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4.1. Introduction

One of  the first  steps  in  the analysis  of  aligned nucleotide  or  amino acid  sequences 

typically  is  the  computation  of  the  matrix  of  genetic  distances (or  evolutionary 

distances) between all pairs of DNA sequences. In the present chapter we discuss two 

questions that arise in this context. First, what is a reasonable definition of a  genetic 

distance,  and  second,  how to  estimate  it  using  statistical  models  of  the  substitution 

process.

It is well-known that a variety of evolutionary forces act on DNA sequences (see Chapter 

1). As a result, sequences change in the course of time. Therefore, any two sequences 

derived  from a  common ancestor  that  evolve  independently  of  each other  eventually 

diverge (see Figure 4.1). A measure of this divergence is called a genetic distance. Not 

surprisingly, this quantity plays an important role in many aspects of sequence analysis. 

First, by definition it provides a measure of the similarity between sequences. Second, if 

a  molecular clock is assumed, then the  genetic distance is linearly proportional to the 

time elapsed.  Third,  for sequences related by an evolutionary tree the branch lengths 

represent the distance between the nodes (sequences) in the tree. Therefore, if the exact 

amount of sequence divergence between all pairs of sequences from a set of n sequences 

is known, the genetic distance provide a basis to infer the evolutionary tree relating the 

sequences.  In  particular,  if  sequences actually  evolved according to  a  tree and if  the 

correct  genetic  distances between  all  pairs  of  sequences  are  available,  then  it  is 

computationally simple to reconstruct this tree (see next Chapter).

The substitution of nucleotides or amino acids in a sequence is usually modeled as a 

random event. Consequently, an important prerequisite for computing genetic distances 



is  the  prior  specification  of  a  model  of  substitution which  provides  a  statistical 

description  of  this  stochastic  process.  Once  a  mathematical  model  of  substitution is 

assumed, then straightforward procedures exist to infer genetic distances from the data.

In  this  chapter  we  describe  the  mathematical  framework  to  model  the  process  of 

nucleotide substitution. We discuss the most widely used classes of models, and provide 

an  overview  of  how  genetic  distances are  estimated  using  these  models,  focusing 

especially on those designed for the analysis of nucleotide sequences.

4.2. Observed and expected distances

The simplest approach to measure the divergence between two strands of aligned DNA 

sequences is to count the number of sites where they differ. The proportion of different 

homologous sites is called observed distance, sometimes also called p-distance, and it is 

expressed as the number of nucleotide difference per site.

The  p-distance is  a  very  intuitive  measure.  Unfortunately,  it  suffers  from  a  severe 

shortcoming: if the rate of substitution is high it is generally not very informative with 

regard to the number of substitutions that actually occurred. This is due to the following 

effect. Assume that two or more mutations take place consecutively at the same site in the 

sequence, e.g. suppose an A is being replaced by a C, and then by a G. As result, even 

though  two  replacements  have  occurred  only  one  difference  is  observed  (A to  G). 

Moreover, in case of a back-mutation (A to C to A) we would not even detect a single 

replacement. As a consequence, the observed distance p underestimates the true genetic 

distance d,  i.e.  the  actual  number  of  substitutions  per  site  that  occurred.  Figure  4.2 

illustrates  the general  relationship  between  d and  p.  The  precise  shape  of  this  curve 



depends on the details of the  substitution model  used. We will calculate this function 

later.

Since  the  genetic  distance can  not  directly  be  observed,  statistical  techniques  are 

necessary  to  infer  this  quantity  from  the  data.  For  example,  using  the  relationship 

between d and p given in Figure 4.2 it is possible to map an observed distance p to the 

corresponding  genetic distance d.  This transformation is  generally non-linear.  On the 

other hand, d can also be inferred directly from the sequences using maximum likelihood 

methods.

In the next sections we will give an intuitive description of the substitution process as a 

stochastic process. Later we will emphasise the “mathematical” mechanics of nucleotide 

substitution and also outline how maximum likelihood estimators (MLEs) are derived.

4.3. Number of mutations in a given time interval *(optional)

To count the number of mutations X(t) that occurred during the time t we introduce the 

so-called Poisson process which is well suited to model processes like radioactive decay, 

phone calls, spread of epidemics, population growth and so on. The structure of all these 

phenomena is as follows: at any point in time an event, i.e. a mutation, can take place. 

That is to say, per unit of time a mutation occurs with intensity or rate µ. The number of 

events that can take place is an integer number.

Let Pn(t) denote the probability that exactly n mutations occurred during the time t:

Pn(t) = P(X(t) = n)                     (4.1)

If t is changed, this probability will change.



Let us consider a time interval δt. It is reasonable to assume that the occurrence of a new 

mutation in this interval is independent of the number of mutations that happened so far. 

When  δt is small  compared to the rate  µ,  µδt equals the probability that exactly one 

mutation happens during δt. The probability of no mutation during δt is obviously 1-µδt. 

In other words, we are assuming that at the time  t+δt the number of mutations either 

remains unchanged or increases by one. More formally

P0(t+δt) = P0(t)·(1-µδt), (4.2)

That is the probability of no mutation up to time t+δt, is equal to the probability of no 

mutation up to time t multiplied by the probability that no mutation took place during the 

interval  (t,  t+δt).  If  we observe  exactly  n mutations  during this  period,  two possible 

scenarios have to be considered. In the first scenario, n-1 mutations occurred up to time t 

and  exactly  one  mutation  occurred  during  δt,  with  the  probability  of  observing  n 

mutations given by  Pn-1(t)·µδt. In the second scenario,  n mutations already occurred at 

time t and no further mutation takes place during δt, with the probability of observing n 

mutations given by Pn(t)·(1-µδt). Thus, the total probability of observing n mutations at 

time t+δt is given by the sum of the probabilities of the two possible scenarios:

Pn(t+δt) = Pn-1(t)·µδt + Pn(t)·(1-µδt) (4.3)



Equations 4.2 and 4.3 can be rewritten as:

[P0(t+δt) - P0(t)]/δt= -µP0(t) (4.4a)

[Pn(t+δt) – Pn(t)]/δt= µ[Pn-1(t)-Pn(t)] (4.4b)

When δt tends to zero the left part of equations 4a,b can be rewritten (ignoring certain 

regularity conditions) as the first derivative of P(t) with respect to t

P’0(t) = -µ·P0(t) (4.5a)

P’n(t) = µ·[Pn-1(t) – Pn(t)] (4.5b)

These are typical differential equations which can be solved to compute the probability 

P0(t) that no mutation has occurred at time t. In fact, we are looking for a function P0(t) 

such that its derivative equals P0(t) itself multiplied by the rate µ. An obvious solution is 

the exponential function:

P0(t) = exp(-µt) (4.6)

That  is,  with  probability  exp(-µt)  no  mutation  occurred  in  the  time  interval  (0,  t). 

Alternatively, we could say that probability that the first mutation occurred at time x≥t is 

given by:

F(x) = 1 – exp(-µt) (4.7)

This is exactly the density function of the exponential distribution with parameter µ. In 

other words, the time to the first mutation is exponentially distributed: the longer the 



time, the higher the probability that a mutation occurs. Incidentally, the times between 

any two mutations are also exponentially distributed with parameter µ. This is the result 

of  our  underlying  assumption that  the  mutation process  “does  not  know” how many 

mutations already occurred.

Let  us  now compute  the  probability  that  a  single  mutation  occurred at  time  t:  P1(t). 

Recalling equation 4.5b, we have that:

P’1(t) = µ·[P0(t) – P1(t)] (4.8)

From elementary calculus, we remember the well-known rule of products to compute the 

derivative of a function f(t), when f(t) is of the from f(t)=h(t)g(t):

f'’(t)=g'(t)h(t)+g(t)h'(t) (4.9)

Comparing equation 4.9 with 4.8, we get the idea that P1(t)  can be written as the product 

of two functions, i.e. P1(t)=h(t) g(t) where h(t)=P0(t)=exp(-µt) and g(t)=µt. Thus P1(t)=(µ

t) exp(-µt). If we compute the derivative, we reproduce equation (4.8). Induction leads to 

equation

Pn(t)= [(µt)n exp(-µt)]/n!                                         (4.10)

The formula above describes the Poisson distribution, that is the number of mutations up 

to time  t is  Poisson distributed with parameter  µt. On average we expect  µt mutations 

with variance  µt. It is important to note that the parameters  µ, nucleotide substitutions 

per site per unit time, and t, the time, are confounded, meaning that we cannot estimate 

them separately but only through their product  µt (number of mutations per site up to 



time t). We will show in the practical part of the chapter an example from literature on 

how to use equation 4.10.

4.4. Nucleotide substitutions as a homogeneous Markov process

The nucleotide substitution process of DNA sequences outlined in the previous section 

(i.e. the Poisson process) can be generalized to a so-called Markov process which uses a 

Q matrix that specifies the relative rates of change of each nucleotide along the sequence 

(see next section for the mathematical details). The most general form of the Q matrix is 

shown in figure 4.3. Rows follow the order A, C, G, and T, so that, for example, the 

second term of the first row is the instantaneous rate of change from base A to base C. 

This rate is given by the product of µ, the mean instantaneous substitution rate, times the 

frequency of base A, times a, a relative rate parameters describing, in this case, how often 

the  substitution  A to  C  occurs  during  evolution  with  respect  to  the  other  possible 

substitutions. In other words, each non-diagonal entry in the matrix represents  the flow 

from nucleotide i to j, while the diagonal elements are chosen in order to make the sum of 

each row equal to zero since they represent the total flow that leaves nucleotide i.

Nucleotide substitution models like the ones summarised by the  Q matrix in figure 4.3 

belong  to  a  general  class  of  models  known  as  time-homogeneous  time-continuous 

stationary Markov models. When applied to modelling nucleotide substitutions, they all 

share the following set of underlying assumptions:

1. At any given site in a sequence the rate of change from base  i to base  j is 

independent from the base that occupied that site prior i (Markov property).

2. Substitution rates do not change over time  (homogeneity).



3. The relative frequencies of A, C, G, and T (πA, πC, πG, πT) are at equilibrium 

(stationarity).

These assumptions are not necessarily biologically plausible. They are the consequence 

of modelling substitutions as a stochastic process. Within this general framework, we can 

still  develop several sub-models. In this book however, we will examine only the so-

called time-reversible models, i.e. those ones assuming for any two nucleotides that the 

rate of change from i to j is always the same than from j to i (a=g, b=h, c=i, d=j, e=k, 

f=g in  the  Q matrix).  As soon as the  Q matrix,  and thus  the evolutionary model,  is 

specified, it is possible to calculate the probabilities of change from any base to any other 

during the evolutionary time t, P(t), by computing the matrix exponential

P(t)=exp(Qt) (4.11)

(for an intuitive explanation of why, consider in analogy the result that led us to equation 

4.6).  When the probabilities  P(t) are known this equation can also be used to compute 

the  expected  genetic  distance between  two  sequences  according  to  the  evolutionary 

models specified by the Q matrix. In the next section we will show how to calculate P(t) 

and the  expected  genetic  distance in  case  of  the  simple  Jukes  and Cantor  model  of 

evolution (Jukes and Cantor, 1969), whereas for more complex models only the main 

results will be discussed.

4.4.1 The Jukes and Cantor (JC69) model

The simplest possible nucleotide substitution model, introduced by Jukes and Cantor in 

1969 (JC69),  implies that the equilibrium frequencies of the four nucleotide are 25% 

each, and that during evolution any nucleotide has the same probability to be replaced by 



any other.  These  assumptions  correspond to  a  Q matrix  with  πA=πC=πG=πT=1/4,  and 

a=b=c=g=e=f=1 (see Figure 4.4). The matrix fully specifies the rates of change between 

pairs of nucleotides in the JC69 model. In order to obtain an analytical expression for p 

we need to know how to compute  Pii(t), the probability of a nucleotide to remain the 

same during the evolutionary time t, and Pij(t), the probability of replacement. This can be 

done  by  solving  the  exponential  P(t)=exp(Qt)  (equation  4.11),  with  Q as  the 

instantaneous rate matrix for the JC69 model. The detailed solution requires the use of 

matrix algebra (see next section for the relevant mathematics),  but the result  is  quite 

straightforward:

Pii(t) = 1/4 + 3/4 exp(-µt) (4.12a)

Pij(t) = 1/4 - 1/4 exp(-µt) (4.12b)

From these equations, we obtain for two sequences that split t time units ago

p = 3/4 [1- exp(-2µt)], (4.13)

and solving for µt we get

µt = - 1/2 log (1- 4/3 p). (4.14)

Thus the right hand side gives the number of substitutions occuring in both of the lines 

leading to the shared ancestral sequence.  The interpretation of the above formula is very 

simple. Under the JC69 model 3/4µt is the number of substitutions that actually occurred 

per site (see  Q matrix in Figure 4.4). Therefore,  d = 2 (3/4  µt) is the  genetic distance 

between two sequences sharing a common ancestor. On the other hand, p is interpreted as 



the observed distance or p-distance, i.e. the observed proportion of different nucleotides 

between the two sequences (see section 4.4). Substituting µt with 2/3d in equation 4.14 

and re-arranging a bit, we finally obtain the Jukes and Cantor correction formula for the 

genetic distance d between two sequences:

d = - 3/4 ln (1- 4/3 p) (4.15a)

It can also be demonstrated that the variance V(d) will be given by 

V(d) = 9p(1-p)/(3-4p)2n (4.15b)

(Kimura  and  Ohta,  1972).  More  complex  nucleotide  substitution  models can  be 

implemented depending on which parameters of the Q matrix we decide to estimate (see 

section 4.6 below).  In the practical  part  of this  chapter we will  see how to calculate 

pairwise  genetic  distances for  the  example  data  sets  according  to  different  models. 

Chapter 12 will discuss a statistical test that can help selecting the best-fitting nucleotide 

substitution model for a given data set.

4.5. Derivation of Markov Process *(optional)

In this section we show how the stochastic process for nucleotide substitution can be 

derived from first  principles such as detailed balance and the Chapman-Kolmogorov-

equations. To model the substitution process on the DNA level it is commonly assumed 

that a replacement of one nucleotide by another occurs randomly and independently, and 

that nucleotide frequencies πi in the data do not change over time and from sequence to 

sequence in an alignment. Under these assumptions the mutation process can be modelled 

by a time-homogeneous stationary Markov process. 



In this model, essentially each site in the DNA sequence is treated as a random variable 

with a discrete number  n of possible states. For nucleotides there are four states (n=4) 

which correspond to the four nucleotide bases A, C, G, T. The Markov process specifies 

the transition probabilities from one state to the other, i.e. it gives the probability of the 

replacement  of  nucleotide  i  by  nucleotide  j after  a  certain  period  of  time  t.  These 

probabilities are collected in the transition probability matrix  P(t). Its components  Pij(t) 

satisfy the conditions

∑
j=1

n

P ij t =1 (4.16)

and

Pij(t)>0 for t>0. (4.17)

Moreover, it also fulfills the requirement that

P(t+s) = P(t) +P(s) (4.18)

known as Chapman-Kolmogorov equation, and the initial condition

Pij(0)=1,  for i=j (4.19a)

Pij(0)=0,  for i≠j (4.19b)

For simplicity it is also often assumed that the the substitution process is reversible, i.e. 

that

πi Pij(t) = πj Pji(t) (4.20)



holds. This additional condition on the substitution process, known as detailed balance, 

implies that the substitution process has no preferred direction. For small t  the transition 

probability matrix P(t) can be linearly approximated (Taylor expansion) by

P(t) ≈ P(0) + tQ (4.21)

where Q is called rate matrix. It provides an infinitesimal description of the substitution 

process. In order not to violate equation 4.16 the rate matrix Q satisfies

∑
i=1

n

Qij=0 (4.22)

which can be achieved by  defining

Qii=−∑
i≠ j

n

Qij
(4.23)

Note that Qij>0, since we can interpret them as the flow from nucleotide i to j,  Qii<0 is 

then the total flow that leaves nucleotide i, hence it is less than zero. In contrast to P the 

rate matrix Q does not comprise probabilities. Rather, it describes the amount of change 

of the substitution probabilities per unit time. As can be seen from equation 4.20 the rate 

matrix is the first derivative of  P(t) which is constant  for all  t  in a time-homogenous 

Markov process. The total number of substitutions per unit time, i.e. the total rate µ, is

=−∑
i=1

n

i Qii
(4.24)

so that the number of substitutions during time t equals d = µt. Note that in this equation 

µ and t are confounded. As a result the rate matrix can be arbitrarily scaled, i.e. all entries 



can be multiplied with the same factor without changing the overall substitution pattern, 

only the unit in which time t is measured will be affected. For a reversible process P the 

rate matrix Q can be decomposed into rate parameters Rij and nucleotide frequencies πi .

Qij = Rij πj,  for i≠j (4.25)

The matrix R = Rij is symmetric, Rij = Rji, and has vanishing diagonal entries, Rii = 0.

From  the  Chapman-Kolmogorov  equation  4.18  we  get  the  forward  and  backward 

differential equations

d
dt

P(t) = P(t) Q = Q P(t) (4.26)

which can be solved under the initial condition (equations 4.19a,b) to give 

P(t) = exp(tQ). (4.27)

For  a  reversible  rate  matrix  Q (see equation 4.20)  this  quantity can be computed by 

spectral decomposition (Bailey, 1964)

Pij(t) = 
∑
m=1

n
exp(λmt)UmiUjm

-1 (4.28)

where the  λi are  the eigenvalues of  Q,  U=(Uij)  is  the matrix  with the  corresponding 

eigenvectors, and U-1 is the inverse of U.

Choosing a model of nucleotide substitution in the framework of a reversible rate matrix 

amounts  to  specifying  explicit  values  for  the  matrix  R and  for  the  frequencies  πi. 

Assuming n different states the model has n-1 independent frequency parameters πi (as Σ



πi=1) and [n(n-1)/2]-1 independent rate parameters (as the scaling of the rate matrix is 

irrelevant, and Rij = Rji and Rii = 0). Thus, in the case of nucleotides (n=4) the substitution 

process is governed by 3 independent frequency parameters  πi and 5 independent rate 

parameters Rij.

4.5.1. Inferring the expected distances

Once  the  rate  matrix  Q or,  equivalently,  the  parameters  πι and  Rij are  fixed,  the 

substitution model provides the basis to statistically infer the genetic distance d between 

two DNA sequences. Two different techniques exist, both of which are widely used. The 

first approach relies on computing the exact relationship between d and p for the given 

model (see figure 4.2). The probability that a substitution is observed after time t is

p=1−∑
i=1

n

π i P ii t  (4.29)

With the definition of  (equation 4.24) and t = d/ we obtain 

p=1−∑
i=1

n

π i P ii−
d

∑i=1

n
π i Q ii  (4.30)

This  equation  can  then  be  used  to  construct  a  method of  moments  estimator  of  the 

expected distance by solving for  d and estimating  p (observed proportion of different 

sites) from the data. This formula is a generalisation of equation 4.13.

Another way to infer the expected distance between two sequences is to use a maximum-

likelihood approach. This requires the introduction of a  likelihood function L(d)  (see 



Chapter 6 and 7 for more details). The likelihood is the probability to observe the two 

sequences given the distance d. It is defined as

L d =∏
s=1

l

π x A s 
P xA  s  xB  s 

d
  (4.31)

where xA(s) is the state at site s=1, ..., l in sequence A and P xA s  xB s 
d
   is the transition 

probability. A value for d that maximises L(d) is called a maximum-likelihood estimate 

(MLE) of the genetic distance. To find this estimate numerical optimisation routines are 

employed  as  analytical  results  are  generally  not  available.  Estimates  of  error  of  the 

inferred genetic distance can be computed for both the methods of moments estimator 

(equation 4.30)  and the likelihood estimator  (equation 4.31)  using standard statistical 

techniques. The so-called delta method can be employed to compute the variance of an 

estimate  obtained  from  equation  4.30,  and  Fisher  information  criterion  is  helpful  to 

estimate the asymptotic variance of  maximum-likelihood estimates. For details we refer 

to standard statistics textbooks.

4.6. Nucleotide substitution models

If all of the 8 free parameters of a reversible nucleotide rate matrix Q are specified the 

general  time reversible model (GTR) is derived (see figure 4.5).  However,  it  is often 

desirable to reduce the number of free parameters,  in particular when parameters are 

unknown (and  hence  need  to  be  estimated  from the  data).  This  can  be  achieved by 

introducing  constraints  reflecting  some  (approximate)  symmetries  of  the  underlying 

substitution process. For example, nucleotide exchanges all fall into two major groups 

(see Figure 4.6). Substitutions where a purine is exchanged by a pyrimidine or vice versa 



(A↔C, A↔T, C↔G, G↔T) are  called transversions  (Tv),  all  other  substitutions  are 

transitions (Ts). Additionally, one may wish to distinguish between substitutions among 

purine and pyrimidines, i.e. purine transitions (A↔G) TsR , and pyrimidine transitions (C

↔T) TsY. When these constraints are imposed only two independent rate parameters (out 

of  5)  remain,  the ratio κ of  the Ts and Tv rates  and the ratio  γ of  the two types of 

transition rates.  This  defines  the  Tamura-Nei  (TN93) model  (Tamura  and Nei,  1993) 

which can be written as

Rij
TN = 

2
1

  for TsY (4.32a)

Rij
TN = 

2
1

 for TsR (4.32b)

Rij
TN = 1      for Tv (4.32c)

If γ=1 and therefore the purine and pyrimidine transitions have the same rate this model 

reduces to the HKY85 model (Hasegawa, Kishino, and Yano, 1985)

Rij
HKY = κ   for Ts (4.33a)

Rij
HKY = 1    for Tv (4.33b)

If the base frequencies are uniform (πi=1/4) the HKY85 model further reduces to the 

Kimura 2-parameters (K80) model (Kimura, 1980). For κ = 1 the HKY85 model is called 

F81 model (Felsenstein, 1981) and the K80 model degenerates to the Jukes and Cantor 

(JC69) model. The F84 model (Thorne et al., 1992; Felsenstein, 1993) is also a special 



case of the TN93 model. It is similar to the HKY85 model but uses a slightly different 

parameterisation. A single parameter  τ  generates the  κ and  γ parameters of the TN93 

model (see equations 4.32a,b,c) in the following fashion. First the quantity 

ρ=
π R πY [ π R πY τ−π Aπ GπC π T ]

π A πG πYπ C πT π R 
(4.34)

is computed which then determines both

κ=1
1
2

ρ
1

π R


1

π Y
 (4.35)

and

γ=
πY ρ

π Y

π R

π Rρ
(4.36)

of  the  TN93  model,  where  πA,  πC,  etc.  are  the  base  frequencies,  πR and  πY are  the 

frequency of purines and pyrimidines.

The hierarchy of the substitution models discussed above is shown in figure 4.7.

4.6.1 Rate heterogeneity over sites

It  is  a  well-known  phenomenon  that  the  rate  of  nucleotide  substitution  can  vary 

substantially for different positions in a sequence. For example, in protein coding genes 

3rd codon positions mutate usually faster than 1st positions which, in turn, mutate faster 

than 2nd positions. Such a pattern of evolution is commonly explained by the presence of 

different evolutionary forces for the sites in question. In the previous sections we have 

ignored  this  problem  and  silently  assumed  rate  homogeneity  over  sites,  but  rate 



heterogeneity can play a crucial part in the inference of genetic distances. To account for 

the site-dependent rate variation first a plausible model for distribution of rates over sites 

is required. The common approach is to use a  Γ-distribution with expectation 1.0 and 

variance 1/α.

Pdf(r)=ααrα-1/exp(αr)Γ(α) (4.37)

By adjusting the shape parameter α the Γ-distribution accommodates for varying degree 

of rate heterogeneity (see figure 4.8). For α>1 the distribution is bell-shaped and models 

weak rate heterogeneity over sites. The relative rates drawn from this distribution are all 

close  to  1.0.  For  α<1  the  Γ-distribution  takes  on  its  characteristic  L-shape  which 

describes  situations  of  strong  rate  heterogeneity,  i.e.  some positions  have  very  large 

substitution rates but most other sites are practically invariable. 

Rather than using the continuous  Γ-distribution it is computationally more efficient to 

assume a discrete Γ-distribution with a finite number c of equally probable rates q1, q2, ..., 

qc.  Usually, 4-8 discrete categories are enough to obtain a good approximation of the 

continuous function (Yang, 1994b). A further generalization is provided by the approach 

of  Kosakovsky  Pond  and  Frost  (2005)  who  propose  a  two-stage  hierarchical  Beta-

Gamma model for fitting the rate distribution across sites.
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4.7. Software Packages

A large number of software packages exist for computing genetic distances from DNA 

sequences.  An  exhaustive  list  is  maintained  by  Joe  Felsenstein  at  the  web  address 

http://evolution.genetics.washington.edu/phylip/software.html. Among others, the programs PAUP* 

(see  Chapter  6),  PHYLIP  (Felsenstein,  1993),  TREE-PUZZLE  (Strimmer  and  von 

Haeseler, 1996), PAL (Drummond and Strimmer, 2001), MEGA (Kumar  et al., 1993), 

TREECON (Van de Peer, 1994), DAMBE (Xia, 2001), and PAML (Yang, 2000) provide 

the  possibility  to  infer  maximum-likelihood  distances.  In  the  remaining  part  of  the 

chapter  we  are  going  to  use  PHYLIP,  DAMBE  (see  previous  Chapter)  and  TREE-

PUZZLE.  PAUP*  and  TREECON  will  be  discussed  in  Chapter  6  and  Chapter  9, 

respectively.

PHYLIP, Phylogeny Inference Package, was one of the first freeware phylogeny software 

to be developed (Felsenstein, 1993). It is a package consisting of several programs for 

calculating  genetic  distances and  inferring  phylogenetic  trees  according  to  different 

algorithms. Already-compiled executables files are available for Windows3.x/95/98, pre-

386 and 386 DOS, Macintosh (non-PowerMac), and PowerMac. A complete description 

of the package including the instructions for installation on different machines can be 

found at http://evolution.genetics.washington.edu/phylip.html.

http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.genetics.washington.edu/phylip/general.html


TREE-PUZZLE  (Strimmer  and  von  Haeseler,  1995)  was  originally  developed  to 

reconstruct  phylogenetic  trees  from molecular  sequence  data  by  maximum likelihood 

with a fast tree-search algorithm called quartet puzzling (see Chapter 7). The program 

also computes pairwise maximum likelihood distances according to a number of models 

of  nucleotide  substitution.  Versions  of  TREE-PUZZLE  UNIX,  MacOS  PPC,  and 

Windows95/98/NT compatible can be freely downloaded from the TREE-PUZZLE web 

page at http://www.tree-puzzle.de/.

As soon as the proper versions of these programs are installed, the PHYLIP folder and 

the  TREE-PUZZLE  folder  should  be  visible  on  the  local  computer.  These  folders 

contains  several  files,  including  executable  applications,  documentation,  and  source 

codes. PHYLIP version 3.5 has three subdirectories: doc, exe, src; the executables are in 

the  exe folder. In TREE-PUZZLE version 5.0 the executable treepuzzle.exe can be 

found in the TREE-PUZZLE folder. Any of the software modules within PHYLIP and 

TREE-PUZZLE works in the same basic way: it needs a file containing the input data, for 

example aligned DNA sequences in PHYLIP format, to be placed in the same directory 

where the program resides; it produces one or more output files, in text format, with the 

results of some kind of analysis. By default, any application reads the data from a file 

named  infile (no  extension  type!)  if  such  a  file  is  present  in  the  same  directory, 

otherwise the user is asked to enter the name of the input file.

4.8. Jukes and Cantor (JC69) genetic distances (PHYLIP)

Let  us  see  how  to  calculate  d  for  the  HIV data  set:  the  aligned  sequences  can  be 

downloaded from  http://kuleuven.ac.be/aidslab/phylogenyBook/datasets.htm.  Figure 4.9 shows a 

matrix with pairwise  p-distances, i.e. number of different sites between two sequences 

http://kuleuven.ac.be/aidslab/phylogenyBook/datasets.htm
http://www.tree-puzzle.de/


divided by the sequence length, for the HIV/SIV data. The matrix is written in lower-

triangular form with the number on the first  row indicating the number of sequences 

being  compared. The  genetic  distance d between  sequence  L20571  and  AF103818 

according to the JC69 model can be obtained by substituting their  observed distance 

p=0.3937 in equation 4.19 (see section 4.4.1), and it results 0.5582. Obviously, using p 

instead  of  d would  grossly  underestimate  the  genetic  divergence  between  the  two 

sequences. 

Place the file hivALN in the directory  PHYLIP\exe if  you are working with PHYLIP 

v3.5, or in the same directory where the PHLYLIP software module DNAdist is if you are 

using a different version of the package. Rename the file  infile and start  DNAdist by 

double-clicking on its icon. A new window will appear with the following menu :

Nucleic acid sequence Distance Matrix program, version 3.5c

Settings for this run:
  D  Distance (Kimura, Jin/Nei, ML, J-C)?  Kimura 2-parameter
  T        Transition/transversion ratio?  2.0
  C   One category of substitution rates?  Yes
  L              Form of distance matrix?  Square
  M           Analyze multiple data sets?  No
  I          Input sequences interleaved?  Yes
  0   Terminal type (IBM PC, VT52, ANSI)?  ANSI
  1    Print out the data at start of run  No
  2  Print indications of progress of run  Yes

Are these settings correct? (type Y or letter for one to change)

Type D followed by the enter key and again until the model selected is Jukes-Cantor. In 

the new menu, the option  T Transition/transversion ratio? is no longer present 

since under the JC69 model all nucleotide substitutions are equally likely (see section 

4.4.1). Type  y followed by the  enter key to carry out the computation of the  genetic 

distances. The result is stored in a file called outfile which can be opened with any text 

editor (see Figure 4.10). The format of the output matrix, square or lower-triangular, can 



be chosen before starting the computation by selecting option L. Of course, each pairwise 

distance in Figure 4.10 can be obtained by replacing p in equation 4.19 with the observed 

distance given in Figure 4.9.

4.9. Kimura 2-parameters (K80) and F84 genetic distances

The Kimura 2-parameters (K80) model relaxes one of the main assumptions of the JC69 

model allowing for a different instantaneous substitution rates between transitions and 

transversions (a=c=d=f=1 and b=e=κ in the Q matrix) (Kimura, 1980). Similarly to what 

has been done in section 4.4, by solving the exponential  P(t)=exp(Qt) for  P(t) we can 

obtain the K80 correction formula for the expected genetic distance between two DNA 

sequences:

d = log(1/(1-2P-Q)) + log(1/(1-2Q)) (4.37a)

where P and  Q are  the  proportion  of  the  transitional  and  transversional  differences 

between the two sequences, respectively. The variance of the K80 distances is calculated 

by :

V(d) = 1/n[(A2P + B2Q - (AP + BQ)2] (4.37b)

with A=1/(1-2P-Q) and B=1/2[(1/1-2P-Q) + (1/1-2Q)]

K80-distances can be obtained with DNAdist by choosing Kimura 2-parameter within 

the D option. The user can also type an empirical Ts/Tv ratio by selecting option T from 

the main menu. The default value for Ti/Tv in DNAdist is 2.0. Considering that there are 

twice more possible transversions than transitions,  a Ti/Tv=2.0 equals  to assume that 

during evolution transitional changes occur four times faster than transversional ones. 



When an empirical Ti/Tv value for the set of organisms under investigation is not known 

from the literature, it  is good practice to estimate it directly from the data. A general 

strategy to estimate the Ti/Tv ratio of aligned DNA sequences will be discussed in the 

next Chapter.

The genetic distance estimated with the K80 model (Ti/Tv=2.0) between the HIV group 

O strain L20571 and the SIV chimpanzee strain AF103818 results  0.6346, which is 1.6 

times bigger than the p-distance, but only 1.1 times bigger than the JC69 distance.

The K80 model still relies on very restricted assumptions such that of equal frequency of 

the four bases at equilibrium. The HKY85 (Hishino, Kasegawa and Yano, 1985) and F84 

(Felsenstein, 1984; Kishino and Hasegawa, 1989) models relax that assumption allowing 

for  unequal  frequencies;  their  Q matrices  are  slightly  different  but  both  models 

essentially  share  the  same set  of  assumptions:  a  bias  in  the  rate  of  transitional  with 

respect to the rate of transversional substitutions, and unequal base frequencies (which 

are usually estimated from the data set). F84-distances can be computed with PHYLIP by 

selecting Maximum Likelihood within the D option. A new option, F, also appears in the 

main menu:

F   Use empirical base frequencies?   Yes

By default, DNAdist empirically estimates the frequencies for each sequence and it uses 

the average value over all sequences to compute pairwise distances. When no is selected 

in option F, the program asks the user to input the base frequencies in order A, C, G, T/U 

separated by blank spaces.



HKY85, as well as distances according to other models described in this chapter, can be 

estimated by TREE-PUZZLE (see following chapter).

4.10. More complex models

The TN93 (Tamura and Nei, 1993) model can be considered as a further extension of the 

F84  model,  allowing  different  nucleotide  substitution  rates  for  purine  (A↔G)  and 

pyrimidine  (C↔T)  transition  (b≠e in  the  correspondent  Q matrix).  TN93-genetic 

distances can be computed with TREE-PUZZLE by selecting from the menu: Pairwise 

distances only (no tree) in option k, and TN (Tamura-Nei 1993) in option m. The 

user can input from the menu empirical transition/transversion bias and pyrimidine/purine 

transition bias, otherwise the program will estimate those parameters from the data set 

(see next chapter and chapter 7).  

4.10.1. Modelling rate heterogeneity over sites

The JC69 model assumes that each site in a sequence changes over time at uniform rate. 

More complex models allow particular substitutions, for example transitions, to occur at 

different rate than others, for example transversions, but any particular substitution rate 

between nucleotide i and nucleotide j is the same across different sites. In section 4.6.1 

we pointed out that this assumption is not realistic and it is especially violated in coding 

regions where different codon positions usually evolve at different rate. Replacement at 

2nd codon position are always nonsynonymous, i.e. they change the encoded amino acid, 

(see chapter 11), whereas, because of the degeneracy of the genetic code, 65% of the 

possible  replacements  at  3rd codon  position  are  synonymous,  i.e.  no  change  in  the 

encoded amino acid. Finally only 4% of the possible replacements at 1st codon position 



are  synonymous. Since mutations in a protein sequence are most of the time likely to 

reduce  the  ability  of  that  protein  to  perform its  biological  function,  they  are  rapidly 

removed  from  the  population  by  purifying  selection  (see  chapter  1  and  11).  As  a 

consequence, over time, mutations will be accumulated more rapidly at 3rd rather than at 

2nd or 1st codon position. It has been shown, for example, that in each coding region of the 

human T-cell lymphotropic viruses (HTLVs), a group of human oncogenic retroviruses, 

3rd codon positions mutate about eight times faster than 1st and sixteen times faster than 

2nd positions (Salemi  et al., 2000). To model rate heterogeneity over sites  DNAdist the 

user can select the option

C   One category of substitution rates?  Yes

in the main menu and choose up to nine different categories of substitution rate. The 

program  then  asks  to  input  the  relative  substitution  rate  for  each  category  as  a 

nonnegative real number. Let say that we want to estimate the genetic distances for the 

hivALN  data  set  with  the  JC69  model,  but  assuming  that  mutations  at  3rd position 

accumulates 10 times faster than at 1st and 20 times faster than at 2nd codon position. 

Since what matters are the relative rates, one possibility is to set the rate at 1st codon 

position equal to 1, the rate at 2nd to 0.5, and the rate at 3rd to 10. It is also necessary to 

assign each site in the aligned data set to one of the three rate categories. This can be 

easily  done  by  adding  to  the  infile, after  the  initial  line  indicating  the  number  of 

sequences and the number of nucleotides, one or more lines like the following:.

CATEGORIES 12312312311231231231[...]

Each number in the line above represents a nucleotide position in the aligned data set: for 

example, the first four numbers,  1231, refer to the first four positions in the alignment 



and they assign the first position to rate category 1, the second position to rate category 2, 

the third position to rate category 3, the forth position to rate category 1 again, and so 

forth.  In the hivALN data set sequences are in frame, starting at 1st codon position and 

ending at a 3rd codon position, and there are 2352 positions. Thus we need to edit the 

input file in the following way:

14 2352

CATEGORIES 123123123 [and so forth up to 2352 digits]

L20571    ATGACAG [...]

[...]

A file already edited can be found at: http://kuleuven.ac.be/aidslab/phylogenyBook/datasets.htm:

i. Place the input file in the PHYLIP folder and run DNAdist

ii. Select option C and type 3 to choose three different rate categories

iii At the prompt of the program asking to specify the relative rate for each category 

type: 1 0.5 10 and press enter

iv. choose the desired evolutionary model as usual and run the calculation.

If we have no clue about the distribution and the extent of the relative substitution rates 

across  sites,  we  can  alternatively  model  rate  heterogeneity  using  a  Γ-distribution,  as 

discussed  in  section  4.6.1,  with  a  single  parameter  α describing  the  shape  of  the 

distribution: L-shaped for α<1 (strong rate heterogeneity), or bell-shaped for α>1 (weak 

rate  heterogeneity).  Which  value  of  α is  the  most  appropriate  for  a  given  data  set, 

however, it is usually not known. In the next chapter we will discuss how to estimate α 

http://kuleuven.ac.be/aidslab/phylogenyBook/datasets.htm


with TREE-PUZZLE and how to estimate genetic distances in case of Γ-distributed rates 

across sites.

It  should look clear after a few exercises that  genetic distances inferred according to 

different evolutionary models can lead to quite different results. Tree-building algorithms 

such  as  UPGMA and  Neighbour-Joining  (see  next  chapter)  are  based  on  pairwise 

distances among taxa: unreliable estimates could lead to the wrong tree topology and, 

certainly, to wrong branch lengths. It may look that the more complex the model, the 

more free parameters it allows for, the more accurate the inferred distances should be. 

However, this is not necessarily true. A model with less parameters will have a smaller 

variance (see for example equations 4.19b and 4.48b). Moreover, any evolutionary model 

share the underlying assumption that the number of sites compared between two given 

sequences is infinite, the violation of the assumption leading to sampling errors. Although 

for sequences at least 1000 nucleotides long the approximation usually holds well, it has 

been shown that models with more parameters produce a larger error than simpler ones 

(Gojobori  et al., 1992; Tajima and Nei, 1984; Zharkikh, 1994). In chapter 12 we will 

discuss a general strategy to select the best fitting evolutionary model for a given data set.
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FIGURE LEGENDS

Figure 4.1. Two sequences derived from the same common ancestral sequence mutate 

and diverge.

Figure 4.2. Relationships between expected genetic distance d and observed p-distance.

Figure  4.3.  Instantaneous  rate  matrix  Q.  Each  entry  in  the  matrix  represents  the 

instantaneous substitution  rate  form nucleotide  i to  nucleotide  j (rows,  and  columns, 

follow the order A, C, G, T). µ is the mean instantaneous substitution rate; a, b, c, d, e, f, 

g,  h,  i,  j,  k,  l, are relative rate parameters describing the relative rate of each nucleotide 

substitution to any other.  πA,  πC,  πT,  πG, are frequency parameters corresponding to the 

nucleotide frequencies (Yang, 1994). Diagonal elements are chosen so that the sum of 

each row is equal to zero.

Figure 4.4. Instantaneous rate matrix Q for the Jukes and Cantor model (JC69).

Figure  4.5.  Q matrix  of  the  general  time  reversible  (GTR)  model  of  nucleotide 

substitutions

Figure 4.6. The six possible substitution patterns for nucleotide data.

Figure 4.7. Hierarchy of nucleotide substitution models.

Figure 4.8. Different shapes of the Γ-distribution depending on the α shape parameter.

Figure 4.9. Pairwise p-distance matrix for the HIV/SIV example data set.

Figure 4.10.  Pairwise genetic distances for the HIV/SIV example data set according to 

the Jukes and Cantor (JC69) model.
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