR) thresholding (section 4.3.3 and Ahdesmäki and
Strimmer [2010]), HCT (section 4.3.4 and Donoho and Jin [2008]) and the PAM/NSC
algorithm [Tibshirani et al., 2003]. All methods are performed using empirical null
modeling. As a base line classifier, I also include the results of classification with all
features, i.e. performing no variable selection.

The simulations closely follow the setup of Witten and Tibshirani [2011]. A training
set of size 100 and a test set of 1000 samples are created with a dimension of d = 500
variables. In total, 25 runs of each simulation setup are performed.

Simulation Setup 1

In this setup, there are four classes with equal probability (0.25) no correlation and unit
variance. In each class 25 features are differentially expressed with an effect size of
0.7, yielding a total number of 100 differentially expressed features. Since there is no
correlation, I perform Diagonal Discriminant Analysis (DDA), i.e. LDA with identity
covariance Σ = Id. The results are displayed in Tab. 4.1.

It can be seen that thresholding the summary statistic S (Eq. 4.17) by false-non dis-
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Table 4.1: Prediction errors and number of selected features for simulation setup 1, the
number in the round brackets is the estimated standard error over 25 runs. The true
number of differentially expressed features is 100.

Method Prediction Error Features

DDA–MR 0.1077 (0.0177) 156.48 ( 64.70)
DDA–FNDR 0.2482 (0.1272) 39.24 ( 23.72)
DDA–HC 0.1880 (0.0626) 152.32 (193.48)
PAM 0.0923 (0.0163) 253.6 (116.26)
DDA–ALL 0.1555 (0.0180) 500

covery rates or Higher Criticism yields hardly any significant features in most runs.
Consequently, the estimated prediction errors are quite high.

Misclassification rate based feature selection as well as PAM, however, identify features
useful for classification. This indicates that “analytical” thresholding methods, which
do not rely on the optimization of a tuning parameter, may not work reliably when the
effect sizes are small.

Simulation Setup 2

In this simulation, I am going to use a Guo et al. [2007] type block correlation with 5
blocks of size 100× 100. As in section 4.2, each block entry is given by 0.9|i−j|, thus we
have some highly correlated variables within blocks but variables in different blocks are
independent.

Note that Witten and Tibshirani [2011] report using an entry size of 0.6. This is probably
a misprint since my results obtained for PAM are quite similar to the ones reported in
their article, while for 0.6 the error of PAM is only about 5%.

There are two classes with equal probability (0.5) and 200 features are differentially ex-
pressed with effect size 0.6, all of them are attributed to class 2. Since there is correlation
present in this setting, I will perform LDA.

It can be seen in Tab. 4.2 that all feature selection methods except for PAM, which does
not take correlation into account, perform quite well here.

4.5.2 Gene Expression Data

In Ahdesmäki and Strimmer [2010], the relative effectiveness of the FNDR and HC
thresholds to select relevant genes in shrinkage discriminant analysis applied to gene
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Table 4.2: Prediction errors and number of selected features for simulation setup 2, the
number in the round brackets is the estimated standard error over 25 runs. The true
number of differentially expressed features is 200.

Method Prediction Error Features

LDA–MR 0.000 (0.000) 63.16 (7.215)
LDA–FNDR 0.000 (0.000) 60.96 (6.567)
LDA–HC 0.000 (0.000) 85.04 (8.677)
PAM 0.088 (0.018) 294.0 (69.43)
LDA–ALL 0.093 (0.014) 500

expression data has already been compared. I am going follow their setup here and will
analyze four clinical gene expression data sets related to prostate cancer [Singh et al.,
2002], B-cell lymphoma [Alizadeh et al., 2000], colon cancer [Alon et al., 1999] and brain
cancer [Pomeroy et al., 2002].

Specifically, balanced 10–fold cross–validation with 20 repetitions was performed to
obtain error estimates and their standard deviations. The number of selected features is
inferred by a single run of the respective variable selection method on the whole data
set. Only for PAM this was repeated several times since the number of selected variables
selected by this algorithm varies considerably between several runs in a row on the
same data set.

In Tab. 4.3, it can bee seen that the MRT approach has a performance similar to the
other approaches. Interestingly, the MRT approach shows a more “adaptive” feature
selection, leading to appropriate feature sets for each problem. In the brain data set, a
very compact set of features is selected yielding a prediction error which is nonetheless
in the range of the other approaches. The same is true for the Lymphoma and Colon data
sets. This demonstrates that a variable selection method based on effect sizes leads to
compact and yet effective molecular signatures. Furthermore, fndr and HC thresholding
yield very similar results.
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Table 4.3: Analysis of four cancer gene expression data sets with shrinkage discriminant
analysis. The number of selected features are determined by a single feature selection
run on the whole data set.

Data / Method Prediction Error Selected Variables

Prostate (d = 6033,n = 102,K = 2)
LDA–MR 0.0630 (0.0050) 134
LDA–FNDR 0.0550 (0.0048) 131
LDA–HC 0.0497 (0.0045) 116
PAM 0.0850 (0.0061) 172–377

Lymphoma (d = 4026,n = 62,K = 3)
LDA–MR 0.0211 (0.0039) 34
LDA–FNDR 0.0036 (0.0018) 392
LDA–HC 0.0000 (0.0000) 345
PAM 0.0234 (0.0041) 2796–2383

Colon (d = 2000,n = 62,K = 2)
LDA–MR 0.1291 (0.0093) 28
LDA–FNDR 0.1278 (0.0088) 168
LDA–HC 0.1233 (0.0087) 122
PAM 0.1160 (0.0921) 13–23

Brain (d = 5597,n = 42,K = 5)
LDA–MR 0.1628 (0.0126) 56
LDA–FNDR 0.1525 (0.0120) 102
LDA–HC 0.1417 (0.0108) 131
PAM 0.2023 (0.0118) 42–5587
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5 Signal Identification for Rare and
Weak Features: Higher Criticism or
False Discovery Rates?
In this chapter, I will look in more detail at variable selection methods using threshold-
ing. The chapter will mainly be concerned with an in–depth analysis of HCT and its
relationship to f(n)dr thresholding (see sections 4.3.3 and 4.3.4). It will be shown that
thresholding with an fdr of 0.5 is conceptually very similar to HCT.

Variable selection by thresholding can be understood as a special case of signal identifica-
tion. Especially identification of sparse and weak signals in complex high–dimensional
data is a challenging statistical problem that has many important applications in fields as
diverse as astronomy, finance, genetics, medicine and proteomics. A typical biomedical
task is the search for biomarkers using data from genome-wide association studies [Xie
et al., 2011]. Signal identification is much more difficult than the closely related problem
of signal detection. Whereas in detection, we are concerned purely with the presence or
absence of a signal, in identification, we additionally seek to locate the signal.

In a series of recent publications, the method of Higher Criticism (HC) was powerfully
advocated in settings with rare and weak features as an efficient means for signal
detection [Donoho and Jin, 2004] as well as signal identification [Donoho and Jin, 2008,
2009, section 4.3.4]. Originally, HC was introduced by Tukey [1976] as an approach to
multiple significance testing using a second–level test statistic computed from p-values.
Importantly, in Donoho and Jin [2004] it was shown that HC provides a procedure which
is optimal for signal detection in the sense that it achieves the best possible theoretical
detection limit discovered earlier by Ingster [1999]. Subsequently, HC was also employed
in a thresholding procedure to determine relevant features for prediction. Again, it
was demonstrated that the HC approach to signal identification outperforms other
commonly employed selection strategies, in particular those based on false discovery
rates [Donoho and Jin, 2008, 2009].

In the previous chapter, the utility of HC for variable selection in classification was
confirmed, but at the same time it was also empirically shown that in the signal identifi-
cation problem controlling the false non-discovery rate is equivalent to the HC procedure.
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Furthermore, it was discovered by Jager and Wellner [2007] that HC is not unique in
achieving the detection limit. Given the success of HC, this raises questions about the
fundamental principles that may underlie this approach.

Here, I will explore signal identification using the HC and false (non)-discovery rate
approaches, with the aim to provide a better understanding of HC as well as offering a
simple explanation for the favorable performance of HC. Specifically, I am going to argue
that the decision threshold provided by HC may also be viewed as an approximation
to a natural class boundary (CB) in classification, which, in turn, is easy to understand
from a false discovery rate perspective. In particular, in the rare-weak setting in the
region of the phase space where identification is actually possible we show that the HC
and CB thresholds are nearly indistinguishable.

The remainder of the chapter is structured as follows: First, a non-technical introduction
to HC both on the sample and the population level is provided. Second, I will derive
the ideal thresholds corresponding to HC and false discovery rate approaches, and
explore their mutual relationships. Next, I am going to investigate these thresholds in
the rare-weak model and establish the near identity of HC and a natural CB threshold in
the rare-weak identification setting. Finally, the validity of the theoretical considerations
will be demonstrated by simulation and by analyzing data from four gene expression
experiments (3 of which have already been analyzed in chapter 4).

5.1 Higher Criticism

In the following, the section 4.3.4 is expanded, describing the HC approach to signal
identification in greater detail. Various properties of the HC threshold, both from a
sample and population point of view, will be discussed. In this section and throughout
the whole chapter, “x” will always denote a variable on the p–value scale, in contrast to
the previous chapter, where it denoted multivariate normal data.

5.1.1 Empirical HC Threshold Based on p-Values

The already familiar situation with d observed generalized test statistics y1, . . . ,yd (section
2.2.1) is assumed here. For each statistic, a corresponding p-value p1, . . . , pd via Eq. 2.9 is
computed. The dimension d is potentially very large, as in many current applications in
genomics or proteomics.

The HC approach to signal identification then proceeds as follows:

• First, by arranging the p-values from smallest to largest p(1), . . . , p(d), the empirical
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distribution function of the p-values is obtained

F̂(x) = i/d for p(i) ≤ x < p(i+1)

with x ∈ [0;1], p(0) = 0, and p(d+1) = 1.

• Second, the empirical HC objective function

ĤC(x) =
|F̂(x)− x|√

F̂(x)(1− F̂(x))/d
(5.1)

is computed [Donoho and Jin, 2008, 2009].

• Third, the HC statistic ĤC
?

is obtained as the maximum of the empirical HC
objective

ĤC
?
= max

i
ĤC(p(i)) = ĤC(xHC) .

• Finally, the maximizing argument xHC is taken as the HC decision threshold for
signal identification. As shown in Fig. 5.1a, all pi < xHC are considered “significant”
and likely correspond to non-null cases.

Informally, the empirical HC objective function ĤC(x) may be interpreted as z–scores
constructed from p-values — recall that Var(F̂(x)) = F(x)(1− F(x))/d. Indeed, it is this
second–level assessment of the p-values that was the original motivation for the HC
approach [Tukey, 1976] and that gave rise to its name “Higher Criticism”.

5.1.2 Population HC Objective Function and Goodness–of–Fit Statistics

By definition, p-values have a uniform U(0,1) null distribution with F0(x) = x. More-
over, the marginal distribution of the p-values may be viewed as a two-component
mixture

F(x) = η0F0(x) + (1− η0)FA(x)

of the null model F0(x) and an alternative model FA(x) where η0 ∈ [0;1] is the proportion
of the null model (cf. Eq. 2.11). With this in mind, the squared empirical HC objective
function can be written as

ĤC(x)2 ∝
(F̂A(x)− F0(x))2

F̂(x)(1− F̂(x))
.

The proportionality factor d(1− η0)2 has been left out as it does not depend on x and
hence is irrelevant for determining the decision threshold xHC. Thus, for maximization
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a) HC Threshold

b) CB and FDR Thresholds
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Figure 5.1: (a) Empirical HC decision threshold xHC obtained by maximizing the em-
pirical HC objective, and (b) Class boundary threshold xCB given by fdr = 1/2 and its
relationship to the neighboring fdr and fndr thresholds.

72



5.1. Higher Criticism

Table 5.1: Relationship of HC statistic with other goodness-of-fit statistics.

Supremum Expectation

Not standardized Kolmogorov-Smirnov: Cramér-von Mises:
supx |FA(x)− F0(x)| EF{(FA(X)− F0(X))2}

Standardized Higher Criticism: Anderson-Darling:
supx {

|FA(x)−F0(x)|√
F(x)(1−F(x))

} EF { (FA(X)−F0(X))2

F(X)(1−F(X)) }

we can use the above formula rather than Eq. 5.1. Furthermore, it has the advantage of
immediately generalizing to population level (i.e. to d→∞)

HC(x)2 ∝
(FA(x)− F0(x))2

F(x)(1− F(x))
, (5.2)

which greatly facilitates the conceptual understanding of the HC approach.

The function Eq. 5.2 is well known from the goodness-of-fit statistic of Anderson and Dar-
ling [1954], which is proportional to the expectation EF(HC(X)2). Hence, the HC statistic
bears the same relationship to the Anderson-Darling statistic as does the Kolmogorov-
Smirnov statistic to the Cramér-von Mises statistic [Darling, 1957]. Moreover, as can be
seen in Tab. 5.1 the HC statistic is the standardized Kolmogorov-Smirnov (KS) statistic.
In fact, the KS statistic may be used in the same fashion as HC to derive a decision
threshold xKS.

In the mixture model for p-values it is commonly assumed (see also the next section on
false discovery rates) that FA(x)≥ F0(x) for all x, i.e. that the alternative component is
stochastically smaller than or equal to the null component (cf. section 2.2.2). Thus, on
the population level (though not on the sample level) we may leave out the absolute
value signs in the first column of Tab. 5.1.

5.1.3 Invariance of HC Objective Function

By the inspection of Eq. 5.2, we derive a number of interesting properties of the HC
objective function.

First, it is completely symmetric with regard to the two components in the underlying
mixture model for the p-values. The alternative model FA and the null model F0 play
the same role in Eq. 5.2.

Second, for computing the HC objective it is not necessary to explicitly specify the null
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proportion η0.

Third, Eq. 5.2 is invariant against transformation of the underlying test statistic. This
can be seen as follows: Under a change of variables from x to y = y(x) the distribution
function changes according to

FY(y) =

 F
(

x(y)
)

for increasing x(y), and

1− F
(

x(y)
)

for a decreasing transformation.

Applied to Eq. 5.2, this leads to

HC(y)2 = HC(y(x))2 ∝
(FY

A(y)− FY
0 (y))

2

FY(y)(1− FY(y))
.

Remarkably, the HC objective function Eq. 5.2 retains its functional form under a change
of variables. Thus, Eq. 5.2 is not constrained to p-values only and may instead be applied
to any test statistic y without the need of prior conversion to the p-value scale. The HC
decision threshold as the location of the maximum of Eq. 5.2 transforms accordingly
from xHC to yHC = y(xHC).

5.2 Signal Identification with FDR and FNDR

A standard approach to obtain a decision threshold with the FDR is to refer to the
rule of Benjamini and Hochberg [1995] with a cutoff such as F̂dr(p(i))≤ 0.05. Alterna-
tively, a threshold may be found by controlling the local FDR, for instance by requiring
f̂dr(p(i))≤ 0.2 — cf. section 4.3.3.

This ensures that the identified features are mostly from the alternative with only a little
contamination by unwanted null features. Conversely, if the interest is to identify true
null features, then similar thresholds may be imposed on the FNDR rather than the FDR.

This is illustrated for the fdr and the fndr in Fig. 5.1b where the signal space is divided
by the decision thresholds xfdr and xfndr into three distinct zones corresponding to areas
where one is very sure about membership to the null (local FNDR < 0.2 or local FDR
> 0.8) or to the alternative (local FDR < 0.2) and one additional intermediate region.

From a classification perspective, there exists another threshold — the class boundary
(CB) threshold xCB — that provides a natural separation between null and non-null
components. At xCB, the probabilities of membership to the alternative component and
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to the null component both equal 1/2. Hence, in terms of the fdr we have

fdr(xCB) = fndr(xCB) =
1
2

.

As can be seen in Fig. 5.1b, by construction xCB is located in between xfndr and xfdr. From
the definition fdr(xCB) = 1/2 and Eq. 2.5 we obtain the condition

η0 f0(xCB) = (1− η0) fA(xCB) (5.3)

for the CB threshold.

5.3 Comparison of CB and HC Decision Thresholds

It is now instructive to study the mutual connections among the various decision
thresholds, in particular xHC, xKS and xCB.

5.3.1 Kolmogorov-Smirnov (KS) Decision Threshold

The location xKS, where the Kolmogorov-Smirnov objective function |FA(x)− F0(x)| is
maximized, is given by

f0(xKS) = fA(xKS) . (5.4)

Thus, the KS decision threshold coincides with the class boundary xCB if η0 = 1/2.
Therefore, the KS threshold implicitly assumes that null and non-null components have
the same prior probability.

5.3.2 HC Decision Threshold

Using Eq. 5.2, we may determine the population decision threshold that one tries to
estimate by maximizing the empirical HC objective ĤC(x). This leads to the general
condition

f0 {2F(1− F) + (FA − F0)(1− 2F)η0}=
fA {2F(1− F)− (FA − F0)(1− 2F) (1− η0)}

(5.5)

that must be satisfied by the HC decision threshold xHC (note that in Eq. 5.5 the argu-
ments have been left out for the sake of clarity).

There are two cases where the HC threshold condition simplifies substantially. First, if
the null and alternative components are well separated, then FA(xHC) = 1 and F0(xHC) =
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0 and consequently F(xHC) = 1− η0 so that Eq. 5.5 reduces to

η0 f0(xHC) = (1− η0) fA(xHC) .

Thus, for well-separated null and alternative, the HC threshold is identical to the CB
threshold.

Second, if null and alternative components are very close, then FA(xHC)≈ F0(xHC) and
Eq. 5.5 becomes

f0(xHC) = fA(xHC) ,

i.e. the HC threshold becomes identical to the KS threshold.

Hence, the HC threshold may be viewed as a compromise between the CB threshold
and the KS threshold. This is directly observed in the study of the “rare-weak” model
(cf. Tab. 5.2a).

5.4 The Rare Weak Model

The use of Higher Criticism is particularly advocated in settings where the signal is
sparse and weak. This situation is described by the so-called rare weak (RW) model that
has been used to study the performance of HC. In the following, I am going introduce
the RW model and compare corresponding decision thresholds.

5.4.1 Setup of the RW Model

The RW model is a sparse normal mean mixture model with

Z∼ (1− ε)N(0,1) + εN(τ,1). (5.6)

Its two parameters τ ∈ [0;∞] and ε ∈ [0;1] describe intensity and sparsity of the signal,
respectively. If ε is small, then the non–null features are rare, and likewise if τ is small,
then the effect size is weak (hence the name of the model). From this mixture, we observe
z–scores z1, . . . ,zd, which provide the data from which decision thresholds are inferred.

Despite its simplicity, this model is sufficiently rich to study the behavior of signal
detection and signal identification methods [Ingster, 1999, Donoho and Jin, 2004, 2008,
2009, Xie et al., 2011]. A generalized RW model with an additional variance parameter
in the alternative is discussed in Cai et al. [2011].

A typical scenario where the RW model naturally arises is in classification. For ex-
ample, consider a two–class setting with means µ1 = µ and µ2 = −µ where µ =
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(. . . ,µ0, . . . ,0, . . .)T is a d-dimensional vector containing either 0 or µ0 as components,
with ε describing the proportion of non-zero entries. Further, assume an identity covari-
ance Id and equal number of observations n1 = n2 = n/2 from the two classes. Then the
corresponding cat-score vector (1/n1 + 1/n2)−1/2(µ̂1 − µ̂2) used for variable selection
(cf. sections 4.1 and 4.3.1) simplifies to Z =

√
nµ̂. The d components of Z follow the RW

model of Eq. 5.6 with τ =
√

nµ0. Note the confounding of n and µ0, so a small number
of observations n and large µ0 gives rise to the same RW model as large sample size n
and a small µ0.

Instead of ε and τ, it is sometimes convenient to use the alternative parameterization

βε =− log(ε)/log(d)

and

rτ =

(
τ2

2

)
/log(d)

with corresponding backtransformations εβ = d−β and τr =
√

2r log(d).

The motivation to use β instead of ε to measure sparsity is that for d observations
the smallest possible fraction of the alternative is 1/d. The change of variables maps
ε ∈ [ 1

d ;1] to β ∈ [0;1]. A sparse setting in the RW model is characterized by β ∈ [ 1
2 ,1]

or equivalently ε < d−1/2. Similarly, the alternative intensity parameter is a map of
τ ∈ [0;

√
2log(d)] to r ∈ [0;1]. As for d observed z–scores, their maximum is bounded

in expectation by
√

2log(d), an RW model with r > 1 contains comparatively well-
separated null and alternative components ,whereas in a model with r < 1 the signal is
weak.

5.4.2 Decision Boundaries for the RW Model

The RW model is simple enough to allow analytical calculations of some decision
boundaries.

Using the null and alternative densities f0(z) = 1√
2π

e−z2/2 and fA(z) = 1√
2π

e−(z−τ)2/2,
respectively, and distribution functions F0(z) = Φ(z) and FA(z) = Φ(z − τ), the KS
decision threshold (Eq. 5.4) for the RW model is

zKS =
τ

2
.
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Similarly, the classification class boundary (Eq. 5.3) simplifies for the RW model to

zCB =
τ

2
+

1
τ

log
(

1− ε

ε

)
.

For ε = 1/2, the CB threshold reduces to the KS threshold and, for ε ≤ 1/2 we have
zCB ≥ zKS. For fixed ε and large enough effect size τ, the second term above also vanishes
and hence also leads to the KS threshold. As the proportion of non-null features becomes
smaller (ε→ 0), the decision threshold moves to infinity (zCB→∞). Thus, if ε = 0, no
feature will be classified as non-null.

For the HC decision threshold, unfortunately, no analytic expression for zHC is available.
From the general considerations above (cf. Section 5.3.2), we know that for larger τ the
HC threshold approximates the CB threshold, and that both reduce to the KS threshold
for ε = 1/2. Furthermore, Donoho and Jin [2009, Appendix Eq. 1.1] show that, for the
RW model, fdr(zHC)≥ 1/2. This, together with the monotonicity of the local FDR in the
RW model, implies that

zHC ≤ zCB .

Thus, in general using the HC decision threshold causes the inclusion of more features
than using the CB threshold.

Of particular interest is the behavior of the HC threshold for small values of ε. Specifi-
cally, if ε = 0 and τ is finite, then the HC threshold is also finite. For example, ε = 0 and
τ = 2 leads to zHC ≈ 3.35, which is distinctly different from the class boundary threshold
zCB→∞. Thus, by construction the HC criterion (and also the KS threshold) encourages
false positives in signal identification.

A comparison of the KS, HC, and CB thresholds for some settings of ε and τ is given in
Tab. 5.2a. As expected, with increasing τ the HC and CB thresholds become very similar
and for ε = 1/2 both HC and the CB thresholds reduce to the KS threshold. Thus, the
pattern confirms the general relationships of these decision thresholds discussed above.

In addition, in the RW model, there exists a further close link between the HC and CB
thresholds. This results from the special structure of the parameter space of the RW
model discussed next.

5.4.3 Phase Space of the RW Model

Within the RW model, the behavior of signal detection and identification procedures
have been studied extensively. This has led to the remarkable insight that there exist
several fundamental boundaries in its phase space that give rise to four distinct regions,
as illustrated in Fig. 5.2a.
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Table 5.2: a) Comparison of the KS, HC and CB decision thresholds in the RW model,
and b) Analysis of four cancer gene expression data sets with shrinkage discriminant
analysis.

a) Comparison of Thresholds

Setting zKS zHC zCB

τ = 2
ε = 0 1 3.3514 ∞
ε = 0.001 1 3.0707 4.4534
ε = 0.01 1 2.5203 3.2976
ε = 0.1 1 1.7574 2.0986
ε = 0.5∗ 1 1.0000 1

τ = 4
ε = 0 2 3.3514 ∞
ε = 0.001∗ 2 3.6377 3.7267
ε = 0.01∗ 2 3.0965 3.1488
ε = 0.1∗ 2 2.5268 2.5493
ε = 0.5∗ 2 2.0000 2

τ = 6
ε = 0 3 8.1607 ∞
ε = 0.001∗ 3 4.1454 4.1511
ε = 0.01∗ 3 3.7631 3.7659
ε = 0.1∗ 3 3.3652 3.3662
ε = 0.5∗ 3 3.0000 3
∗ Signal identification is possible as ε≥
exp(−τ2/2), see section 5.4.3.

b) Cancer Gene Expression Data

Data / Prediction Error Selected
Method Variables

Prostate (d = 6033,n = 102,K = 2)
CB 0.0637 (0.0053) 115
HC 0.0497 (0.0045) 116
FNDR 0.0550 (0.0048) 131

Lymphoma (d = 4026,n = 62,K = 3)
CB 0.0211 (0.0042) 178
HC 0.0000 (0.0000) 345
FNDR 0.0036 (0.0018) 392

SRBCT (d = 2308,n = 63,K = 4)
CB 0.0000 (0.0000) 88
HC 0.0007 (0.0007) 174
FNDR 0.0000 (0.0000) 89

Brain (d = 5597,n = 42,K = 5)
CB 0.1633 (0.0120) 78
HC 0.1417 (0.0108) 131
FNDR 0.1525 (0.0120) 102

K: Number of classes in the response
variable.
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Figure 5.2: a) Phase space of the RW model following Xie et al. [2011]. The bold line
shows the signal identification boundary rident(β) = β above which signal identification
is possible. For details on the four regions see the description in Section 5.4.3. b) Ratio
of xHC and xCB thresholds at the signal identification boundary (solid line) and above
(dotted lines). Note that τident(ε) =

√
−2log(ε).
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Ingster [1999] discovered the detection boundary

rdetect(β) =

[
β− 1

2 β ∈ [ 1
2 ; 3

4 ]

(1−
√

1− β)2 β ∈ [ 3
4 ;1] .

Below this boundary lies the “undetectable” region in which even signal detection is
impossible, i.e. no method is able to decide whether ε 6= 0. Conversely, above the
detection boundary it is possible to consistently estimate ε [Cai et al., 2007].

Donoho and Jin [2004] report the identification boundary

rident(β) = β .

It is only above this boundary in the “estimable” and “recoverable” regions that signal
identification by thresholding is actually possible. In terms of original parameters,
this corresponds to the conditions τ ≥

√
−2log(ε) or ε≥ exp(−τ2/2). Directly below

this boundary lies the “detectable” region where detection of a signal is possible but
not identification. This shows that signal identification is more difficult than signal
detection.

Finally, Xie et al. [2011] demonstrated the existence of the recovery boundary

rrecov(β) = (1 +
√

1− β)2

above which in the “recoverable” region almost all signal can be completely identified.

5.4.4 HC Threshold as Approximation of the Natural Class Boundary

When comparing the KS, HC, and CB decision thresholds in Tab. 5.2a, a striking phe-
nomenon can be observed: Whenever signal identification is possible, i.e. if ε ≥
exp(−τ2/2), then zCB and zHC are very similar.

To investigate this further, I computed the ratio of the HC and CB threshold directly at the
signal identification boundary and above (Fig. 5.2b). Already at the boundary this ratio
is close to 1, especially for small values of ε. Moving further into the “estimable” and
“recoverable” regions, the differences between the two thresholds become negligible.

Hence, in the RW model, in the area where signal identification is possible, zHC and zCB

are in the worst case very similar and mostly indistinguishable for practical purposes.
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Figure 5.3: Comparison of errors when using the HC, CB and FNDR decision thresholds
on data simulated from the RW model located directly at the detection boundary (ε =
0.01 and τ = 3) and above (τ > 3).

5.5 Data Examples

To further study the relationship among the HC, CB, and FNDR decision thresholds, I
will analyze both simulated as well as experimental data next.

5.5.1 Synthetic Data

The data is simulated from the RW model at the signal identification boundary and
above as follows:

1. I sample d = 10,000 z–scores from the mixture model Eq. 5.6 with ε = 0.01 and
τ ∈ {3,4,5,6}. For τ = 3, this is is a sparse and weak scenario located directly at
the signal identification boundary (ε≈ exp(−τ2/2)).

2. From the test statistics z1, . . . ,zd the p–values according to pi = 1 − F0(zi) are
computed.
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3. Subsequently, the empirical HC threshold is obtained by maximization of Eq. 5.1.

4. In addition, the fdr was estimated using the fdrtool algorithm [Strimmer, 2008a,b]
and correspondingly the CB (local FDR = 0.5) and FNDR (local FDR = 0.8) decision
thresholds are identified.

5. For each of the three investigated thresholds (HC, CB, FNDR), the number of false
positives (FP), false negatives (FN), true positives (TP) and true negatives (TN) are
determined.

6. The simulations are repeated B = 1000 times to estimate the mean errors and their
standard deviations.

The results are visualized in Fig. 5.3. As expected, the HC and CB thresholds yield similar
results with growing τ. However, if the signal is weak (small τ), signal identification
with HC leads to many more false positives and in addition the variability of the error
rates for HC is very large. Conversely, in this situation the CB threshold is more cautious
and thus results in more false negatives. For all settings, the error rates of HC are found
in between those of CB and FNDR. Interestingly, the total error (FP+FN) is smallest
when using the CB threshold.

I also repeated this study with other sparsity settings ε > 0.01. The resulting error plots
all showed exactly the same pattern of convergence of the CB and and HC methods as
Fig. 5.3.

5.5.2 Gene Expression Data

Next, I will also analyze four clinical gene expression data sets related to prostate cancer
[Singh et al., 2002], lymphoma [Alizadeh et al., 2000], small round blue cell tumors
(SRBCT) [Khan et al., 2001] and brain cancer [Pomeroy et al., 2002]. In chapter 4, the
relative effectiveness of the fndr and HC thresholds to select relevant genes in shrinkage
discriminant analysis using cat–scores has already been shown [cf. section 4.5.2].

In Tab. 5.2b, I show in addition the estimated prediction error and the number of selected
variables for the CB threshold. Generally, using the CB decision threshold leads to the
smallest predictor sets. Except for the prostate data, the number of selected genes is
roughly half compared to using the HC threshold as criterion. As the predictor error is
only slightly increased, I conclude that most of the additionally included predictors by
HC are false positives.

For practical analysis of gene expression data, this implies that using xCB yields —
in comparison with xHC — smaller and hence more interpretable predictor gene sets
without compromising prediction error.
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6 Summary and Outlook

False discovery rate analysis is a major recent statistical innovation that has found
widespread application in the study of high-dimensional data. The FDR estimation
methodology introduced in chapter 3 helps to separate signal from noise. Both of them
are very often overlapping, making decisions very difficult. However, once a mixture
model, composed of a “null” component for the noise, and an “alternative” component
that represents the signal, have been fit to the data, false discovery rates allow intuitive
and simple signal identification.

The FDR analysis is best understood from an estimation perspective. Then, the incredible
number of test statistics encountered in today’s multiple testing problems is actually a
blessing and not a curse, since it is this high dimension which allows to estimate the FDR
from data. Truncated maximum likelihood estimation has been shown to be a powerful
approach for estimating the null component, yielding reliable null model parameter
estimates [Efron, 2004, 2007b, 2008, Strimmer, 2008b]. By data analysis and simulations
(sections 3.6 and 3.7), I have demonstrated that my new approach to truncated maximum
likelihood estimation (section 3.1.2) yields accurate null model parameter estimates. This
null model estimation is complemented by constrained maximum likelihood estimation
for the alternative density using log–concave density estimation. Log–concave density
estimation provides a non–parametric, tuning–parameter free and yet very “smooth”
estimator for the alternative density. Thus, it has many advantages over the conceptually
similar non–parametric Grenander estimator [Strimmer, 2008b].

Since new, even higher dimensional techniques for genome analysis, such as next
generation sequencing [Metzker, 2010, NGS], are now routinely used, false discovery
rate methods will continue to be of high importance. With next generation sequencing
technologies (RNA–Seq), the abundance of these sequences in a sample can be measured
directly requiring no prior gene definitions. The results of these measurements are
count data, FDR methods developed for continuous data have to be adapted in order
to work with this kind of data. With discrete data, the histogram of the p–values
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under the null distribution is no longer uniform, making adaptions necessary. One
way to do this is the calculation of “randomized p–values“ to obtain a continuous and
uniform p–value distribution [Muralidharan et al., 2012]. In principle, the classical
approaches can then be used again. Unfortunately, this is not the end of the story: Due
to various different sources of variation in RNA–Seq, the null model fitting process is
much more complicated with RNA–Seq data than with microarrays. Most approaches
to the identification of differential expression in so far thus rely on permutation–based
methods to infer a null distribution [Anders and Huber, 2010]. However, even if a
permutation null is valid for each gene indidividually, correlation between genes can still
make it unreliable for the ensemble [Efron, 2007b]. Thus, novel empirical null modeling
approaches are needed for next generation sequencing.

As indicated in 2.3, mixture models are difficult to fit. Although the truncated maximum
likelihood approach combined with a non–parametric alternative works quite well, it
is rather ad–hoc from a theoretical point of view. An interesting research direction
would be the analysis of mixture models consisting of a parametric null and a non–
parametric alternative. Bordes et al. [2006] propose an estimation method for these
mixtures. However, no monotonicity constraints are imposed on the alternative density
in their paper.

FDR methods are not only useful for multiple testing situations in the strict sense,
they are also applicable to related problems. In chapter 4, I looked at several kinds
of applications of FDR in linear classification. I presented and extended statistical
techniques related to effect size estimation using false discovery rates and showed
how to use these for variable selection. The fdr–effect method proposed for effect size
estimation has been shown to work as well as competing approaches, while being
conceptually simple and computationally inexpensive. Variable selection by minimizing
the misclassification rate has been somewhat neglected in the literature but I showed
in accordance with Dabney and Storey [2007], Efron [2009] and Matsui and Noma
[2011] that it is indeed very well suited for real world problems. In addition, it is also
much more intuitive than selecting a non-interpretable regularization parameter, as for
example in the PAM algorithm, and leads to compact and interpretable feature sets.

High expectations are associated with the promise of a personalized medicine delivering
tailored treatments based on genetic and other information of the patient. In order to
develop molecular diagnostics guiding these treatments, statistical approaches for effec-
tive and interpretable classification are indispensable. Thus, classification of individuals
based on individual information will continue to be an important field of research. The
methodology presented in chapter 4 delivers interpretable gene signatures and therefore
provides applicability for biological study and medical use. Reliable effect size estimates
allow one to identify genes having discriminative power, while variable selection based
on these effect size estimates allows the selection of the most important genes for the
construction of classification algorithms.
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In chapter 5, I took a look at a prominent competitor of FDR, Higher Criticism (HC).
Recently, HC was shown to be an effective means for determining appropriate signal
identification decision thresholds [Donoho and Jin, 2008, 2009]. Thus, the investigation
of the relationship of the HC and FDR methods in chapter 5 started with the aim to
better understand HC as a method for signal identification. In the context of variable
selection for classification, it had been demonstrated empirically earlier [Ahdesmäki
and Strimmer, 2010, cf. section 4.5] that using Higher Criticism thresholding is similar
to competing procedures, in particular to those using a threshold based on FDR. In
chapter 5, I studied this further and argued that the HC decision threshold may also
be viewed as an approximation of the natural class boundary (CB) between the null
and alternative groups in the rare–weak (RW) mixture model. This CB threshold can be
directly expressed in terms of local FDR and local FNDR. Importantly, in the RW model,
in the region of the phase space where signal identification is possible, both thresholds
are either very similar or practically indistinguishable.

If the two thresholds are notably different, then using the HC threshold leads to the
inclusion of more false positives, and conversely the CB threshold yields a more compact
feature set but with slightly increased prediction error. In short, the CB threshold is more
cautious than the HC threshold (and the FNDR threshold). Hence, the study in chapter
5 provides further support to the excellent performance of HC for signal identification.
However, my conclusions and recommendations are different from those of Donoho
and Jin [2008, 2009]. I showed that false discovery rates, properly applied, are indeed
perfectly useful for signal identification, which had been disputed earlier. Rather than
considering HC as a fundamental criterion, I recommend using the CB threshold for
signal identification and suggest employing the HC threshold only in situations where
having many false positives is harmless.

In general, estimation of the CB threshold is a challenging problem as this requires the fit
of a mixture model and estimation of the mixing density. In contrast, the empirical HC
threshold can readily be determined using p-values computed from F0 alone. Thus, for
signal identification the HC approach provides a simple yet effective means to approx-
imate the CB threshold. Due to the difficulties encountered when estimating mixture
models, such as lack of identifiably, methods such as HC that allow to infer sensible
decision thresholds without full mixture modeling will continue to be of importance for
practical data analysis in the future.
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A Available Software

Program files to be used with the statistical software R [R Development Core Team, 2012],
published under the GNU General Public License 3.0, are available from my homepage:

http://b-klaus.de.

These programs require some additional packages available from the comprehensive R
archive network (CRAN), (http://cran.r-project.org) or the Bioconductor platform
(http://www.bioconductor.org) which can be easily installed within an R session.

Estimation of FDR: The log–FDR appraoch

The log–FDR estimation approach introduced in sections 3.1.2 and 3.2.2 is implemented
in the function log.fdr.R. An example analysis of simulated z–scores can be found in
the file log-fdr-example.R.

Variable Selection in Classification

The file CMA-Ana-Singh.R performs cross validation based prediction error estimation
for the Singh et al. [2002] prostate cancer gene expression data. In this sample script
misclassification rate based variable selection is used. Other variable selection schemes
are implemented in the file predfun-CMA.R. The CV based prediction error estimation
itself is implemented in the file predfun-CMA.R. This function uses a data split procedure
implemented in the Bioconductor package CMA [Slawski et al., 2008].

Higher Criticism

The Higher Criticism statistic can be computed with the function hc.score of the R

package fdrtool available from the CRAN archive (Version 1.2.10 or later).
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B Article Abstracts

Thresholding methods for feature selection in genomics: higher criticism
versus false non-discovery rates

Klaus and Strimmer [2010]

In high-dimensional genomic analysis it is often necessary to conduct feature selection,
in order to improve prediction accuracy and to obtain interpretable classifiers. Tradition-
ally, feature selection relies on computer-intensive procedures such as cross-validation.
However, recently two approaches have been advocated that both are computationally
more efficient: False Non-Discovery Rates (FNDR) and Higher Criticism (HC). Here,
we describe the rationale behind the two approaches, conduct an empirical comparison
based on synthetic and real data, and discuss the respective merits of HC-based and
FNDR-based feature selection.

Learning false discovery rates by fitting sigmoidal threshold functions
Klaus and Strimmer [2011]

False discovery rates (FDR) are typically estimated from a mixture of a null and an
alternative distribution. Here, we study a complementary approach proposed by Rice
and Spiegelhalter (2008) that uses as primary quantities the null model and a parametric
family for the local false discovery rate. Specifically, we consider the half-normal decay
and the beta-uniform mixture models as FDR threshold functions. Using simulations
and analysis of real data we compare the performance of the Rice-Spiegelhalter approach
with that of competing FDR estimation procedures. If the alternative model is misspec-
ified and an empirical null distribution is employed the accuracy of FDR estimation
degrades substantially. Hence, while being a very elegant formalism, the FDR threshold
approach requires special care in actual application.
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Signal identification for rare and weak features: higher criticism or false
discovery rates?

Klaus and Strimmer [2012]

Signal identification in large-dimensional settings is a challenging problem in biostatis-
tics. Recently, the method of higher criticism (HC) was shown to be an effective means
for determining appropriate decision thresholds. Here, we study HC from a false dis-
covery rate (FDR) perspective. We show that the HC threshold may be viewed as an
approximation to a natural class boundary (CB) in two-class discriminant analysis which
in turn is expressible as FDR threshold. We demonstrate that in a rare-weak setting in
the region of the phase space where signal identification is possible both thresholds are
practicably indistinguishable, and thus HC thresholding is identical to using a simple
local FDR cutoff. The relationship of the HC and CB thresholds and their properties
are investigated both analytically and by simulations, and are further compared by
application to four cancer gene expression data sets.

Effect Size Estimation And Misclassification Rate Based Variable Selection
In Linear Discriminant Analysis

Klaus [2012]

Supervised classifying of biological samples based on genetic information, (e.g. gene
expression profiles) is an important problem in biostatistics. In order to find both ac-
curate and interpretable classification rules variable selection is indispensable. This
article explores how an assessment of the individual importance of variables (effect
size estimation) can be used to perform variable selection. I review recent effect size
estimation approaches in the context of linear discriminant analysis (LDA) and propose
a new conceptually simple effect size estimation method which is at the same time com-
putationally efficient. I then show how to use effect sizes to perform variable selection
based on the misclassification rate which is the data independent expectation of the
prediction error. Simulation studies and real data analyses illustrate that the proposed
effect size estimation and variable selection methods are competitive. Particularly, they
lead to both compact and interpretable feature sets.
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