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Welcome

The Probability and Distribution Refresher notes were written by Korbinian Strimmer
from 2018–2024. This version is from 25 March 2024.

If you have any questions, comments, or corrections please get in touch! 1

Updates

The notes will be updated from time to time. To view the current version visit the

• online version of the Probability and Distribution Refresher notes.

You may also wish to download the Probability and Distribution Refresher notes
as

• PDF in A4 format for printing (double page layout), or as
• 6x9 inch PDF for use on tablets (single page layout).

License

These notes are licensed to you under Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

1Email address: korbinian.strimmer@manchester.ac.uk
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Preface

About the author

Hello! My name is Korbinian Strimmer and I am a Professor in Statistics. I am a
member of the Statistics group at the Department of Mathematics of the University
of Manchester. You can find more information about me on my home page.

About the notes

These supplementary notes aim to provide a quick refresher of some essentials in
combinatorics and probability as well as to offer an overview over selected univariate
and multivariate distributions.

The notes are supporting information for a number of lecture notes of statistical
courses I am or have been teaching at the Department of Mathematics of the
University of Manchester.

This includes the currently offered modules:

• MATH27720 Statistics 2: Likelihood and Bayes and
• MATH38161 Multivariate Statistics

as well as the retired module (not offered any more):

• MATH20802 Statistical Methods.
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1 Combinatorics

1.1 Some basic mathematical notation

Summation:
𝑛∑
𝑖=1

𝑥𝑖 = 𝑥1 + 𝑥2 + . . . + 𝑥𝑛

Multiplication:
𝑛∏
𝑖=1

𝑥𝑖 = 𝑥1 × 𝑥2 × . . . × 𝑥𝑛

Indicator function:

1𝐴 =

{
1 if 𝐴 is true
0 if 𝐴 is not true

Scalar: plain type, typically lower case (𝑥, 𝜃), sometimes upper case (𝐾).

Vector: bold type, lower case (𝒙, 𝜽).

Matrix: bold type, upper case (𝑿 , 𝚺).

1.2 Number of permutations

The number of possible orderings, or permutations, of 𝑛 distinct items is the number
of ways to put 𝑛 items in 𝑛 bins with exactly one item in each bin. It is given by the
factorial

𝑛! =
𝑛∏
𝑖=1

𝑖 = 1 × 2 × . . . × 𝑛

where 𝑛 is a positive integer. For 𝑛 = 0 the factorial is defined as

0! = 1

as there is exactly one permutation of zero objects.
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The factorial can also be obtained using the gamma function

Γ(𝑥) =
∫ ∞

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡

which can be viewed as continuous version of the factorial with Γ(𝑥) = (𝑥 − 1)! for
any positive integer 𝑥.

1.3 De Moivre-Sterling approximation of the factorial

The factorial is frequently approximated by the following formula derived by
Abraham de Moivre (1667–1754) and James Stirling (1692-1770)

𝑛! ≈
√

2𝜋𝑛𝑛+
1
2 𝑒−𝑛

or equivalently on logarithmic scale

log 𝑛! ≈
(
𝑛 + 1

2

)
log 𝑛 − 𝑛 + 1

2 log (2𝜋)

The approximation is good for small 𝑛 (but fails for 𝑛 = 0) and becomes more and
more accurate with increasing 𝑛. For large 𝑛 the approximation can be simplified
to

log 𝑛! ≈ 𝑛 log 𝑛 − 𝑛

1.4 Multinomial and binomial coefficient

The number of possible permutation of 𝑛 items of 𝐾 distinct types, with 𝑛1 of type
1, 𝑛2 of type 2 and so on, equals the number of ways to put 𝑛 items into 𝐾 bins with
𝑛1 items in the first bin, 𝑛2 in the second and so on. It is given by the multinomial
coefficient (

𝑛

𝑛1 , . . . , 𝑛𝐾

)
=

𝑛!
𝑛1! × 𝑛2! × . . . × 𝑛𝐾 !

with
∑𝐾
𝑘=1 𝑛𝑘 = 𝑛 and 𝐾 ≤ 𝑛. Note that it equals the number of permutation of all

items divided by the number of permutations of the items in each bin (or of each
type).

If all 𝑛𝑘 = 1 and hence 𝐾 = 𝑛 the multinomial coefficient reduces to the factorial.

If there are only two bins / types (𝐾 = 2) the multinomial coefficients becomes the
binomial coefficient (

𝑛

𝑛1

)
=

(
𝑛

𝑛1 , 𝑛 − 𝑛1

)
=

𝑛!
𝑛1!(𝑛 − 𝑛1)!

4



1 Combinatorics

which counts the number of ways to choose 𝑛1 elements from a set of 𝑛 elements.

For large 𝑛 and 𝑛𝑘 we can apply the De Moivre-Sterling approximation to the
multinomial coefficient, yielding

log
(

𝑛

𝑛1 , . . . , 𝑛𝐾

)
= −𝑛

𝐾∑
𝑘=1

𝑛𝑘
𝑛

log
(𝑛𝑘
𝑛

)
Note this is 𝑛 times the Shannon entropy of a categorical distribution with 𝑛𝑘/𝑛 as
class probabilities.
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2 Probability

2.1 Random variables

A random variable describes a random experiment. The set of all possible outcomes
is the sample space or state space of the random variable and is denoted by
Ω = {𝜔1 , 𝜔2 , . . .}. The outcomes 𝜔𝑖 are the elementary events. The sample space
Ω can be finite or infinite. Depending on type of outcomes the random variable is
discrete or continuous.

An event 𝐴 ⊆ Ω is a subset of Ω and thus itself a set composed of elementary events:
𝐴 = {𝑎1 , 𝑎2 , . . .}. This includes as special cases the full set 𝐴 = Ω, the empty set
𝐴 = ∅, and the elementary events 𝐴 = 𝜔𝑖 . The complementary event 𝐴𝐶 is the
complement of the set 𝐴 in the set Ω so that 𝐴𝐶 = Ω \ 𝐴 = {𝜔𝑖 ∈ Ω : 𝜔𝑖 ∉ 𝐴}.
The probability of an event 𝐴 is denoted by Pr(𝐴). Essentially, to obtain this
probability we need to count the elementary elements corresponding to 𝐴. To do
this we assume as axioms of probability that

• Pr(𝐴) ≥ 0, probabilities are positive,
• Pr(Ω) = 1, the certain event has probability 1, and
• Pr(𝐴) = ∑

𝑎𝑖∈𝐴 Pr(𝑎𝑖), the probability of an event equals the sum of its con-
stituting elementary events 𝑎𝑖 . This sum is taken over a finite or countable
infinite number of elements.

This implies

• Pr(𝐴) ≤ 1, i.e. probabilities all lie in the interval [0, 1]
• Pr(𝐴𝐶) = 1 − Pr(𝐴), and
• Pr(∅) = 0

Assume now that we have two events 𝐴 and 𝐵. The probability of the event “𝐴
and 𝐵” is then given by the probability of the set intersection Pr(𝐴 ∩ 𝐵). Likewise
the probability of the event “𝐴 or 𝐵” is given by the probability of the set union
Pr(𝐴 ∪ 𝐵).
From the above it is clear that the definition and theory of probability is closely
linked to set theory, and in particular to measure theory. Indeed, viewing probability
as a special type of measure allows for an elegant treatment of both discrete and
continuous random variables.

6



2 Probability

2.2 Probability mass and density function

To describe a random variable 𝑥 with state space Ω we need a way to effectively
store the probabilities of the corresponding elementary outcomes 𝑥 ∈ Ω.

For simplicity of notation we use the same symbol to denote the random variable
and its elementary outcomes.1 This convention greatly facilitates working with
random vectors and matrices and follows, e.g., the classic multivariate statistics
textbook by Mardia, Kent, and Bibby (1979). If a quantity is random we will always
specify this explicitly in the context.

For a discrete random variable we define the event 𝐴 = {𝑥 : 𝑥 = 𝑎} = {𝑎} and get
the probability

Pr(𝐴) = Pr(𝑥 = 𝑎) = 𝑓 (𝑎)
directly from the probability mass function (pmf), here denoted by lower case 𝑓
(but we frequently also use 𝑝 or 𝑞). The pmf has the property that

∑
𝑥∈Ω 𝑓 (𝑥) = 1

and that 𝑓 (𝑥) ∈ [0, 1].
For continuous random variables we need to use a probability density function
(pdf) instead. We define the event 𝐴 = {𝑥 : 𝑎 < 𝑥 ≤ 𝑎 + 𝑑𝑎} as an infinitesimal
interval and then assign the probability

Pr(𝐴) = Pr(𝑎 < 𝑥 ≤ 𝑎 + 𝑑𝑎) = 𝑓 (𝑎)𝑑𝑎 .

The pdf has the property that
∫
𝑥∈Ω 𝑓 (𝑥)𝑑𝑥 = 1 but in contrast to a pmf the density

𝑓 (𝑥) ≥ 0 may take on values larger than 1.

The set of all 𝑥 for which 𝑓 (𝑥) is positive is called the support of the pmf or pdf.

It is sometimes convenient to refer to a pdf or pmf without specifying whether 𝑥 is
continous or discrete as probability density mass function (pdmf).

2.3 Distribution function and quantile function

As alternative to using the pdmf we may use a distribution function to describe the
random variable. This assumes that an ordering exist among the elementary events
so that we can define the event 𝐴 = {𝑥 : 𝑥 ≤ 𝑎} and compute its probability as

𝐹(𝑎) = Pr(𝐴) = Pr(𝑥 ≤ 𝑎) =
{∑

𝑥∈𝐴 𝑓 (𝑥) discrete case∫
𝑥∈𝐴 𝑓 (𝑥)𝑑𝑥 continuous case

1For scalar random variables many texts use upper case to designate the random variable and lower
case for its realisations. However, this convention quickly breaks down in multivariate statistics when
dealing with random vectors and random matrices. Hence, we use upper case primarily to indicate a
matrix quantity (in bold type). Upper case (in plain type) may denote sets and some scalar quantities
traditionally written in upper case (e.g. 𝑅2, 𝐾).
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Figure 2.1: Density function and distribution function.

This is also known cumulative distribution function (cdf) and is denoted by upper
case 𝐹 (or 𝑃 and 𝑄). By construction the distribution function is monotonically
non-decreasing and its value ranges from 0 to 1. With its help we can compute the
probability of an interval set such as

Pr(𝑎 < 𝑥 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) .

The inverse of the distribution function 𝑦 = 𝐹(𝑥) is the quantile function 𝑥 = 𝐹−1(𝑦).
The 50% quantile 𝐹−1 ( 1

2
)

is called the median.

If the random variable 𝑥 has distribution function 𝐹 we write 𝑥 ∼ 𝐹.

Figure 2.1 illustrates a density function 𝑓 (𝑥) and the corresponding distribution
function 𝐹(𝑥).

2.4 Families of distributions

A distribution 𝐹𝜃 with a parameter 𝜃 constitutes a distribution family collecting
all the distributions corresponding to particular instances of the parameter. The
parameter 𝜃 therefore acts as an index of the distributions contained in the family.

The corresponding pdmf is written either as 𝑓𝜃(𝑥), 𝑓 (𝑥;𝜃) or 𝑓 (𝑥 |𝜃). The latter form
is the most general is it suggests that the parameter 𝜃 may potentially also have its
own distribution, with a joint density formed by 𝑓 (𝑥, 𝜃) = 𝑓 (𝑥 |𝜃) 𝑓 (𝜃).
Note that any parametrisation is generally not unique, as a one-to-one transfor-
mation of 𝜃 will yield another equivalent index to the same distribution family.
Typically, for most commonly used distribution families there are several standard
parametrisations. Often we use those parametrisations where the parameters can
be interpreted easily (e.g. in terms of moments).

If for any pair of different parameter values 𝜃1 ≠ 𝜃2 we get distinct distributions
with 𝐹𝜃1 ≠ 𝐹𝜃2 then the distribution family 𝐹𝜃 is said to be identifiable by the
parameter 𝜃.

8



2 Probability

2.5 Expectation of a random variable

The expected value E(𝑥) of a random variable is defined as the weighted average
over all possible outcomes, with the weight given by the pdmf 𝑓 (𝑥):

E𝐹(𝑥) =
{∑

𝑥∈Ω 𝑥 𝑓 (𝑥) discrete case∫
𝑥∈Ω 𝑥 𝑓 (𝑥)𝑑𝑥 continuous case

Note the notation to emphasise that the expectation is taken with regard to the
distribution 𝐹. The subscript 𝐹 is usually left out if there are no ambiguities.
Furthermore, because the sum or integral may diverge the expectation is not
necessarily always defined (in contrast to quantiles).

The expected value of a function of a random variable ℎ(𝑥) is obtained similarly:

E𝐹(ℎ(𝑥)) =
{∑

𝑥∈Ω ℎ(𝑥) 𝑓 (𝑥) discrete case∫
𝑥∈Ω ℎ(𝑥) 𝑓 (𝑥)𝑑𝑥 continuous case

This is called the “law of the unconscious statistician”, or short LOTUS. Again, to
highlight that the random variable 𝑥 has distribution 𝐹 we write E𝐹(ℎ(𝑥)).

2.6 Jensen’s inequality for the expectation

If ℎ(𝒙) is a convex function then the following inequality holds:

E(ℎ(𝒙)) ≥ ℎ(E(𝒙))

Recall: a convex function (such as 𝑥2) has the shape of a “valley”.

2.7 Probability as expectation

Probability itself can also be understood as an expectation. For an event 𝐴 we can
define a corresponding indicator function 1𝑥∈𝐴 for an elementary element 𝑥 to be
part of 𝐴. From the above it then follows

E(1𝑥∈𝐴) = Pr(𝐴) ,

Interestingly, one can develop the whole theory of probability from this perspective
(e.g., Whittle 2000).
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2.8 Moments and variance of a random variable

The moments of a random variable are defined as follows:

• Zeroth moment: E(𝑥0) = 1 by construction of a pdmf,
• First moment: E(𝑥1) = E(𝑥) = 𝜇 , the mean,
• Second moment: E(𝑥2)
• The variance is the second moment centred about the mean 𝜇:

Var(𝑥) = E
(
(𝑥 − 𝜇)2

)
= 𝜎2

• The variance can also be computed by Var(𝑥) = E(𝑥2) − E(𝑥)2. This provides
an example of Jensen’s inequality, with E(𝑥2) = E(𝑥)2 + Var(𝑥) ≥ E(𝑥)2.

A distribution does not necessarily need to have any finite first or higher moments.
An example is the location-scale 𝑡-distribution (Section 4.7) that depending on
the value of the parameter 𝜈 may not have a mean or variance (or other higher
moments).

2.9 Random vectors and their mean and variance

In addition to scalar random variables we often make use of random vectors and
also random matrices.2

For a random vector 𝒙 = (𝑥1 , 𝑥2 , ..., 𝑥𝑑)𝑇 ∼ 𝐹 the mean E(𝒙) = 𝝁 is given by the
means of its components, i.e. 𝝁 = (𝜇1 , . . . , 𝜇𝑑)𝑇 with 𝜇𝑖 = E(𝑥𝑖). Thus, the mean of a
random vector of dimension 𝑑 is a vector of the same length.

The variance of a random vector of length 𝑑, however, is not a vector but a matrix of
size 𝑑 × 𝑑. This matrix is called the covariance matrix:

Var(𝒙) = 𝚺︸︷︷︸
𝑑×𝑑

= (𝜎𝑖 𝑗) =
©­­«
𝜎11 . . . 𝜎1𝑑
...

. . .
...

𝜎𝑑1 . . . 𝜎𝑑𝑑

ª®®¬
= E

©­­­«(𝒙 − 𝝁)︸ ︷︷ ︸
𝑑×1

(𝒙 − 𝝁)𝑇︸   ︷︷   ︸
1×𝑑

ª®®®¬
= E(𝒙𝒙𝑇) − 𝝁𝝁𝑇

2In our notational conventions, a vector 𝒙 is written in lower case in bold type, a matrix 𝑴 in upper case in
bold type. Hence random vectors and matrices as well as their realisations are indicated in bold type,
with vectors given in lower case and matrices in upper case. Hence, as for scalar variables, upper
vs. lower case does not indicate randomness vs. realisation.

10



2 Probability

The entries of the covariance matrix Cov(𝑥𝑖 , 𝑥 𝑗) = 𝜎𝑖 𝑗 describe the covariance
between the random variables 𝑥𝑖 and 𝑥 𝑗 . The covariance matrix is symmetric,
hence 𝜎𝑖 𝑗 = 𝜎𝑗𝑖 . The diagonal entries Cov(𝑥𝑖 , 𝑥𝑖) = 𝜎𝑖𝑖 correspond to the variances
Var(𝑥𝑖) = 𝜎2

𝑖
of the components of 𝒙. The covariance matrix is by construction

positive semi-definite, i.e. the eigenvalues of 𝚺 are all positive or equal to zero.

However, wherever possible one will aim to use models with non-singular covariance
matrices, with all eigenvalues positive, so that the covariance matrix is invertible.

2.10 Correlation matrix

The correlation matrix 𝑷 (“upper case rho”, not “upper case p”) is the variance
standardised version of the covariance matrix 𝚺.

Specifically, denote by 𝑽 the diagonal matrix containing the variances

𝑽 =
©­­«
𝜎11 . . . 0
...

. . .
...

0 . . . 𝜎𝑑𝑑

ª®®¬
then the correlation matrix 𝑷 is given by

𝑷 = (𝜌𝑖 𝑗) =
©­­«

1 . . . 𝜌1𝑑
...

. . .
...

𝜌𝑑1 . . . 1

ª®®¬ = 𝑽−1/2 𝚺𝑽−1/2

Like the covariance matrix the correlation matrix is symmetric. The elements of the
diagonal of 𝑷 are all set to 1.

Equivalently, in component notation the correlation between 𝑥𝑖 and 𝑥 𝑗 is given by

𝜌𝑖 𝑗 = Cor(𝑥𝑖 , 𝑥 𝑗) =
𝜎𝑖 𝑗

√
𝜎𝑖𝑖𝜎𝑗 𝑗

Using the above, a covariance matrix can be factorised into the product of standard
deviations 𝑽 1/2 and the correlation matrix as follows:

𝚺 = 𝑽 1/2 𝑷 𝑽 1/2

11

3 Transformations

3.1 Affine or location-scale transformation of random
variables

Suppose 𝑥 ∼ 𝐹𝑥 is a scalar random variable. The random variable

𝑦 = 𝑎 + 𝑏𝑥

is a location-scale transformation or affine transformation of 𝑥, where 𝑎 plays
the role of the location parameter and 𝑏 is the scale parameter. For 𝑎 = 0 this
is a linear transformation. If 𝑏 ≠ 0 then the transformation is invertible, with
back-transformation

𝑥 = (𝑦 − 𝑎)/𝑏
Invertible transformations provide a one-to-one map between 𝑥 and 𝑦.

For a random vector 𝒙 ∼ 𝐹𝒙 of dimension 𝑑 the location-scale transformation is

𝒚 = 𝒂 + 𝑩𝒙

where 𝒂 (a 𝑚 × 1 vector) is the location parameter and 𝑩 (a 𝑚 × 𝑑 matrix) the
scale parameter For 𝑚 = 𝑑 (square 𝑩) and det(𝑩) ≠ 0 the affine transformation is
invertible with back-transformation

𝒙 = 𝑩−1(𝒚 − 𝒂)

If 𝑥 is a continuous random variable with density 𝑓𝑥(𝑥) and assuming an invertible
transformation the density for 𝑦 is given by

𝑓𝑦(𝑦) = |𝑏 |−1 𝑓𝑥

( 𝑦 − 𝑎
𝑏

)
where |𝑏 | is the absolute value of 𝑏. Likewise, assuming an invertible transformation
for a continous random vector 𝒙 with density 𝑓𝒙(𝒙) the density for 𝒚 is given by

𝑓𝒚(𝒚) = | det(𝑩)|−1 𝑓𝒙

(
𝑩−1(𝒚 − 𝒂)

)
where | det(𝑩)| is the absolute value of the determinant det(𝑩).

12



3 Transformations

The transformed random variable 𝑦 ∼ 𝐹𝑦 has mean

E(𝑦) = 𝑎 + 𝑏𝜇𝑥

and variance
Var(𝑦) = 𝑏2𝜎2

𝑥

where E(𝑥) = 𝜇𝑥 and Var(𝑥) = 𝜎2
𝑥 are the mean and variance of the original variable

𝑥.

The mean and variance of the transformed random vector 𝒚 ∼ 𝐹𝒚 is

E(𝒚) = 𝒂 + 𝑩 𝝁𝒙

and
Var(𝒚) = 𝑩𝚺𝒙 𝑩𝑇

where E(𝒙) = 𝝁𝒙 and Var(𝒙) = 𝚺𝒙 are the mean and variance of the original random
vector 𝒙.

The constants 𝒂 and 𝑩 (or 𝑎 and 𝑏 in the univariate case) are the parameters
of the location-scale family 𝐹𝒚 created from 𝐹𝒙 . Many important distributions
are location-scale families such as the normal distribution (cf. Section 5.4 and
Section 5.4) and the location-scale 𝑡-distribution (Section 4.7). Furthermore, key
procedures in multivariate statistics such as orthogonal transformations (including
PCA) or whitening transformations (e.g. the Mahalanobis transformation) are affine
transformations.

3.2 General invertible transformation of random
variables

As above we assume 𝑥 ∼ 𝐹𝑥 is a scalar random variable and 𝒙 ∼ 𝐹𝒙 is a random
vector.

As a generalisation of invertible affine transformations we now consider general
invertible transformations. For a scalar random variable we assume the transfor-
mation is specified by 𝑦(𝑥) = ℎ(𝑥) and the back-transformation by 𝑥(𝑦) = ℎ−1(𝑦)
For a random vector we assume 𝒚(𝒙) = 𝒉(𝒙) is invertible with backtransformation
𝒙(𝒚) = 𝒉−1(𝒚).
If 𝑥 is a continuous random variable with density 𝑓𝑥(𝑥) the density of the transformed
variable 𝑦 can be computed exactly and is given by

𝑓𝑦(𝑦) = |𝐷𝑥(𝑦)| 𝑓𝑥(𝑥(𝑦))

where 𝐷𝑥(𝑦) is the derivative of the inverse transformation 𝑥(𝑦).

13

3 Transformations

Likewise, for a continuous random vector 𝒙 with density 𝑓𝒙(𝒙) the density for 𝒚 is
obtained by

𝑓𝒚(𝒚) = | det (𝐷𝒙(𝒚)) | 𝑓𝒙 (𝒙(𝒚))
where 𝐷𝒙(𝒚) is the Jacobian matrix of the inverse transformation 𝒙(𝒚).
The mean and variance of the transformed random variable can typically only be
approximated. Assume that E(𝑥) = 𝜇𝑥 and Var(𝑥) = 𝜎2

𝑥 are the mean and variance
of the original random variable 𝑥 and E(𝒙) = 𝝁𝒙 and Var(𝒙) = 𝚺𝒙 are the mean and
variance of the original random vector 𝒙. In the delta method the transformation
𝑦(𝑥) resp. 𝒚(𝒙) is linearised around the mean 𝜇𝑥 respectively 𝝁𝒙 and the mean and
variance resulting from the linear transformation is reported.

Specifically, the linear approximation for the scalar-valued function is

𝑦(𝑥) ≈ 𝑦 (𝜇𝑥) + 𝐷𝑦 (𝜇𝑥) (𝑥 − 𝜇𝑥)

where 𝐷𝑦(𝑥) = 𝑦′(𝑥) is the first derivative of the transformation 𝑦(𝑥) and 𝐷𝑦 (𝜇𝑥) is
the first derivative evaluated at the mean 𝜇𝑥 , and for the vector-valued function

𝒚(𝒙) ≈ 𝒚
(
𝝁𝒙

)
+ 𝐷𝒚

(
𝝁𝒙

) (
𝒙 − 𝝁𝒙

)
where 𝐷𝒚(𝒙) is the Jacobian matrix (vector derivative) for the transformation 𝒚(𝒙)
and 𝐷𝒚

(
𝝁𝒙

)
is the Jacobian matrix evaluated at the mean 𝝁𝒙 .

In the univariate case the delta method yields as approximation for the mean and
variance of the transformed random variable 𝑦

E(𝑦) ≈ 𝑦 (𝜇𝑥)

and
Var(𝑦) ≈ (𝐷𝑦 (𝜇𝑥))2 𝜎2

𝑥

For the vector random variable 𝒚 the delta method yields

E(𝒚) ≈ 𝒚
(
𝝁𝒙

)
and

Var(𝒚) ≈ 𝐷𝒚
(
𝝁𝒙

)
𝚺𝒙 𝐷𝒚

(
𝝁𝒙

)𝑇
Assuming 𝑦(𝑥) = 𝑎+𝑏𝑥, with 𝑥(𝑦) = (𝑦− 𝑎)/𝑏,𝐷𝑦(𝑥) = 𝑏 and𝐷𝑥(𝑦) = 𝑏−1, recovers
the univariate location-scale transformation. Likewise, assuming 𝒚(𝒙) = 𝒂 + 𝑩𝒙,
with 𝒙(𝒚) = 𝑩−1(𝒚 − 𝒂), 𝐷𝒚(𝒙) = 𝑩 and 𝐷𝒙(𝒚) = 𝑩−1, recovers the multivariate
location-scale transformation.

14
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3.3 Exponential tilting and exponential families

Another way to change the distribution of a random variable is by exponential
tilting.

Suppose there is a vector valued function 𝒖(𝑥)where each component is a transforma-
tion of 𝑥, usually a simple function such the identity 𝑥, the square 𝑥2, the logarithm
log(𝑥) etc. These are called the canonical statistics. Typically, the dimension of 𝒖(𝑥)
is small.

The exponential tilt of a base distribution 𝑃0 with pdmf 𝑝0(𝑥) towards the linear
combination 𝜼𝑇𝒖(𝑥) of the canonical statistics 𝒖(𝑥) and the canonical parameters 𝜼
yields the distribution family 𝑃𝜼 with pdmf

𝑝(𝑥 |𝜼) = 𝑒𝜼
𝑇𝒖(𝑥) 𝑏(𝑥) / 𝑒𝜓(𝜼)

= 𝑒𝜼
𝑇𝒖(𝑥)︸ ︷︷ ︸

exponential tilt

𝑝0(𝑥) / 𝑒𝜓(𝜼)−𝜓(0)

where 𝑏(𝑥) is a positive base function. The normalising factor 𝑒𝜓(𝜼) ensures that 𝑝(𝑥 |𝜼)
integrates to one. The pdmf of the base distribution is given by 𝑝0(𝑥) = 𝑏(𝑥)/𝑒𝜓(0).
The distribution family 𝑃𝜼 obtained by exponential tiling is called an exponential
family. The corresponding log-pdmf is

log 𝑝(𝑥 |𝜼) = 𝜼𝑇𝒖(𝑥) + log 𝑏(𝑥) − 𝜓(𝜼)

The log-normaliser or log-partition function 𝜓(𝜼) is obtained by computing

𝜓(𝜼) = log
∫
𝑥

𝑒𝜼
𝑇𝒖(𝑥) 𝑏(𝑥) 𝑑𝑥

The set of values of 𝜼 for which the integral is finite and hence for which 𝜓(𝜼) < ∞
defines the parameter space of the exponential family. Some choices of 𝑏(𝑥) and
𝒖(𝑥) will not allow for a finite normalising factor for any 𝜼 and hence these cannot
be used to form an exponential family.

Many commonly used distribution families are exponential families (most im-
portantly the normal distribution). Exponential families are extremely important
in probability and statistics. They provide highly effective models for statistical
learning using entropy, likelihood and Bayesian approaches, allow for substantial
data reduction via minimal sufficiency, and provide the basis of generalised linear
models. Furthermore, exponential families often enable to generalise probabilistic
results valid for the normal distribution to more general settings.
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3.4 Sums of random variables and convolution

Suppose we have a sum of 𝑛 independent and identically distributed (iid) random
variables.

𝑦 = 𝑥1 + 𝑥2 + . . . + 𝑥𝑛
where each 𝑥𝑖 ∼ 𝐹𝑥 with density or probability mass function 𝑓𝑥(𝑥). The density or
probability mass function for 𝑦 is obtained by repeated application of convolution
(symbolised by the ∗ operator):

𝑓𝑦(𝑦) = ( 𝑓𝑥1 ∗ 𝑓𝑥2 ∗ . . . 𝑓𝑥𝑛 ) (𝑦)

The convolution of two functions is defined as (continuous case)

( 𝑓𝑥1 ∗ 𝑓𝑥2) (𝑦) =
∫
𝑥

𝑓𝑥1(𝑥) 𝑓𝑥2(𝑦 − 𝑥)𝑑𝑥

and (discrete case)
( 𝑓𝑥1 ∗ 𝑓𝑥2) (𝑦) =

∑
𝑥

𝑓𝑥1(𝑥) 𝑓𝑥2(𝑦 − 𝑥)

Convolution is commutative and associative so it can be applied in any order to
compute the convolution of multiple functions. Furthermore, the convolution of
probability densities / mass function yields another probability density / mass
function.

Many commonly used random variables can be viewed as the outcome of convo-
lutions. For example, the sum of Bernoulli variables yields a binomial random
variable and the sum of normal variables yields another normal random variable.

See also: list of convolutions of probability distributions.

The central limit theorem, first postulated by Abraham de Moivre (1667–1754) and
later proved by Pierre-Simon Laplace (1749–1827) asserts that, under appropriate
conditions, the distribution of the sum of independent and identically distributed
random variables converges in the limit of large 𝑛 to a normal distribution (Sec-
tion 4.4), even if the individual random variables are not normal. In other words, it
asserts that for large 𝑛 the convolution of 𝑛 identical distributions typically converges
to the normal distribution.

16



4 Univariate distributions

4.1 Bernoulli distribution

The Bernoulli distribution Ber(𝜃) is the simplest of all distribution families. It
is named after Jacob Bernoulli (1655-1705) who also discovered the law of large
numbers.

It describes a discrete binary random variable with two states 𝑥 = 0 (“failure”) and
𝑥 = 1 (“success”), where the parameter 𝜃 ∈ [0, 1] is the probability of “success”.
Often the Bernoulli distribution is also referred to as “coin tossing” model with the
two outcomes “heads” and “tails”.

Correspondingly, the probability mass function of Ber(𝜃) is

𝑝(𝑥 = 0|𝜃) = Pr("failure"|𝜃) = 1 − 𝜃

and
𝑝(𝑥 = 1|𝜃) = Pr("success"|𝜃) = 𝜃

A compact way to write the pmf of the Bernoulli distribution is

𝑝(𝑥 |𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥

The log-pmf is
log 𝑝(𝑥 |𝜃) = 𝑥 log𝜃 + (1 − 𝑥) log(1 − 𝜃)

If a random variable 𝑥 follows the Bernoulli distribution we write

𝑥 ∼ Ber(𝜃) .

The expected value is E(𝑥) = 𝜃 and the variance is Var(𝑥) = 𝜃(1 − 𝜃).

4.2 Binomial distribution

Closely related to the Bernoulli distribution is the binomial distribution Bin(𝑛, 𝜃)
which results from repeating a Bernoulli experiment 𝑛 times and counting the
number of successes among the 𝑛 trials (without keeping track of the ordering of
the experiments). Thus, if 𝑥1 , . . . , 𝑥𝑛 are 𝑛 independent Ber(𝜃) random variables
then 𝑦 =

∑𝑛
𝑖=1 𝑥𝑖 is distributed as Bin(𝑛, 𝜃).
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Figure 4.1: Binomial urn model.

If a random variable 𝑦 follows the binomial distribution we write

𝑦 ∼ Bin(𝑛, 𝜃)

The corresponding probability mass function is:

𝑝(𝑦 |𝑛, 𝜃) =
(
𝑛

𝑦

)
𝜃𝑦(1 − 𝜃)𝑛−𝑦

with support 𝑦 ∈ {0, 1, 2, . . . , 𝑛}. The binomial coefficient
(𝑛
𝑦

)
is needed to account

for the multiplicity of ways (orderings of samples) in which we can observe 𝑦
successes.

The expected value is E(𝑦) = 𝑛𝜃 and the variance is Var(𝑦) = 𝑛𝜃(1 − 𝜃).
If we standardise the support of the binomial variable to the unit interval with
𝑦

𝑛 ∈
{
0, 1

𝑛 , ..., 1
}

then the mean is E
( 𝑦
𝑛

)
= 𝜃 and the variance is Var

( 𝑦
𝑛

)
=

𝜃(1−𝜃)
𝑛 .

For 𝑛 = 1 the binomial distribution reduces to the Bernoulli distribution (Sec-
tion 4.1).

The binomial distribution may be illustrated by an urn model distributing 𝑛 items
into two bins (Figure 4.1).

As a result of the central limit theorem, the binomial distribution, obtained as the
convolution of 𝑛 Bernoulli distributions, can for large 𝑛 be well approximated by a
normal distribution (this is known as the De Moivre–Laplace theorem).

18
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� R code

The probability mass function of the binomial distribution is given bydbinom(),
the cumulative distribution function is pbinom() and the quantile function is
qbinom(). The binomial coefficient is computed by choose().

4.3 Beta distribution

Standard parameterisation

A beta-distributed random variable is denoted by

𝑥 ∼ Beta(𝛼, 𝛽)

where the support is 𝑥 ∈ [0, 1] and 𝛼 > 0 and 𝛽 > 0 are two shape parameters.

The density of the beta distribution Beta(𝛼, 𝛽) is

𝑝(𝑥 |𝛼, 𝛽) = 1
𝐵(𝛼, 𝛽)𝑥

𝛼−1(1 − 𝑥)𝛽−1

This depends on the beta function defined as

𝐵(𝑧1 , 𝑧1) =
Γ(𝑧1)Γ(𝑧2)
Γ(𝑧1 + 𝑧2)

The beta distribution is very flexible and can assume a number of different shapes,
depending on the value of 𝛼 and 𝛽. For example, for 𝛼 = 𝛽 = 1 it becomes the
uniform distribution over the unit interval (see Figure 4.2).

A beta random variable can be visualised as breaking a unit stick of length one into
two pieces of length 𝑥 and 1 − 𝑥 (Figure 4.3).

� R code

The probability density function of the beta distribution is given by dbeta(),
the cumulative distribution function is pbeta() and the quantile function is
qbeta().
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Figure 4.2: Shapes of the density of the beta distribution.

Figure 4.3: Stick breaking visualisation of a beta random variable.

Mean parametrisation

Instead of employing 𝛼 and 𝛽 as parameters another useful reparametrisation
Beta(𝜇, 𝑘) of the beta distribution is in terms of a mean parameter 𝜇 ∈ [0, 1] and a
concentration parameter 𝑘 > 0. These are given by

𝑘 = 𝛼 + 𝛽

and
𝜇 =

𝛼
𝛼 + 𝛽

The original parameters can be recovered by 𝛼 = 𝜇𝑘 and 𝛽 = (1 − 𝜇)𝑘.
The mean and variance of the beta distribution expressed in terms of 𝜇 and 𝑘 are

E(𝑥) = 𝜇
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and
Var(𝑥) = 𝜇(1 − 𝜇)

𝑘 + 1
With increasing concentration parameter 𝑘 the variance decreases and thus the
probability mass becomes more concentrated around the mean.

The uniform distribution (with 𝛼 = 𝛽 = 1) corresponds to 𝜇 = 1/2 and 𝑘 = 2.

Finally, note that the mean and variance of the continuous beta distribution closely
match those of the unit-standardised discrete binomial distribution above.

4.4 Normal distribution

The normal distribution is the most important continuous probability distribution.
It is also called Gaussian distribution named after Carl Friedrich Gauss (1777–
1855).

The univariate normal distribution 𝑁(𝜇, 𝜎2) has two parameters 𝜇 (location) and 𝜎2

(scale) and support 𝑥 ∈] − ∞,∞[.

𝑥 ∼ 𝑁(𝜇, 𝜎2)
with mean

E(𝑥) = 𝜇

and variance
Var(𝑥) = 𝜎2

Probability density function (pdf):

𝑝(𝑥 |𝜇, 𝜎2) = (2𝜋𝜎2)− 1
2 exp

(
−(𝑥 − 𝜇)2

2𝜎2

)
The standard normal distribution is 𝑁(0, 1) with mean 0 and variance 1. The
cumulative distribution function (cdf) of the standard normal 𝑁(0, 1) is

Φ(𝑥) =
∫ 𝑥

−∞
𝑝(𝑥′ |𝜇 = 0, 𝜎2 = 1)𝑑𝑥′

There is no analytic expression for Φ(𝑥). The inverse Φ−1(𝑝) is called the quantile
function of the standard normal distribution.

Figure 4.4 shows the pdf and cdf of the standard normal distribution.
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Figure 4.4: Probability density function (left) and cumulative density function (right)
of the standard normal distribution.

� R code

The normal probability density function is given by dnorm(), the cumulative
distribution function is pnorm() and the quantile function is qnorm().

4.5 Gamma distribution and special cases

The gamma distribution is widely used in statistics, and also appears in various
parametrisations and under some other names, such as univariate Wishart and
scaled chi-squared distribution

Standard parametrisation

The gamma distribution Gam(𝛼, 𝜃) is a continuous distribution with two parameters
𝛼 > 0 (shape) and 𝜃 > 0 (scale):

𝑥 ∼ Gam(𝛼, 𝜃)
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and support 𝑥 ∈ [0,∞[ with mean

E(𝑥) = 𝛼𝜃

and variance
Var(𝑥) = 𝛼𝜃2

The gamma distribution is also often used with a rate parameter 𝛽 = 1/𝜃. Therefore
one needs to pay attention which parametrisation is used.

The probability density function (pdf) is:

𝑝(𝑥 |𝛼, 𝜃) = 1
Γ(𝛼)𝜃𝛼

𝑥𝛼−1𝑒−𝑥/𝜃

� R code

The density of the gamma distribution is available in the function dgamma().
The cumulative density function is pgamma() and the quantile function is
qgamma().

Wishart parametrisation and scaled chi-squared distribution

The gamma distribution is often used with a different set of parameters 𝑘 = 2𝛼 > 0
and 𝑠2 = 𝜃/2 > 0 (hence conversely 𝛼 = 𝑘/2 and 𝜃 = 2𝑠2). In this form it is known
as univariate or one-dimensional Wishart distribution

W1

(
𝑠2 , 𝑘

)
named after John Wishart (1898–1954). In the Wishart parametrisation the mean
is

E(𝑥) = 𝑘𝑠2

and the variance
Var(𝑥) = 2𝑘𝑠4

Another name for the one-dimensional Wishart distribution with exactly the same
parametrisation is scaled chi-squared distribution denoted as

𝑠2𝜒2
𝑘

Finally, we also often employ the Wishart distribution in mean parametrisation

W1

(
𝑠2 =

𝜇

𝑘
, 𝑘

)
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with parameters 𝜇 = 𝑘𝑠2 > 0 and 𝑘 > 0 (and thus 𝜃 = 2𝜇/𝑘). In this parametrisation
the mean is

E(𝑥) = 𝜇

and the variance

Var(𝑥) = 2𝜇2

𝑘

Construction as sum of squared normals

A gamma distributed variable with 𝑘 = 1, 2, 3 . . . or equivalently 𝛼 = 1/2, 1, 3/2, . . .
can be constructed as follows. Assume 𝑘 independent normal random variables
with mean 0 and variance 𝑠2:

𝑧1 , 𝑧2 , . . . , 𝑧𝑘 ∼ 𝑁(0, 𝑠2)

Then the sum of the squares

𝑥 =

𝑘∑
𝑖=1

𝑧2
𝑖

follows the distribution

𝑥 ∼ 𝑠2𝜒2
𝑘

= W1

(
𝑠2 , 𝑘

)
= Gam

(
𝛼 =

𝑘

2 , 𝜃 = 2𝑠2
)

Chi-squared distribution

The chi-squared distribution 𝜒2
𝑘

is a special one-parameter restriction of the gamma
resp. Wishart distribution obtained when setting 𝑠2 = 1 or, equivalently, 𝜃 = 2 or
𝜇 = 𝑘.

It has mean E(𝑥) = 𝑘 and variance Var(𝑥) = 2𝑘. The chi-squared distribution 𝜒2
𝑘

equals Gam(𝛼 = 𝑘/2, 𝜃 = 2) and W1 (1, 𝑘).
Figure 4.5 shows plots the density of the chi-squared distribution for degrees of
freedom 𝑘 = 1 and 𝑘 = 3.

� R code

The density of the chi-squared distribution is given by dchisq(). The cumu-
lative density function is pchisq() and the quantile function is qchisq().
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Figure 4.5: Density of the chi-squared distribution.

Exponential distribution

The exponential distribution Exp(𝜃) with scale parameter 𝜃 is another special
one-parameter restriction of the gamma distribution with shape parameter set to
𝛼 = 1 (or equivalently 𝑘 = 2).

The exponential distribution Exp(𝜃) equals Gam(𝛼 = 1, 𝜃) and W1(𝑠2 = 𝜃/2, 𝑘 =

2).
The density of the exponential distribution is

𝑝(𝑥 |𝜃) = 1
𝜃
𝑒−𝑥/𝜃

with mean E(𝑥) = 𝜃 and variance Var(𝑥) = 𝜃2.

Just like the gamma distribution the exponential distribution is also often specified
using a rate parameter 𝛽 = 1/𝜃 instead of a scale parameter 𝜃.

� R code

The command dexp() returns the density of the exponential distribution,
pexp() is the corresponding cumulative density function and qexp() is the
quantile function.
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4.6 Inverse gamma distribution

Also know as inverse univariate Wishart distribution.

Standard parametrisation

A random variable 𝑥 following an inverse gamma distribution is denoted by

𝑥 ∼ Inv-Gam(𝛼, 𝛽)

with two parameters 𝛼 > 0 (shape parameter) and 𝛽 > 0 (scale parameter) and
support 𝑥 > 0.

The inverse of 𝑥 is then gamma distributed

1
𝑥
∼ Gam(𝛼, 𝜃 = 𝛽−1)

where 𝛼 is the shared shape parameter and 𝜃 the scale parameter of the gamma
distribution.

The inverse gamma distribution Inv-Gam(𝛼, 𝛽) has density

𝑝(𝑥 |𝛼, 𝛽) = 𝛽𝛼

Γ(𝛼) (1/𝑥)
𝛼+1𝑒−𝛽/𝑥

The mean of the inverse gamma distribution is

E(𝑥) = 𝛽

𝛼 − 1

and the variance

Var(𝑥) = 𝛽2

(𝛼 − 1)2(𝛼 − 2)

Thus, for the mean to exist we have the restriction 𝛼 > 1 and for the variance to exist
𝛼 > 2.

� R code

The extraDistr package implements the inverse gamma distribution. The
function extraDistr::dinvgamma() provides the density, the function
extraDistr::pinvgamma() returns the corresponding cumulative density
function and extraDistr::qinvgamma() is the quantile function.
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Wishart parametrisation

The inverse gamma distribution is frequently used with a different set of parameters
𝜓 = 2𝛽 (scale parameter) and 𝜈 = 2𝛼 (shape parameter), or conversely 𝛼 = 𝜈/2 and
𝛽 = 𝜓/2. In this form it is called one-dimensional inverse Wishart distribution

W−1
1 (𝜓, 𝜈)

with mean given by

E(𝑥) =
𝜓

𝜈 − 2
for 𝜈 > 2 and variance

Var(𝑥) = 2𝜓2

(𝜈 − 2)2(𝜈 − 4)
for 𝜈 > 4.

The inverse univariate Wishart and univariate Wishart distributions are linked. If a
random variable 𝑥 is inverse Wishart distributed

𝑥 ∼ W−1
1 (𝜓, 𝜈)

then the inverse of 𝑥 is Wishart distributed with inverted scale parameter:
1
𝑥
∼ W1(𝑠2 = 𝜓−1 , 𝑘 = 𝜈)

where 𝑘 is the shape parameter and 𝑠2 the scale parameter of the Wishart distribu-
tion.

Instead of 𝜓 and 𝜈 we may also equivalently use 𝜅 = 𝜈 − 2 and 𝜇 = 𝜓/(𝜈 − 2) as
parameters for the inverse Wishart distribution, so that

W−1
1 (𝜓 = 𝜅𝜇, 𝜈 = 𝜅 + 2)

has mean
E(𝑥) = 𝜇

with 𝜅 > 0 and the variance is

Var(𝑥) = 2𝜇2

𝜅 − 2
with 𝜅 > 2. This mean parametrisation is useful when employing the inverse
gamma distribution as prior and posterior.

Finally, with W−1
1 (𝜓 = 𝜈𝜏2 , 𝜈), where 𝜏2 = 𝜇 𝜅

𝜅+2 =
𝜓
𝜈 is a biased mean parameter, we

get the scaled inverse chi-squared distribution 𝜏2Inv-𝜒2
𝜈 with

E(𝑥) = 𝜏2 𝜈
𝜈 − 2

for 𝜈 > 2 and
Var(𝑥) = 2𝜏4

𝜈 − 4
𝜈2

(𝜈 − 2)2
for 𝜈 > 4.
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Figure 4.6: The location-scale 𝑡 distribution and its relatives.

4.7 Location-scale 𝑡-distribution and special cases

Location-scale 𝑡-distribution

The location-scale 𝑡-distribution lst(𝜇, 𝜏2 , 𝜈) is a generalisation of the normal distri-
bution. It has an additional parameter 𝜈 > 0 (degrees of freedom) that controls the
probability mass in the tails. For small values of 𝜈 the distribution is heavy-tailed
— indeed so heavy that for 𝜈 ≤ 1 even the mean is not defined and for 𝜈 ≤ 2 the
variance is undefined.

The probability density of lst(𝜇, 𝜏2 , 𝜈) is

𝑝(𝑥 |𝜇, 𝜏2 , 𝜈) =
Γ( 𝜈+1

2 )
√
𝜋𝜈𝜏2 Γ( 𝜈2 )

(
1 + (𝑥 − 𝜇)2

𝜈𝜏2

)−(𝜈+1)/2

with support 𝑥 ∈] − ∞,∞[. The mean is (for 𝜈 > 1)

E(𝑥) = 𝜇

and the variance (for 𝜈 > 2)
Var(𝑥) = 𝜏2 𝜈

𝜈 − 2

For 𝜈 → ∞ the location-scale 𝑡-distribution lst(𝜇, 𝜏2 , 𝜈) becomes the normal distri-
bution 𝑁(𝜇, 𝜏2).
Figure 4.6 illustrates the relationship of the location-scale 𝑡 distribution lst(𝜇, 𝜏2 , 𝜈)
with related distributions such as the normal distribution 𝑁(𝜇, 𝜏2), Student’s 𝑡-
distribution 𝑡𝜈 and the Cauchy distribution Cau(𝜇, 𝜏) discussed further below.
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� R code

The package extraDistr implements the location-scale 𝑡-distribution. The
function extraDistr::dlst() returns the density, extraDistr::plst() is
the corresponding cumulative density function and extraDistr::qlst() is
the quantile function.

Location-scale 𝑡-distribution as compound distribution

Suppose that
𝑥 |𝑠2 ∼ 𝑁(𝜇, 𝑠2)

with corresponding density 𝑝(𝑥 |𝑠2) and mean E(𝑥 |𝑠2) = 𝜇 and variance Var(𝑥 |𝑠2) =
𝑠2.

Now let the variance 𝑠2 be distributed as univariate inverse gamma / inverse
Wishart

𝑠2 ∼ W−1
1 (𝜓 = 𝜅𝜎2 , 𝜈 = 𝜅 + 2) = W−1

1 (𝜓 = 𝜏2𝜈, 𝜈)
with corresponding density 𝑝(𝑠2) and mean E(𝑠2) = 𝜎2 = 𝜏2𝜈/(𝜈 − 2). Note
we use here both the mean parametrisation (𝜎2 , 𝜅) and the inverse chi-squared
parametrisation (𝜏2 , 𝜈).

The joint density for 𝑥 and 𝑠2 is 𝑝(𝑥, 𝑠2) = 𝑝(𝑥 |𝑠2)𝑝(𝑠2). We are interested in the
marginal density for 𝑥:

𝑝(𝑥) =
∫

𝑝(𝑥, 𝑠2)𝑑𝑠2 =

∫
𝑝(𝑠2)𝑝(𝑥 |𝑠2)𝑑𝑠2

This is a compound distribution of a normal with fixed mean 𝜇 and variance 𝑠2

varying according the inverse gamma distribution. Calculating the integral results
in the location-scale 𝑡-distribution with parameters

𝑥 ∼ lst
(
𝜇, 𝜎2 𝜅

𝜅 + 2 , 𝜅 + 2
)
= lst

(
𝜇, 𝜏2 , 𝜈

)
with mean

E(𝑥) = 𝜇

and variance
Var(𝑥) = 𝜎2 = 𝜏2 𝜈

𝜈 − 2

From the law of total expectation and variance we can also directly verify that

E(𝑥) = E(E(𝑥 |𝑠2)) = 𝜇
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and

Var(𝑥) = E(Var(𝑥 |𝑠2)) + Var(E(𝑥 |𝑠2))
= E(𝑠2) = 𝜎2

= 𝜏2 𝜈
𝜈 − 2

Student’s 𝑡-distribution

For 𝜇 = 0 and 𝜏2 = 1 the location-scale 𝑡-distribution becomes the Student’s 𝑡-
distribution 𝑡𝜈. It is named after “Student” which was the pseudonym of William
Sealy Gosset (1876–1937).

It has mean 0 (for 𝜈 > 1) and variance 𝜈
𝜈−2 (for 𝜈 > 2).

It can thus be viewed as a generalisation of the standard normal distribution
𝑁(0, 1).
If 𝑦 ∼ 𝑡𝜈 then 𝑥 = 𝜇 + 𝜏𝑦 is distributed as 𝑥 ∼ lst(𝜇, 𝜏2 , 𝜈).
For 𝜈 → ∞ the 𝑡-distribution becomes equal to 𝑁(0, 1).
The probability density of 𝑡𝜈 is

𝑝(𝑥 |𝜈) =
Γ( 𝜈+1

2 )
√
𝜋𝜈 Γ( 𝜈2 )

(
1 + 𝑥2

𝜈

)−(𝜈+1)/2

with support 𝑥 ∈] − ∞,∞[.

� R code

The command dt() returns the density of the 𝑡-distribution, pt() is the
corresponding cumulative density function and qt() is the quantile function.

Cauchy and standard Cauchy distribution

For 𝜈 = 1 the location-scale 𝑡-distribution becomes the Cauchy distribution Cau(𝜇, 𝜏)
with density 𝑝(𝑥 |𝜇, 𝜏) = 𝜏

𝜋(𝜏2+(𝑥−𝜇)2) . It is named after Augustin-Louis Cauchy (1789–
1857).

For 𝜈 = 1 the 𝑡-distribution becomes the standard Cauchy distribution Cau(0, 1)
with density 𝑝(𝑥) = 1

𝜋(1+𝑥2) .
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� R code

The command dcauchy() returns the density of the Cauchy distribution,
pcauchy() is the corresponding cumulative density function and qcauchy()
is the quantile function.
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5.1 Categorical distribution

The categorical distribution is a generalisation of the Bernoulli distribution from
two classes to 𝐾 classes.

The categorical distribution Cat(𝝅) describes a discrete random variable with 𝐾
states (“categories”, “classes”, “bins”) where the parameter vector 𝝅 = (𝜋1 , . . . ,𝜋𝐾)𝑇
specifies the probability of each of class so that Pr("class k") = 𝜋𝑘 . The parameters
satisfy 𝜋𝑘 ∈ [0, 1] and

∑𝐾
𝑘=1 𝜋𝑘 = 1, hence there are 𝐾 − 1 independent parameters

in a categorical distribution (and not 𝐾).

There are two main ways to numerically represent “class k”:

i) by “integer encoding”, i.e. by the corresponding integer 𝑘.
ii) by “one hot encoding”, i.e. by an indicator vector 𝒙 = (𝑥1 , . . . , 𝑥𝐾)𝑇 =

(0, 0, . . . , 1, . . . , 0)𝑇 containing zeros everywhere except for the element 𝑥𝑘 = 1
at position 𝑘. Thus all 𝑥𝑘 ∈ {0, 1} and

∑𝐾
𝑘=1 𝑥𝑘 = 1.

In the following we use “one hot encoding”. Therefore sampling from a categorical
distribution with parameters 𝝅

𝒙 ∼ Cat(𝝅)
yields a random index vector 𝒙.

The corresponding probability mass function (pmf) can be written conveniently in
terms of 𝑥𝑘 as

𝑝(𝒙 |𝝅) =
𝐾∏
𝑘=1

𝜋𝑥𝑘
𝑘

=

{
𝜋𝑘 if 𝑥𝑘 = 1

and the log-pmf as

log 𝑝(𝒙 |𝝅) =
𝐾∑
𝑘=1

𝑥𝑘 log𝜋𝑘 =
{
log𝜋𝑘 if 𝑥𝑘 = 1

In order to be more explicit that the categorical distribution has 𝐾 − 1 and not 𝐾
parameters we rewrite the log-density with 𝜋𝐾 = 1 −∑𝐾−1

𝑘=1 𝜋𝑘 and 𝑥𝐾 = 1 −∑𝐾−1
𝑘=1 𝑥𝑘

32



5 Multivariate distributions

as

log 𝑝(𝒙 |𝝅) =
𝐾−1∑
𝑘=1

𝑥𝑘 log𝜋𝑘 + 𝑥𝐾 log𝜋𝐾

=

𝐾−1∑
𝑘=1

𝑥𝑘 log𝜋𝑘 +
(
1 −

𝐾−1∑
𝑘=1

𝑥𝑘

)
log

(
1 −

𝐾−1∑
𝑘=1

𝜋𝑘

)
Note that there is no particular reason to choose 𝜋𝐾 as dependent of the probabilities
of the other classes, in its place any other of the 𝜋𝑘 may be selected.

The expected value is E(𝒙) = 𝝅, in component notation E(𝑥𝑘) = 𝜋𝑘 . The covariance
matrix is Var(𝒙) = Diag(𝝅)−𝝅𝝅𝑇 , which in component notation is Var(𝑥𝑖) = 𝜋𝑖(1−𝜋𝑖)
and Cov(𝑥𝑖 , 𝑥 𝑗) = −𝜋𝑖𝜋 𝑗 .
The form of the categorical covariance matrix follows directly from the definition of
the variance Var(𝒙) = E(𝒙𝒙𝑇)−E(𝒙)E(𝒙)𝑇 and noting that 𝑥2

𝑖
= 𝑥𝑖 and 𝑥𝑖𝑥 𝑗 = 0 if 𝑖 ≠ 𝑗.

Furthermore, the categorical covariance matrix is singular by construction, as the 𝐾
random variables 𝑥1 , . . . , 𝑥𝐾 are dependent through the constraint

∑𝐾
𝑘=1 𝑥𝑘 = 1.

For 𝐾 = 2 the categorical distribution reduces to the Bernoulli Ber(𝜃) distribution,
with 𝜋1 = 𝜃 and 𝜋2 = 1 − 𝜃 (Section 4.1).

5.2 Multinomial distribution

The multinomial distribution Mult(𝑛,𝝅) arises from repeated categorical sampling,
in the same fashion as the binomial distribution arises from repeated Bernoulli
sampling. Thus, if 𝒙1 , . . . , 𝒙𝑛 are 𝑛 independent Cat(𝝅) random categorical variables
then 𝒚 =

∑𝑛
𝑖=1 𝒙 𝑖 is distributed as Mult(𝑛,𝝅).

The corresponding pmf describes the probability of a pattern 𝑦1 , . . . , 𝑦𝐾 of samples
distributed across 𝐾 classes (with 𝑛 =

∑𝐾
𝑘=1 𝑦𝑘):

𝑝(𝒚 |𝑛, 𝜃) =
(

𝑛

𝑦1 , . . . , 𝑦𝑛

) 𝐾∏
𝑘=1

𝜋
𝑦𝑘
𝑘

where
( 𝑛
𝑦1 ,...,𝑦𝑛

)
is the multinomial coefficient.

The expected value is
E(𝒚) = 𝑛𝝅

which in component notation is E(𝑦𝑘) = 𝑛𝜋𝑘 . The covariance matrix is

Var(𝒚) = 𝑛(Diag(𝝅) − 𝝅𝝅𝑇)

which in component notation is Var(𝑥𝑖) = 𝑛𝜋𝑖(1 − 𝜋𝑖) and Cov(𝑥𝑖 , 𝑥 𝑗) = −𝑛𝜋𝑖𝜋 𝑗 .

33

5 Multivariate distributions

Figure 5.1: Multinomial urn model.

Standardised to unit interval we get:

𝑦𝑖

𝑛
∈

{
0, 1
𝑛
,

2
𝑛
, ..., 1

}
E

( 𝒚
𝑛

)
= 𝝅

Var
( 𝒚
𝑛

)
=

Diag(𝝅) − 𝝅𝝅𝑇

𝑛

Var
( 𝑦𝑖
𝑛

)
=

𝜋𝑖(1 − 𝜋𝑖)
𝑛

Cov
( 𝑦𝑖
𝑛
,
𝑦 𝑗

𝑛

)
= −

𝜋𝑖𝜋 𝑗
𝑛

For 𝑛 = 1 the multinomial distribution reduces to the categorical distribution
(Section 5.1).

For 𝐾 = 2 the multinomial distribution reduces to the Binomial distribution
(Section 4.2).

The multinomial distribution may be illustrated by an urn model distributing 𝑛
balls into 𝐾 bins (Figure 5.1).

5.3 Dirichlet distribution

Standard parametrisation

The Dirichlet distribution is the multivariate generalisation of the beta distribution.
It is named after Peter Gustav Lejeune Dirichlet (1805–1859).
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A Dirichlet distributed random vector is denoted by

𝒙 ∼ Dir(𝜶)

with parameter 𝜶 = (𝛼1 , ..., 𝛼𝐾)𝑇 > 0 and 𝐾 ≥ 2 and where the support of 𝒙 is the
𝐾 − 1 dimensional simplex with 𝑥𝑖 ∈ [0, 1] and

∑𝐾
𝑖=1 𝑥𝑖 = 1.

The density of the Dirichlet distribution Dir(𝜶) is

𝑝(𝒙 |𝜶) = 1
𝐵(𝜶)

𝐾∏
𝑘=1

𝑥
𝛼𝑘−1
𝑘

This depends on the beta function with multivariate argument defined as

𝐵(𝒛) =
∏𝐾

𝑘=1 Γ(𝑧𝑘)

Γ

(∑𝐾
𝑘=1 𝑧𝑘

)

Figure 5.2: Stick breaking visualisation of a Dirichlet random variable.

A Dirichlet random variable can be visualised as breaking a unit stick into 𝐾
individual pieces of lengths 𝑥1 to 𝑥𝐾 adding up to one (Figure 5.2).

For 𝐾 = 2 the Dirichlet distribution reduces to the beta distribution (Section 4.3).

Mean parametrisation

Instead of employing 𝜶 as parameter vector another useful reparametrisation
Dir(𝝅, 𝑘) of the Dirichlet distribution is in terms of a mean parameter 𝝅, with
𝜋𝑖 ∈ [0, 1] and

∑𝐾
𝑖=1 𝜋𝑖 = 1, and a concentration parameter 𝑘 > 0. These are given

by

𝑘 =

𝐾∑
𝑖=1

𝛼𝑖

and
𝝅 =

𝜶
𝑘

The original parameters can be recovered by 𝛼 = 𝝅𝑘.
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The mean and variance of the Dirichlet distribution expressed in terms of 𝝅 and 𝑘
are

E(𝒙) = 𝝅

and

Var (𝒙) =
Diag(𝝅) − 𝝅𝝅𝑇

𝑘 + 1
which in component notation is

Var(𝑥𝑖) =
𝜋𝑖(1 − 𝜋𝑖)
𝑘 + 1

and
Cov(𝑥𝑖 , 𝑥 𝑗) = −

𝜋𝑖𝜋 𝑗
𝑘 + 1

Finally, note that the mean and variance of the continuous Dirichlet distribution
closely match those of the unit-standardised discrete multinomial distribution
above.

5.4 Multivariate normal distribution

The univariate normal distribution for a random scalar 𝑥 generalises to the multi-
variate normal distribution for a random vector 𝒙 = (𝑥1 , 𝑥2 , ..., 𝑥𝑑)𝑇 .

If 𝒙 follows a multivariate normal distribution we write

𝒙 ∼ 𝑁𝑑(𝝁,𝚺)

where 𝝁 is the mean (location) parameter and 𝚺 the variance (scale) parameter.

The corresponding density is

𝑝(𝒙 |𝝁,𝚺) = det(2𝜋𝚺)−1/2 exp
(
−1

2 (𝒙 − 𝝁)𝑇𝚺−1(𝒙 − 𝝁)
)

As det(2𝜋𝚺)−1/2 = det(2𝜋𝑰𝑑)−1/2 det(𝚺)−1/2 = (2𝜋)−𝑑/2 det(𝚺)−1/2 the density can
also be written as

𝑝(𝒙 |𝝁,𝚺) = (2𝜋)−𝑑/2 det(𝚺)−1/2 exp
(
−1

2 (𝒙 − 𝝁)𝑇𝚺−1(𝒙 − 𝝁)
)

i.e. with explicit occurrence of the dimension 𝑑.

The expectation of 𝒙 is E(𝒙) = 𝝁 and the variance is Var(𝒙) = 𝚺.

For 𝑑 = 1 the random vector 𝒙 = 𝑥 is a scalar and 𝝁 = 𝜇 and 𝚺 = 𝜎2 and the
multivariate normal density reduces to the univariate normal density (Section 4.4).
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5.5 Wishart distribution

The Wishart distribution is a multivariate generalisation of the gamma distribution.

Recall that the gamma distribution can be motivated as the distribution of sums
of squared normal random variables. Likewise, the Wishart distribution can be
understood as the sum of squared multivariate normal variables:

𝒛1 , 𝒛2 , . . . , 𝒛𝑘
iid∼ 𝑁𝑑(0, 𝑺)

with 𝑺 = (𝑠𝑖 𝑗) the specified covariance matrix. The random variable

𝑿︸︷︷︸
𝑑×𝑑

=

𝑘∑
𝑖=1

𝒛 𝑖𝒛𝑇𝑖︸︷︷︸
𝑑×𝑑

is a random matrix and is distributed as

𝑿 ∼ W𝑑 (𝑺, 𝑘)

with mean
E(𝑿 ) = 𝑘𝑺

and variances
Var(𝑥𝑖 𝑗) = 𝑘

(
𝑠2
𝑖 𝑗 + 𝑠𝑖𝑖𝑠 𝑗 𝑗

)
We often also employ the Wishart distribution in mean parametrisation

W𝑑

(
𝑺 =

𝑴
𝑘
, 𝑘

)
with parameters 𝑴 = 𝑘𝑺 and 𝑘. In this parametrisation the mean is

E(𝑿 ) = 𝑴 = (𝜇𝑖 𝑗)

and variances are

Var(𝑥𝑖 𝑗) =
𝜇2
𝑖 𝑗
+ 𝜇𝑖𝑖𝜇𝑗 𝑗

𝑘

If 𝑺 or 𝑴 is a scalar rather than a matrix then the multivariate Wishart distribution
reduces to the univariate Wishart aka gamma distribution (Section 4.5).
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5.6 Inverse Wishart distribution

The inverse Wishart distribution is a multivariate generalisation of the inverse
gamma distribution and is linked to the Wishart distribution.

A random matrix 𝑿 following an inverse Wishart distribution is denoted by

𝑿 ∼ W−1
𝑑 (𝚿, 𝜈)

where 𝚿 is the scale parameter and 𝜈 the shape parameter. The corresponding
mean is given by

E(𝑿 ) = 𝚿
𝜈 − 𝑑 − 1

and the variances are

Var(𝑥𝑖 𝑗) =
(𝜈 − 𝑑 + 1)𝜓2

𝑖 𝑗
+ (𝜈 − 𝑑 − 1)𝜓𝑖𝑖𝜓 𝑗 𝑗

(𝜈 − 𝑑)(𝜈 − 𝑑 − 1)2(𝜈 − 𝑑 − 3)

The inverse of 𝑿 is then Wishart distributed:

𝑿−1 ∼ W𝑑

(
𝑺 = 𝚿−1 , 𝑘 = 𝜈

)
Instead of𝚿 and 𝜈we may use the mean parametrisation with parameters𝜅 = 𝜈−𝑑−1
and 𝑴 = 𝚿/(𝜈 − 𝑑 − 1):

𝑿 ∼ W−1
𝑑 (𝚿 = 𝜅𝑴 , 𝜈 = 𝜅 + 𝑑 + 1)

with mean
E(𝑿 ) = 𝑴

and variances

Var(𝑥𝑖 𝑗) =
(𝜅 + 2)𝜇2

𝑖 𝑗
+ 𝜅 𝜇𝑖𝑖𝜇𝑗 𝑗

(𝜅 + 1)(𝜅 − 2)

If 𝚿 or 𝑴 is a scalar rather than a matrix then the multivariate inverse Wishart
distribution reduces to the univariate inverse Wishart aka inverse gamma distribution
(Section 4.6).
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