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THEORY 

6.1. Introduction 

The concept of likelihood deals with situations, which typically arise in natural sciences, where 

given some data D a decision has to be made about an adequate explanation of the data. Thus, a 

specific model and a hypothesis are formulated, where the model as such is generally not in 

question. In the phylogenetic framework one part of the model is that the sequences actually 

evolve according to a tree. The possible hypotheses are the different tree-structures, the branch 

lengths, the parameters of the model of sequence evolution and so on. By assigning values to 

these elements it is possible to compute the probability of the data and to make statements about 

the plausibility of these values. If the hypothesis varies, it will then turn out that some hypotheses 

produce the data with higher probability than others. A standard example is the coin tossing 

instance. After flipping a coin n=100 times, h=21 heads and t=79 tails have been observed. Thus 

D = (21,79) constitutes the data. The model then states that with some probability [ ]1,0∈θ  head 

appears when the coin is flipped. Moreover, it is assumed that the outcome of each experiment is 

independent of the others, that θ  does not change during the experiment, and that the experiment 

has only two outcomes (head or tail). The model is now fully specified. Since both heads and 

tails were obtained, θ must be larger than zero and smaller than 1. Moreover, any probability 



textbook tells that the probability to observe exactly H=h heads in n experiments can be 

calculated according to the binomial distribution as follows: 
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Equation (6.1), the so-called binomial formula, can be read in two ways. First, it is assumed that 

θ  is known then the probability of nh ,,0 Κ=  heads in n tosses can be computed. Second, 

equation (6.1) can be seen as a function of θ , where n and k are given, this defines the so-called 

likelihood function 
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Figure 6.1 displays the likelihood function for the coin example and it can clearly be seen that 

some hypotheses, i.e. choices of θ , generate the observed data with a higher probability than 

others. In particular, equation 6.2 becomes maximal if 100
21=θ . This value can also be computed 

analytically. To ease computation, first compute the logarithm of the likelihood function, which 

leads to sums instead of products 

[ ] ( )θθθ −−++







= 1log)(loglog)(log hnh

h
n

L  (6.3) 

The problem is now to find out the value of θ maximizing the function. From elementary 

calculus it is known that the maximum of a function y=f(x), when it exists, is given by the value 

of x for which the first derivative of the function equals to zero. Differentiation of equation 6.3 

with respect to θ  yields to: 
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Such derivative is equal to zero if n
h=θ , positive for smaller values of θ , and negative for 

larger values, so that [ ])(log θL  attains it maximum when nh=θ̂ . Thus nh=θ̂  is the 

maximum-likelihood estimate (MLE) of the probability of observing a head in a single coin toss. 

In general, when the value of θ  that maximizes equation 6.3 is selected, the observed data are 

produced with the highest likelihood. This is precisely the maximum likelihood principle. One 

should be aware however, that the resulting likelihoods are usually small (for example, it is 

already 0975.0)10021( ≈L ). On the other hand, one can compare the likelihoods of competing 

hypotheses, by computing the odds-ratio. Note that the hypothesis that the coin is a fair 

)21( =θ , leads to a likelihood of 91061.1)2/1( −⋅≈L , thus the MLE of θ is 7106 ⋅ times more 

likely to produce the data! This comparison of odd-ratios leads to a statistical test procedure that 

is discussed in chapter 10. 

In evolution, point mutations are considered chance events just like tossing a coin. Therefore, at 

least in principle, the probability of finding a mutation along one branch in a phylogenetic tree 

can be calculated by using the same maximum likelihood framework discussed in the previous 

section. The main idea behind phylogeny inference with maximum likelihood is to find out the 

tree topology, the branch lengths, and the parameters of the evolutionary model (transition-

transversion ratio, base frequencies, rate variation among-sites, ect., see chapter 4) which 

maximize the probability of observing the sequences at hand. In other words, the likelihood 

function is the conditional probability of the data (sequences) given a hypothesis (a model of 

substitution with a set of parameters θ, and the tree τ, including branch lengths): 

L(τ,θ) = Prob(Dataτ,θ) = Prob(Aligned sequencestree, model of evolution) (6.5) 

The maximum likelihood estimates (MLEs) of τ and θ are those making the likelihood function 

as large as possible: 
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Before proceeding to the next section, some cautionary notes are necessary. First, it is important 

to realize that the likelihood function must not be confused with a probability. It is defined in 

terms of a probability, but this probability is the probability of the observed event and not of the 

unknown parameters. The parameters have no probability because they do not depend on chance. 

Second, the probability of getting the observed data has nothing to do with the probability that 

the underlying model is correct. For example, if the model states that the sequences evolve 

according to a tree, although they have recombined, then the final result will still be some tree 

that gives rise to the maximum likelihood value (see also chapter 14). The probability of the data 

given the MLE of the parameters does not provide any hints that the model assumptions are true. 

One can only compare the maximum likelihood values with other likelihoods for model 

parameters that are elements of the model. If one wants to know if the hypothesis of tree-like 

evolution is reasonable one has to enlarge the type of relationship allowed among sequences; but 

this is not discussed here. 

6.2. The formal framework 

Before entering the general discussion about maximum likelihood tree reconstruction, the 

simplest example, namely reconstructing a maximum likelihood tree for two sequences, will be 

considered. A tree of two taxa has only one branch connecting the two sequences and the whole 

purpose of the exercise is the reconstruction of the branch length that produces the data with 

maximal probability. 

6.2.1. The simple case: maximum likelihood tree for two sequences 

It is assumed that the sequences are evolving according to the Jukes Cantor model (see Chapter 

4). Each position evolves independently of the remaining sites and with the same evolutionary 

rate. The alignment is of length l for the two sequences ( ) ( )( ) )2,1(,,,1 == ilssS iii Κ , where )( jsi  



is the nucleotide, the amino acid or any other letter from a finite alphabet at sequence position j 

in sequence i. The likelihood function is then, according to equation 4.31,  
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where d, the number of substitutions per site, is the parameter of interest and )(tPxy is the 

probability to observe nucleotide y if nucleotide x was originally present. Following equations 

4.12a and 4.12b we obtain 
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To infer d the relevant statistics is the number of identical pairs of nucleotides ( 0l ) and the 

number of different pairs ( 1l ), where lll =+ 10 . Therefore the alignment is summarized as 

),( 10 ll=D and compute the score of equation 6.3 as: 

[ ] [ ] [ ])(~log)(~log)(log 10 dPldPlCdL xyxx ++=  (6.9) 

that is maximized if 
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In practice, the MLE of the number of substitution per site equals the method of moments 

estimate (Equation 4.15a). Therefore the maximum likelihood tree relating the sequences S1 and 

S2 is a straight line of length d with the sequences as endpoints. 

The above example was completely computable, because it is the simplest model of sequence 

evolution and, more importantly, because only two sequences, which can only be related by one 



tree, were considered. The following paragraphs sets up the formal framework to study more 

sequences. 

6.2.2. The complex case. 

When the data set consists of n (n>2) aligned sequences, instead of computing the probability 

P(t) of observing two nucleotides at a given site in two sequences, it is computed the probability 

of finding a certain column, or pattern of nucleotides, in the data set. Let Dj denote the nucleotide 

pattern of site lj ,,1 Κ=  in the alignment (see Figure 6.2.). The unknown probability obviously 

depends on the model of sequence evolution, M, and the tree, T, relating the n sequences together 

with the number of substitutions along each branch of the tree (i.e. the branch lengths). In theory 

one could assign each site its own model of sequence evolution according to the General Time 

Reversible model (Chapter 4) and its own set of branch lengths. Then, however, the goal to 

reconstruct a tree from an alignment gets almost computationally intractable. Therefore, several 

simplifications are needed. First, it is assumed that each site s in the alignment evolves according 

to the same model M, for example, the Tamura Nei (TN) model (Equations 4.32a, b, c), that is γ, 

κ, and π are the same for each site in the alignment. Note that the assumption implies that all sites 

evolve at the same rate µ (Equation 4.24). To overcome such a simplification, the rate at a site is 

modified by a rate specific factor ρj > 0. Thus, the ingredients for the probability of a certain site 

pattern are at hand and  

ljMTD js ,,1],,,,Pr[ Κ=ρ   (6.11) 

specifies the probability to observe pattern Dj. If it is assumed also that each sequence site 

evolves independently, i.e. according to T, M, with a site specific rate ρj, then the probability of 

observing the alignment (data) ( )lDD ,,1 Κ=D equals 
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When the data are fixed, equation 6.12 is again a likelihood function (cf. equations 6.2 and 6.5), 

which allows for the dual way of looking at it (cf. previous section). First, for a fixed choice of T, 

M, and the site rate vector ρ, the probability to observe the alignment D can be computed with 

equation 6.11. Second, for a given alignment D equation 6.12 can be used to find the MLEs. 

In what follows, both issues will be treated separately. However, to make matters easier, its is 

assumed that the site specific rate factor ρj is drawn from a Γ-distribution with expectation 1 and 

variance α1  (Uzzel and Corbin, 1971; Wakely 1993, where α defines the shape of the 

distribution; see also 4.6.1.). 

6.3. Computing the probability of an alignment for a fixed tree. 

In the following the tree T with its branch lengths (number of substitutions), the model of 

sequence evolution M with its parameters (i.e., transition-transversion ratio, stationary base 

composition etc.) and the site specific rate factor ρj =1 for each site j. The goal is to compute the 

probability of observing one of the 4n possible patterns in an alignment of n sequences. To 

illustrate the principle, set n=4 and study the four sequences tree displayed in Figure 6.3. 

Since the model M belongs to the GTR class, i.e. is a time reversible model (see chapter 4), it is 

assumed that evolution started from sequence S0 and then proceeded along the branches of the 

tree T with branch lengths ),,,( 54,321 ddddd . To compute ]1,,,Pr[ MTD j  for a specific site j, 

where ),,( 4,321 ssssD j = are the nucleotides observed, it is necessary to know the ancestral states 

s0 and s5 (see below). Then the conditional probability of the data given the ancestral sates will 

be: 

).()()()()(],|,,,Pr[ 4352150 4535502010
dPdPdPdPdPssMTD ssssssssssj ⋅⋅⋅⋅=1  (6.13) 

The computation follows immediately from the considerations in chapter 4. However, in almost 

any realistic situation the ancestral sequences are not available. Therefore it is necessary to sum 



over all possible combinations of ancestral states of nucleotides. As discussed in chapter 4 

(section 4.4), nucleotide substitution models assume stationarity, i.e the relative frequencies of 

A, C, G, and T (πA, πC, πG, πT) are at equilibrium. Thus, the probability for nucleotide s0 will 

equal its stationary frequency ( )0sπ  from which it follows that 
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Although this equation looks like one needs to compute exponentially many summands, it is 

possible to evaluate the sum very efficiently by evaluating the likelihoods moving from the end-

nodes of the tree to the root (Felsenstein 1981). In each step two nodes from the tree are removed 

and replaced by a single node. This process bears some similarity with the computation of the 

minimal number of substitution on a given tree in the maximum parsimony framework (Fitch 

1971). However, contrary to maximum parsimony the distance (number of substitutions) 

between the two nodes is taken into account. If two sequences share the same nucleotide, then 

under parsimony the most recent common ancestor also carries this nucleotide (see next chapter), 

whereas in the maximum likelihood framework this nucleotide is shared by the ancestor only 

with a certain probability, which gets small as the sequences are only very remotely related. 

6.3.1. Felsenstein´s pruning algorithm 

Equation 6.14 shows how to compute the likelihood of a tree for a given position in a sequence 

alignment. In order to generalize this equation for more then four sequences it is necessary to 

summarize over all possible assignment of nucleotides at the n-2 inner nodes of the tree. 

Unfortunately, this straightforward computation is unfeasible, but one can reduce the amount of 

computation considerably by noticing the following recursive relationship in a tree. Let 

),,( ,321 nj ssssD Κ=  be a pattern at a site j and tree T and a model M are fixed. Nucleotides at 



inner nodes of the tree are abbreviated as .22,,1, −+= nnixi Κ  For an inner node i with offspring 
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where 
21

 and oo dd are the number of substituitions connecting node i and its descendants in the 

tree. Without loss of generality, it is assumed that the node 2n-2 has three offspring o1, o2, and o3, 

respectively. For this node equation 6.15 is modified accordingly. These two equations allow a 

much more efficient computation of the likelihoood for each position of an alignment by 

realizing that 
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Eqation 6.17 can then be used to compute the likelihood of the full alignment with the aid of 

eqauation 6.12. In practice, one avoids the calculation of products, but moves rather to log-

likelihoods. i.e. equation 6.12 turns into 
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6.4. Finding a maximum likelihood tree 

Equations 6.15 – 6.18 show how to compute the likelihood of an alignment, if everything were 

known. In practice, however, the branch lengths of the tree are not known. The computation of 

the branch lengths is done numerically by maximizing equation 6.18, i.e. by finding those branch 

lengths for the tree T maximizing the log-likelihood function. This is accomplished by applying 



Newton´s method or other numerical routines. Such computation is usually very time consuming 

and sometimes the result depends on the numerical method. Nevertheless maximizing the 

likelihood for a single tree is not the major challenge in phylogenetic reconstruction. The 

daunting task is actually to find the tree among all possible tree structures that maximizes the 

global likelihood. Unfortunately, for any method that has an explicit optimality criterion (e.g., 

maximum parsimony, distance methods, and maximum likelihood) no algorithms are known 

that guarantee the localization of the best tree(s) in the huge space of all possible tree topologies. 

The naive approach to simply compute the maximum likelihood value for each tree topology is 

prohibited by the huge number of tree structure even for moderately sized data sets, which can be 

computed for n sequences according to 
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When computing the maximum-likelihood tree one has to compute for each tree the model 

parameters and the branch lengths and then to pick the tree that yields the highest likelihood. 

Testing all possible trees is impossible, due to the large number of tree topologies and it is also 

not computational feasible to estimate the model parameters for each tree. Thus, various 

heuristics are used to suggest reasonable trees. Among them are stepwise addition (for example 

used in Felsenstein's PHYLIP package (Felsenstein, 1993), star decomposition, also the basis of 

neighbor joining (Saitou and Nei 1987), the MOLPHY package (Adachi and Hasegawa, 1996) or 

of PAML (Yang, 1997). These methods will be discussed in the next chapter, since they are all 

implemented in the PAUP* program and they can be used as well when looking for trees with 

maximum parsimony (Swofford et al., 1995). What follows will focus on the description of 

another heuristic to find a plausible candidate as the maximum likelihood tree: the quartet 

puzzling method implemented in the TREE-PUZZLE program (Strimmer and von Haeseler, 

1996a). 



6.4.1 The quartet puzzling algorithm 

Given a set of n aligned nucleotide (or amino acid) sequences, it is called a quartet any 

randomly chosen group of four of them. The quartet puzzling algorithm analyzes all the 

possible (or a randomly chosen sample) of quartets in a data set, taking advantage of the 

fact that for a quartet just three unrooted tree topologies are possible. In essence the 

algorithm is a three-step procedure. The first step, the so-called maximum-likelihood step, 

computes for each of the 
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 possible quartets the maximum likelihood values 

),,(),,,(),,,( 332211 ρρρ MTLLMTLLMTLL ≡≡≡  for the three possible four-sequence trees 

T1, T2, T3 assuming a user defined model M of sequence evolution. The resulting list of 
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likelihoods is then used in the quartet-puzzle step to compute an intermediate trees by 

inserting sequences sequentially in an already reconstructed subtree. Figure 6.4 illustrates the 

insertion procedure, where a tree with sequences A, B, C, and D is already reconstructed and 

sequence E is inserted according to the four sequence trees that contain sequence E and three 

sequences from the partial tree. Eventually, sequence E is inserted at the branch with minimal 

penalty. Figure 6.5. shows the all intermediate trees for a small example of five sequences. This 

step is repeated at least a thousand times for various input orders of sequences to avoid 

reconstruction artifacts due to the ordering of the sequences and to get a representative collection 

of trees. Finally, in step three, the majority-rule consensus (Margush 1981) is computed from the 

resulting intermediate trees (see also chapter 5). The resulting tree is called the quartet-puzzling 

tree. Table 6.1 shows the percentage of clusters found in the five sequence example. 

The consensus step provides information about the number of times a particular grouping 

occurred in the intermediate trees. This so-called reliability-value or support-value, measures (in 

%) how frequently a group of sequences occurs among all intermediate trees. All groups that 



occur in more than 50% of the collection of intermediate trees are represented in the majority rule 

consensus tree. One should be aware that this consensus tree is not necessarily the maximum 

likelihood tree. In the toy example in Table 6.1, the TREE-PUZZLE program would output the 

tree grouping sequences A and E (support value 72%) and C and D (support value 52%). In this 

case the tree is fully resolved. If the data do not provide a good resolution of phylogenetic 

relationships for a subgroup of sequences, the consensus tree will display a small reliability 

value for the corresponding internal branch of the tree. Note that the reliability value should not 

be confused with the usual bootstrap values. Whereas reliability values are an intrinsic result of 

the quartet-puzzling algorithm, bootstrapping is an external procedure that can be applied to any 

tree building method (cf. chapter 5). 

6.5. Estimating the model parameters with maximum likelihood 

When inferring parameters of a model that allows for substitution rate heterogeneity across sites 

(cf. section 4.10.1) it is necessary to consider an overall tree because the relation of the sequences 

is important for the estimation (SULLIVAN et al. 1996). In theory it is possible to optimize both 

the parameters of the model and the tree topology with maximum likelihood by simultaneously 

finding the phylogenetic tree and the set of parameters maximizing the likelihood function. 

However, for large data sets (more than 10-15 sequences) such approach becomes 

computationally unfeasible. Therefore, the accepted strategy is to infer a “reasonable” tree 

topology with faster though less reliable reconstruction methods and use that tree to estimate the 

parameters. Eventually a maximum likelihood tree can be re-estimated with the new set of 

parameters. This approach assumes that parameters estimates are not heavily disturbed when 

using a slightly incorrect topology. Among the fast distance based tree reconstruction methods 

neighbor-joining (Saitou and Nei 1987) exhibits the best performance in terms of accuracy and 

speed. Though its probability to find the true underlying tree decreases rather quickly with the 



number of taxa it has been shown that the neighbor-joining tree is always very similar to the true 

tree even for a large number of sequences (Strimmer and von Haeseler 1996b). 

The following iterative procedure is implemented the in TREE-PUZZLE program: 

i. Based on reasonable pair-wise genetic distance estimates a neighbor-joining tree is 

computed. 

ii. Then maximum likelihood branch lengths are computed for this tree topology and 

parameters of sequence evolution are estimated. 

ii. Based on these estimates a new neighbor-joining tree is computed and procedure (2) is 

repeated. 

Steps (i) and (ii) are performed until the estimate of the model parameters are stable. Eventually, 

given the unrooted tree topology and a set of optimized parameters, maximum likelihood branch 

lengths can be computed using the likelihood function (equation 6.12), which involves 

simultaneous optimization of 2n-3 branch lengths for a tree with n sequences. The computing 

time can be accelerated by estimating an approximate likelihood. Adachi and Hasegawa (1996) 

have applied a least-squares fit of pair-wise maximum likelihood distances to a given tree 

topology and have shown that the resulting sub-optimal set of branch length estimates is close to 

the maximum likelihood. TREE-PUZZLE employs this idea to obtain approximate estimates of 

model parameters, saving computation time and still serving as an efficient tool to estimate 

model parameters. 

PRACTICE 

6.6. Software packages 

A large number of software packages to compute maximum likelihood trees from DNA or amino 

acid sequences exist. A detailed list can be found at Joe Felsenstein’s web page 



http://evolution.genetics.washington.edu/phylip/software.html. Since program packages are 

emerging at a rapid pace the reader is adviced to look up this web page in regular intervals to be 

up to date. The reader would also like to point to the software packages mentioned in chapter 4 

and their description given. 

6.7. An illustrative example 

In what follows hivALN.phy file will be analyzed with the latest version of TREE-PUZZLE 

(5.0). Place the hivALN.phy file in the TREE-PUZZLE folder and run the executable, the 

following text appears: 

WELCOME TO TREE-PUZZLE 5.0.pl6! 

 

Please enter a file name for the sequence data: 

enter the filename: hivALN.phy and press return: 

Input data set contains 14 sequences of length 2781 

(consists very likely of nucleotides) 

 

GENERAL OPTIONS 

 b                     Type of analysis?  Tree reconstruction 

 k                Tree search procedure?  User defined trees 

 z     Compute clocklike branch lengths?  No 

 e                  Parameter estimates?  Approximate (faster) 

 x            Parameter estimation uses?  1st input tree 

SUBSTITUTION PROCESS 

 d          Type of sequence input data?  Auto: Nucleotides 

 h             Codon positions selected?  Use all positions 



 m                Model of substitution?  HKY (Hasegawa et al. 1985) 

 t    Transition/transversion parameter?  Estimate from data set 

 f               Nucleotide frequencies?  Estimate from data set 

RATE HETEROGENEITY 

 w          Model of rate heterogeneity?  Uniform rate 

  

Quit [q], confirm [y], or change [menu] settings:      

Each option can be selected and/or edited by typing the corresponding letter. For example the 

user types b repeatedly, the options will change from tree reconstruction to 

Likelihood mapping to tree reconstruction again. The letter k cycles from 

quartet puzzling to user defined trees to pair-wise distances only 

(no tree). For example, a typical run to infer a tree based on DNA sequences would start 

with the following setting: 

b                     Type of analysis?  Tree reconstruction 

 k                Tree search procedure?  Quartet puzzling 

 v       Approximate quartet likelihood?  Yes 

 u             List unresolved quartets?  No 

 n             Number of puzzling steps?  10000 

 j             List puzzling step trees?  No 

 o                  Display as outgroup?  L20571 

 z     Compute clocklike branch lengths?  No 

 e                  Parameter estimates?  Approximate (faster) 

 x            Parameter estimation uses?  Neighbor-joining tree 

SUBSTITUTION PROCESS 



 d          Type of sequence input data?  Auto: Nucleotides 

 h             Codon positions selected?  Use all positions 

 m                Model of substitution?  HKY (Hasegawa et al. 1985) 

 t    Transition/transversion parameter?  Estimate from data set 

 f               Nucleotide frequencies?  Estimate from data set 

RATE HETEROGENEITY 

 w          Model of rate heterogeneity?  Gamma distributed rates 

 a   Gamma distribution parameter alpha?  Estimate from data set 

 c      Number of Gamma rate categories?  8 

 

Quit [q], confirm [y], or change [menu] settings: 

By entering y the program computes a quartet puzzling tree based on 10000 intermediate trees, 

where the likelihoods for the quartets are only approximate likelihoods. The parameter estimates 

are also approximate estimates and are based on a neighbor-joining tree that TREE-PUZZLE 

computes automatically at the beginning of the optimization routine. The model of sequence 

evolution assumed is HKY (cf. section 4.6 and 4.9) and it is possible to estimate distances with 

Γ-distributed rate heterogeneity over sites, where the parameter is estimated with the aid of 8 

discrete categories (cf. also section 4.6.1). If the settings above are confirmed, then the following 

output will appear on the screen: 

Optimizing missing substitution process parameters 

Optimizing missing rate heterogeneity parameters 

Optimizing missing substitution process parameters 

Optimizing missing rate heterogeneity parameters 

Optimizing missing substitution process parameters 



Optimizing missing rate heterogeneity parameters 

Optimizing missing substitution process parameters 

Optimizing missing rate heterogeneity parameters 

Writing parameters to file outfile 

Writing pairwise distances to file outdist 

Computing quartet maximum likelihood trees 

Computing quartet puzzling tree 

Computing maximum likelihood branch lengths (without clock)  

  

All results written to disk: 

       Puzzle report file:         outfile 

       Likelihood distances:       outdist 

       Phylip tree file:           outtree 

  

The computation took 299 seconds (= 5.0 minutes = 0.1 hours) 

     including input 1003 seconds (= 16.7 minutes = 0.3 hours)     

The outfile summarizes the complete phylogenetic analyses and is very likely the most 

important file; in outdist is the matrix of pair-wise distances inferred from the model 

parameters; outtree describes the resulting consensus tree in the newick notation (see chapter 

5 and figure 5.4). The content of the outfile is self-explanatory and it is not explained here 

(just give a look and see for yourself!). 

A new feature recently implemented in TREE-PUZZLE version 5.0 allows to output all different 

tree topologies that have been found during puzzling steps. In the HIV example, 685 different 

intermediate trees have been found, where the most frequent tree occurred about 6.6%. 



Therefore, the quartet puzzling algorithm can be used as a tool to generate a collection of 

plausible candidate trees, and this collection can subsequently be employed to search for the most 

likely tree among them. Note that the consensus tree does not necessarily coincides with the 

maximum likelihood tree and this is especially the case when the consensus is not fully 

resolved. If one is really interested in the maximum likelihood tree one should change option j 

to unique topologies, which will then be output in the file outptorder. A typical line 

of this file looks like 

[ 1. 657 6.57 14 68510000](L20571,((AF10138,X52154),(U09127,(((U27426,U27445),(U067158,U09126)), 

                          ((U27399,U43386),(((L02317,AF042106),AF025763),U08443)))))); 

The first column is a simple numbering scheme, where each tree is numbered according to its 

frequency (second column, and third column). The column four gives the first time among 10000 

(column 6) puzzling steps, when the tree was found. Column five shows how many different 

trees were found. To compute the maximum likelihood tree among all intermediate trees, rename 

outptorder into intree and run TREE-PUZZLE again with the following setting: 

GENERAL OPTIONS 

 b                     Type of analysis?  Tree reconstruction 

 k                Tree search procedure?  User defined trees 

 z     Compute clocklike branch lengths?  No 

 e                  Parameter estimates?  Approximate (faster) 

 x            Parameter estimation uses?  Neighbor-joining tree 

SUBSTITUTION PROCESS 

 d          Type of sequence input data?  Auto: Nucleotides 

 h             Codon positions selected?  Use all positions 

 m                Model of substitution?  HKY (Hasegawa et al. 1985) 



 t    Transition/transversion parameter?  Estimate from data set 

 f               Nucleotide frequencies?  Estimate from data set 

RATE HETEROGENEITY 

 w          Model of rate heterogeneity?  Gamma distributed rates 

 a   Gamma distribution parameter alpha?  Estimate from data set 

 c      Number of Gamma rate categories?  8 

  

Quit [q], confirm [y], or change [menu] settings: y 

Now the program will compute the maximum likelihood values for all intermediate trees using 

the parameter estimates of the model of sequence evolution from the iterative procedure based on 

the neighbor joining tree. The computation will take some time, but it can provide more insights 

in the data and the reliability of the tree. The resulting outfile shows the likelihood 

computation for each tree topology and summarizes the results at the end of the file. 
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