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Welcome

The Matrix and Calculus Refresher notes were written by Korbinian Strimmer
from 2018–2024. This version is from 8 March 2024.

If you have any questions, comments, or corrections please get in touch! 1

Updates

The notes will be updated from time to time. To view the current version visit
the

• online version of the Matrix and Calculus Refresher notes.

You may also wish to download the Matrix and Calculus Refresher notes as

• PDF in A4 format for printing (double page layout), or as
• 6x9 inch PDF for use on tablets (single page layout).

License

These notes are licensed to you under Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

1Email address: korbinian.strimmer@manchester.ac.uk
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Preface

About the author

Hello! My name is Korbinian Strimmer and I am a Professor in Statistics. I
am a member of the Statistics group at the Department of Mathematics of the
University of Manchester. You can find more information about me on my home
page.

About the notes

In statistics and machine learning we make frequent use of matrix notation,
matrix algebra, matrix decompositions and also of vector and matrix calculus.
The aim of these supplementary notes is to provide a refresher for students to
quickly gain a working knowledge about matrices and the calculus of functions
with several variables.

The notes are supporting information for a number of lecture notes of statistical
courses I am or have been teaching at the Department of Mathematics of the
University of Manchester.

This includes the currently offered modules:

• MATH27720 Statistics 2: Likelihood and Bayes and
• MATH38161 Multivariate Statistics,

as well as the retired module (not offered any more):

• MATH20802 Statistical Methods.
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1 Matrix essentials

1.1 Overview

In statistics we will frequently make use of matrix calculations and matrix
notation.

Throughout we mostly work with real matrices, i.e. we assume all matrix
elements are real numbers. However, one important matrix decomposition —
the eigenvalue decomposition — can yield complex-valued matrices even when
applied to real matrices. Thus occasionally we will also need to deal also with
complex numbers.

For further details on matrix theory please consult the lecture notes of related
modules (e.g. linear algebra).

1.2 Matrix basics

1.2.1 Matrix notation

In matrix notation we distinguish between scalars, vectors, and matrices:

Scalar: 𝑥, 𝑋, lower or upper case, plain type.

Vector: 𝒙, lower case, bold type. In handwriting an arrow ®𝑥 indicates a vector.

In component notation we write 𝒙 =
©«
𝑥1
...
𝑥𝑑

ª®®¬. By default, a vector is a column vector,

i.e. the elements are arranged in a column and index of the components 𝑥𝑖 refers
to the row.

The transpose of a vector (indicated by the superscript 𝑇) turns it into a row
vector. To save space we can write the column vector 𝒙 as 𝒙 = (𝑥1 , . . . , 𝑥𝑑)𝑇 so
that 𝒙𝑇 is a row vector.

Matrix: 𝑿 , upper case, bold type. In handwriting an underscore 𝑋 indicates a
matrix.
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1 Matrix essentials

In component notation we write 𝑿 = (𝑥𝑖 𝑗). By convention, the first index (here
𝑖) of the scalar elements 𝑥𝑖 𝑗 denotes the row and the second index (here 𝑗)
the column of the matrix. For 𝑛 the number of rows and 𝑑 the number of
columns we can view the matrix 𝑿 = (𝒙1 , . . . , 𝒙𝑑) either as being composed

of 𝑑 column vectors 𝒙 𝑗 =
©«
𝑥1𝑗
...

𝑥𝑛𝑗

ª®®¬ or 𝑿 =
©«
𝒛𝑇1
...

𝒛𝑇𝑛

ª®®¬ being composed of 𝑛 row vectors

𝒛𝑇
𝑖
= (𝑥𝑖1 , . . . , 𝑥𝑖𝑑).

A (column) vector of dimension 𝑑 is a matrix of size 𝑑 × 1. A row vector of
dimension 𝑑 is a matrix of size 1 × 𝑑. A scalar is of dimension 1 and is a matrix
of size 1 × 1.

1.2.2 Notation for random vectors and matrices

A random matrix (vector) is a matrix (vector) whose elements are random
variables.

It is common practise in univariate statistics to distinguish random variables
and their fixed realisations by using upper case versus lower case. However, this
convention breaks down when working with matrices and vectors.

Therefore, when working with multivariate random quantities it is best practise
(see e.g. Mardia et al. 1979)1 to always state explicitly whether a matrix, vector
or scalar is a random variable, especially when this is not obvious from the
context.

1.2.3 Special matrices

𝑰𝑑 is the identity matrix. It is a square matrix of size 𝑑 × 𝑑 with the diagonal
filled with 1 and off-diagonals filled with 0.

𝑰𝑑 =

©«
1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 0
...

...
. . .

0 0 0 1

ª®®®®®¬

1Mardia, K. V., J. T. Kent and J. M. Bibby. 1979. Multivariate Analysis. Academic Press.
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1 is a matrix that contains only ones. Most often it is used in the form of a column
vector with 𝑑 rows:

1𝑑 =

©«
1
1
1
...
1

ª®®®®®¬
Similarly, 0 is a matrix that contains only zeros. Most often it is used in the form
of a column vector with 𝑑 rows:

0𝑑 =

©«
0
0
0
...
0

ª®®®®®¬
A diagonal matrix is a matrix where all off-diagonal elements are zero.
By Diag(𝑨) we access the diagonal elements of a matrix as vector and by
Diag(𝑎1 , . . . , 𝑎𝑑) we specify a diagonal matrix by listing the diagonal elements.

Any matrix can be partitioned into blocks or sub-matrices. A block-structured
matrix or block matrix partitioning rows and columns into two groups has the
form

𝑨 =

(
𝑨11 𝑨12
𝑨21 𝑨22

)
,

where 𝑨11, 𝑨22, 𝑨12 and 𝑨21 are themselves matrices. If 𝑨 is symmetric (hence
square) then 𝑨11 and 𝑨22 must also be symmetric and 𝑨21 = 𝑨𝑇

12.

A block diagonal matrix is a symmetric block matrix with vanishing off-diagonal
blocks and symmetric sub-matrices along the diagonal.

A triangular matrix is a square matrix whose elements either below or above
the diagonal are all zero (upper vs. lower triangular matrix).

1.3 Simple matrix operations

1.3.1 Matrix addition and multiplication

Matrices behave much like common numbers. For example, we can add matrices
𝑪 = 𝑨 + 𝑩 and multiply matrices 𝑪 = 𝑨𝑩.

For matrix addition 𝑪 = 𝑨+𝑩 we add the corresponding elements 𝑐𝑖 𝑗 = 𝑎𝑖 𝑗 + 𝑏𝑖 𝑗 .
For matrix addition 𝑨 and 𝑩 must have the same dimensions, i.e. the same
number of rows and columns.
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1 Matrix essentials

The dot product, or scalar product, of two vectors 𝒂 and 𝒃 is a scalar given by
𝒂 · 𝒃 = ⟨𝒂 , 𝒃⟩ = 𝒂𝑇𝒃 = 𝒃𝑇𝒂 =

∑𝑑
𝑖=1 𝑎𝑖𝑏𝑖 .

Matrix multiplication 𝑪 = 𝑨𝑩 is obtained by setting 𝑐𝑖 𝑗 =
∑𝑚

𝑘=1 𝑎𝑖𝑘𝑏𝑘 𝑗 where 𝑚
is the number of columns of 𝑨 and the number of rows in 𝑩. Thus, 𝑪 contains
all possible dot products of the row vectors in 𝑨 with the column vectors in 𝑩.
For matrix multiplication the number of columns in 𝑨 must match the number
of rows in 𝑩. Note that matrix multiplication in general (for 𝑚 > 1) does not
commute, i.e. 𝑨𝑩 ≠ 𝑩𝑨.

1.3.2 Matrix transpose

The matrix transpose 𝑨𝑇 indicate by the superscript 𝑇 interchanges rows and
columns of a matrix. The transpose is a linear operator (𝑨 + 𝑩)𝑇 = 𝑨𝑇 + 𝑩𝑇 and
applied to a matrix product it reverses the ordering, i.e. (𝑨𝑩)𝑇 = 𝑩𝑇𝑨𝑇 .

If 𝑨 = 𝑨𝑇 then 𝑨 is symmetric (and square).

By construction given a rectangular 𝑨 the matrices 𝑨𝑇𝑨 and 𝑨𝑨𝑇 are symmetric
with non-negative diagonal.

1.4 Matrix summaries

1.4.1 Row, column and grand sum

Assume a matrix 𝑨 of size 𝑛 × 𝑚.

The sum over the 𝑚 entries of row 𝑖 is
∑𝑚

𝑗=1 𝑎𝑖 𝑗 . In matrix notation the 𝑛 row
sums are given by 𝑨 1𝑚 .

The sum over the 𝑛 entries of column 𝑗 is
∑𝑛

𝑖=1 𝑎𝑖 𝑗 . In matrix notation the 𝑚

column sums are 𝑨𝑇1𝑛 .

The grand sum of all matrix entries of 𝑨 is obtained by

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑎𝑖 𝑗 = 1𝑇𝑛 𝑨 1𝑚
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1.4.2 Matrix trace

The trace of the matrix is the sum of the diagonal elements Tr(𝑨) = ∑
𝑎𝑖𝑖 .

The trace is invariant against transposition, i.e.

Tr(𝑨) = Tr(𝑨𝑇)

A useful identity for the matrix trace of the product of two matrices is

Tr(𝑨𝑩) = Tr(𝑩𝑨)

Intriguingly, the trace of a matrix equals the sum of the eigenvalues of the matrix
(see further below).

1.4.3 Row, column and grand sum of squares

The sum over the 𝑚 squared entries of row 𝑖 is
∑𝑚

𝑗=1 𝑎
2
𝑖 𝑗

. In matrix notation the 𝑛

row sums of squares are given by Diag(𝑨𝑨𝑇).
The sum over the 𝑛 squared entries of column 𝑗 is

∑𝑛
𝑖=1 𝑎

2
𝑖 𝑗
. In matrix notation

the 𝑚 column sums of squares are Diag(𝑨𝑇𝑨).
The grand sum of all squared elements of 𝑨 is obtained by

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑎2
𝑖 𝑗 = Tr(𝑨𝑇𝑨) = Tr(𝑨𝑨𝑇)

This is also known as the squared Frobenius norm of 𝑨 (see below).

1.4.4 Sum of squared diagonal entries

The sum of the squared entries on the diagonal is in matrix notation

Diag(𝑨)𝑇Diag(𝑨) =
min(𝑛,𝑚)∑

𝑖=1
𝑎2
𝑖𝑖
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1.4.5 Frobenius inner product

The Frobenius inner product between two rectangular matrices of the same
dimension is the scalar

⟨𝑨, 𝑩⟩ = Tr(𝑨𝑩𝑇) = Tr(𝑩𝑨𝑇)
= Tr(𝑨𝑇𝑩) = Tr(𝑩𝑇𝑨)
=
∑
𝑖 , 𝑗

𝑎𝑖 𝑗𝑏𝑖 𝑗 .

This generalises the dot product between two vectors. Note that the dot product
can therefore also be written as the trace of a matrix

⟨𝒂 , 𝒃⟩ = Tr(𝒂𝒃𝑇) = Tr(𝒃𝒂𝑇) .

1.4.6 Euclidean norm

The squared Euclidean norm or the squared length of the vector 𝒂 is the dot
product | |𝒂 | |22 = 𝒂 · 𝒂 = ⟨𝒂 , 𝒂⟩ = 𝒂𝑇𝒂 = 𝒂𝒂𝑇 =

∑𝑑
𝑖=1 𝑎

2
𝑖
.

The squared Frobenius norm is a generalisation of the squared Euclidean vector
norm to a rectangular matrix and is the sum of the squares of all its elements.
Using the trace it can be written as

| |𝑨| |2𝐹 = ⟨𝑨,𝑨⟩
= Tr(𝑨𝑇𝑨) = Tr(𝑨𝑨𝑇)
=
∑
𝑖 , 𝑗

𝑎2
𝑖 𝑗 .

A useful identity for the squared Frobenius norm of the difference of two
matrices is

| |𝑨 − 𝑩| |2𝐹 = | |𝑨| |2𝐹 + ||𝑩| |2𝐹 − 2⟨𝑨, 𝑩⟩
= Tr(𝑨𝑇𝑨) + Tr(𝑩𝑇𝑩) − 2Tr(𝑨𝑇𝑩)
=
∑
𝑖 , 𝑗

(𝑎𝑖 𝑗 − 𝑏𝑖 𝑗)2 .

The Frobenius norm of a matrix | |𝑨| |𝐹 is not to be confused with the induced
2-norm of a matrix | |𝑨| |2. The latter equals the maximum absolute eigenvalue of
the matrix, with | |𝑨| |2 ≤ ||𝑨| |𝐹 .
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1.4.7 Determinant of a matrix

If 𝑨 is a square matrix the determinant det(𝑨) is a scalar measuring the volume
spanned by the column vectors in 𝑨 with the sign determined by the orientation
of the vectors.

If det(𝑨) ≠ 0 the matrix 𝑨 is non-singular or non-degenerate. Conversely, if
det(𝑨) = 0 the matrix 𝑨 is singular or degenerate.

Intriguingly, the determinant of 𝑨 is the product of the eigenvalues of 𝑨 (see
further below).

One way to compute the determinant of a matrix 𝑨 is the Laplace cofactor
expansion approach that proceeds recursively based on the determinants of the
sub-matrices 𝑨−𝑖 ,−𝑗 obtained by deleting row 𝑖 and column 𝑗 from 𝑨. Specifically,
at each level we compute the

1) cofactor expansion either

a) along the 𝑖-th row — pick any row 𝑖:

det(𝑨) =
𝑑∑
𝑗=1

𝑎𝑖 𝑗(−1)𝑖+𝑗 det(𝑨−𝑖 ,−𝑗) , or

b) along the 𝑗-th column — pick any 𝑗:

det(𝑨) =
𝑑∑
𝑖=1

𝑎𝑖 𝑗(−1)𝑖+𝑗 det(𝑨−𝑖 ,−𝑗)

.

2) Then repeat until the sub-matrix is a scalar 𝑎 and det(𝑎) = 𝑎 .

The recursive nature of this algorithm leads to a complexity of order 𝑂(𝑑!) so it
is not practical except for very small 𝑑. Therefore, in practice other more efficient
algorithms for computing determinants are used but these still have algorithmic
complexity in the order of 𝑂(𝑑3) so for large dimensions obtaining determinants
is very expensive.

However, some specially structured matrices do allow for very fast calculation.

The determinant of a triangular matrix (and thus also of a diagonal matrix)

𝑨 =

©«
𝑎11 0 · · · 0
𝑎21 𝑎22 · · · 0
...

...
. . . 0

𝑎𝑑1 𝑎𝑑2 · · · 𝑎𝑑𝑑

ª®®®®¬
is the product of its diagonal elements, i.e. det(𝑨) = ∏𝑑

𝑖=1 𝑎𝑖𝑖 .

9
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For a two-dimensional matrix 𝑨 =

(
𝑎11 𝑎12
𝑎21 𝑎22

)
the determinant is det(𝐴) =

𝑎11𝑎22 − 𝑎12𝑎21.

For a block-structured square matrix

𝑨 =

(
𝑨11 𝑨12
𝑨21 𝑨22

)
,

where the matrices on the diagonal 𝑨11 and 𝑨22 are themselves square but 𝑨12
and 𝑨21 may be rectangular, the determinant is

det(𝑨) = det(𝑨22)det(𝑪1) = det(𝑨11)det(𝑪2)

with the (Schur complement of 𝑨22)

𝑪1 = 𝑨11 − 𝑨12𝑨−1
22 𝑨21

and (Schur complement of 𝑨11)

𝑪2 = 𝑨22 − 𝑨21𝑨−1
11 𝑨12

Note that 𝑪1 and 𝑪2 are square matrices.

For a block-diagonal matrix 𝑨 with 𝑨12 = 0 and 𝑨21 = 0 the determinant
is det(𝑨) = det(𝑨11)det(𝑨22), i.e. the product of the determinants of the sub-
matrices along the diagonal.

Determinants have a multiplicative property,

det(𝑨𝑩) = det(𝑩𝑨) = det(𝑨)det(𝑩) .

In the above 𝑨 and 𝑩 are both square and of the same dimension.

For rectangular 𝑨 (𝑛 ×𝑚) and rectangular 𝑩 (𝑚 × 𝑛) with 𝑚 ≥ 𝑛 this generalises
to the Cauchy-Binet formula

det(𝑨𝑩) =
∑
𝑤

det(𝑨,𝑤)det(𝑩𝑤,)

where the summation is over all
(𝑚
𝑛

)
index subsets 𝑤 of size 𝑛 taken from

{1, . . . , 𝑚} keeping the ordering and 𝑨,𝑤 and 𝑩𝑤, are the corresponding square
𝑛 × 𝑛 sub-matrices. If 𝑚 < 𝑛 then det(𝑨𝑩) = 0.

For scalar 𝑎 det(𝑎𝑩) = 𝑎𝑑 det(𝑩) where 𝑑 is the dimension of 𝑩.

Another important identity is

det(𝑰𝑛 + 𝑨𝑩) = det(𝑰𝑚 + 𝑩𝑨)

where 𝑨 and 𝑩 are rectangular matrices. This is called the Weinstein-Aronszajn
determinant identity (also credited to Sylvester).
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1.5 Matrix inverse

1.5.1 Inversion of square matrix

If 𝑨 is a square matrix then the inverse matrix 𝑨−1 is a matrix such that

𝑨−1𝑨 = 𝑨𝑨−1 = 𝑰 .

Only non-singular matrices with det(𝑨) ≠ 0 are invertible.

As det(𝑨−1𝑨) = det(𝑰) = 1 the determinant of the inverse matrix equals the
inverse determinant,

det(𝑨−1) = det(𝑨)−1 .

The transpose of the inverse is the inverse of the transpose as

(𝑨−1)𝑇 = (𝑨−1)𝑇 𝑨𝑇(𝑨𝑇)−1

= (𝑨𝑨−1)𝑇 (𝑨𝑇)−1 = (𝑨𝑇)−1 .

The inverse of a matrix product (𝑨𝑩)−1 = 𝑩−1𝑨−1 is the product of the individual
matrix inverses in reverse order.

There are many different algorithms to compute the inverse of a matrix (which
is essentially a problem of solving a system of equations). The computational
complexity of matrix inversion is of the order 𝑂(𝑑3) where 𝑑 is the dimension of
𝑨. Therefore matrix inversion is very costly in higher dimensions.

Example 1.1. Inversion of a 2 × 2 matrix:

The inverse of the matrix 𝐴 =

(
𝑎 𝑏
𝑐 𝑑

)
is 𝐴−1 = 1

𝑎𝑑−𝑏𝑐

(
𝑑 −𝑏
−𝑐 𝑎

)
1.5.2 Inversion of structured matrices

However, for specially structured matrices inversion can be done effectively:

• The inverse of a diagonal matrix is another diagonal matrix obtained by
inverting the diagonal elements.

• More generally, the inverse of a block-diagonal matrix is obtained by
individually inverting the blocks along the diagonal.

11



1 Matrix essentials

The Woodbury matrix identity simplifies the inversion of matrices that can be
written as 𝑨 +𝑼𝑩𝑽 where 𝑨 and 𝑩 are both square and 𝑼 and 𝑽 are suitable
rectangular matrices:

(𝑨 +𝑼𝑩𝑽 )−1 = 𝑨−1 − 𝑨−1𝑼 (𝑩−1 + 𝑽𝑨−1𝑼 )−1𝑽𝑨−1

Typically, the inverse 𝑨−1 is either already known or can be easily obtained and
the dimension of 𝑩 is much lower than that of 𝑨.

The class of matrices that can be most easily inverted are orthogonal matrices
whose inverse is obtained simply by transposing the matrix.

1.6 Orthogonal matrices

1.6.1 Properties

An orthogonal matrix 𝑸 is a square matrix with the property that 𝑸𝑇 = 𝑸−1, i.e.
the transpose is also the inverse. This implies that 𝑸𝑸𝑇 = 𝑸𝑇𝑸 = 𝑰.

Both the column and the row vectors in 𝑸 all have length 1. This implies that
each element 𝑞𝑖 𝑗 of 𝑸 can only take a value in the interval [−1, 1].
The identity matrix 𝑰 is the simplest example of an orthogonal matrix.

The squared Euclidean and Frobenius norm is preserved when a vector 𝒂 or
matrix 𝑨 is multiplied with an orthogonal matrix 𝑸:

| |𝑸𝒂 | |22 = (𝑸𝒂)𝑇𝑸𝒂 = 𝒂𝑇𝒂 = | |𝒂 | |22
and

| |𝑸𝑨| |2𝐹 = Tr
(
(𝑸𝑨)𝑇𝑸𝑨

)
= Tr

(
𝑨𝑇𝑨

)
= | |𝑨| |2𝐹

Multiplication of 𝑸 with a vector results in a new vector of the same length but
with a change in direction (unless 𝑸 = 𝑰). An orthogonal matrix 𝑸 can thus be
interpreted geometrically as an operator performing rotation, reflection and/or
permutation.

The product 𝑸3 = 𝑸1𝑸2 of two orthogonal matrices 𝑸1 and 𝑸2 yields another
orthogonal matrix as 𝑸3𝑸

𝑇
3 = 𝑸1𝑸2(𝑸1𝑸2)𝑇 = 𝑸1𝑸2𝑸

𝑇
2𝑸

𝑇
1 = 𝑰.

The determinant det(𝑸) of an orthogonal matrix is either +1 or -1, because
𝑸𝑸𝑇 = 𝑰 and thus det(𝑸)det(𝑸𝑇) = det(𝑸)2 = det(𝑰) = 1.

The set of all orthogonal matrices of dimension 𝑑 together with multiplication
form a group called the orthogonal group𝑂(𝑑). The subset of orthogonal matrices
with det(𝑸) = 1 are called rotation matrices and form with multiplication the
special orthogonal group 𝑆𝑂(𝑑). Orthogonal matrices with det(𝑸) = −1 are
rotation-reflection matrices.
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1.6.2 Semi-orthogonal matrices

A rectangular 𝑑× 𝑘 matrix 𝑸 is semi-orthogonal if for 𝑘 < 𝑑 the 𝑘 column vectors
are orthonormal and hence 𝑸𝑇𝑸 = 𝑰 𝑘 , or if for 𝑘 > 𝑑 the 𝑑 row vectors are
orthonormal with 𝑸𝑸𝑇 = 𝑰𝑑.

The set of all (semi)-orthogonal matrices 𝑸 with 𝑘 ≤ 𝑑 column vectors is known
as the Stiefel manifold St(𝑑, 𝑘).

1.6.3 Generating orthogonal matrices

In two dimensions (𝑑 = 2) all orthogonal matrices 𝑹 representing rotations with
det(𝑹) = 1 are given by

𝑹(�) =
(
cos� − sin�
sin� cos�

)
and those representing rotation-reflections 𝑮 with det(𝑮) = −1 by

𝑮(�) =
(
cos� sin�
sin� − cos�

)
.

Every orthogonal matrix of dimension 𝑑 = 2 can be represented as the product
of at most two rotation-reflection matrices because

𝑹(�) = 𝑮(�)𝑮(0) =
(
cos� sin�
sin� − cos�

) (
1 0
0 −1

)
.

Thus, the matrix 𝑮 is a generator of two-dimensional orthogonal matrices. Note
that 𝑮(�) is symmetric, orthogonal and has determinant -1.

More generally, and applicable in arbitrary dimension, the role of generator is
taken by the Householder reflection matrix

𝑸𝐻𝐻(𝒗) = 𝑰 − 2𝒗𝒗𝑇

where 𝒗 is a vector of unit length (with 𝒗𝑇𝒗 = 1) orthogonal to the reflection
hyperplane. Note that 𝑸𝐻𝐻(𝒗) = 𝑸𝐻𝐻(−𝒗). By construction the matrix 𝑸𝐻𝐻(𝒗)
is symmetric, orthogonal and has determinant -1.

It can be shown that any 𝑑-dimensional orthogonal matrix𝑸 can be represented as
the product of at most 𝑑 Householder reflection matrices. The two-dimensional
generator 𝑮(�) is recovered as the Householder matrix 𝑸𝐻𝐻(𝒗) with 𝒗 =(
− sin �

2
cos �

2

)
or 𝒗 =

(
sin �

2
− cos �

2

)
.

13
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1.6.4 Permutation matrix

A special type of an orthogonal matrix is a permutation matrix 𝑷 created by
permuting rows and/or columns of the identity matrix 𝑰. Thus, each row and
column of 𝑷 contains exactly one entry of 1, but not necessarily on the diagonal.

If a permutation matrix 𝑷 is multiplied with a matrix 𝑨 it acts as an operator
permuting the columns (𝑨𝑷) or the rows (𝑷𝑨). For a set of 𝑑 elements there
exist 𝑑! permutations. Thus, for dimension 𝑑 there are 𝑑! possible permutation
matrices (including the identity matrix).

The determinant of a permutation matrix is either +1 or -1. The product of two
permutation matrices yields another permutation matrix.

Symmetric permutation matrices correspond to self-inverse permutations (i.e. the
permutation matrix is its own inverse), and are also called permutation involu-
tions. They can have determinant +1 and -1.

A transposition is a permutation where only two elements are exchanged. Thus,
in a transposition matrix 𝑻 exactly two rows and/or columns are exchanged
compared to identity matrix 𝑰. Transpositions are self-inverse, and transposition
matrices are symmetric. There are 𝑑(𝑑−1)

2 different transposition matrices. The
determinant of a transposition matrix is det(𝑻) = −1.

Note that the transposition matrix is an instance of a Householder matrix 𝑸𝐻𝐻(𝒗)
with vector 𝒗 filled with zeros except for two elements that have value

√
2

2 and
−

√
2

2 .

Any permutation of 𝑑 elements can be generated by a series of at most 𝑑 − 1
transpositions. Correspondingly, any permutation matrix 𝑷 can be constructed
by multiplication of the identity matrix with at most 𝑑 − 1 transposition matrices.
If the number of transpositions is even then det(𝑷) = 1 otherwise for an uneven
number det(𝑷) = −1. This is called the sign or signature of the permutation.

The set of all permutations form the symmetric group 𝑆𝑑, the subset of even
permutations (with positive sign and det(𝑷) = 1) the alternating group 𝐴𝑑.

1.7 Eigenvalues and eigenvectors

1.7.1 Definition

Assume a square matrix 𝑨 of size 𝑑 × 𝑑. A vector 𝒖 ≠ 0 is called an eigenvector
of the matrix 𝑨 and � the corresponding eigenvalue if

𝑨𝒖 = 𝒖� .

This is called eigenvalue equation or eigenequation.

14
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1.7.2 Finding eigenvalues and vectors

To find the eigenvalues and eigenvectors the eigenequation is rewritten as

(𝑨 − 𝑰�) 𝒖 = 0 .

For this equation to hold for an eigenvector 𝒖 ≠ 0 with eigenvalue � implies that
the matrix 𝑨 − 𝑰� is singular. Correspondingly, its determinant must vanish

det(𝑨 − 𝑰�) = 0 .

This is called the characteristic equation of the matrix 𝑨, and its solution yields
the 𝑑 eigenvalues �1 , . . . ,�𝑑. Note the eigenvalues need not be distinct and they
may be complex even if the matrix 𝑨 is real.

If there are complex eigenvalues, for a real matrix those eigenvalues come in
conjugate pairs. Hence, for a complex�1 = 𝑟𝑒 𝑖𝜙 there will also be a corresponding
complex eigenvalue �2 = 𝑟𝑒−𝑖𝜙.

Given the eigenvalues we then solve the eigenequation for the corresponding
non-zero eigenvectors 𝒖1 , . . . , 𝒖𝑑. Note that eigenvectors of real matrices can have
complex components. Also the eigenvector is only defined by the eigenequation
up to a scalar. By convention eigenvectors are therefore typically standardised to
unit length but this still leaves a sign ambiguity for real eigenvectors and implies
that complex eigenvectors are defined only up to a factor with modulus 1.

1.7.3 Eigenequation in matrix notation

With the matrix
𝑼 = (𝒖1 , . . . , 𝒖𝑑)

containing the standardised eigenvectors in the columns and the diagonal
matrix

𝚲 =
©«
�1 . . . 0
...

. . .
...

0 . . . �𝑑

ª®®¬
containing the eigenvalues (typically sorted in order of magnitude) the eigenvalue
equation can be written as

𝑨𝑼 = 𝑼𝚲 .

1.7.4 Permutation of eigenvalues

If eigenvalues are not in order, we may apply a permutation matrix 𝑷 to arrange
them in order. With 𝚲sort = 𝑷𝑇𝚲𝑷 as the sorted eigenvalues and 𝑼 sort = 𝑼𝑷 as
the corresponding eigenvectors the eigenequation becomes

𝑨𝑼 sort = 𝑨𝑼𝑷 = 𝑼𝚲𝑷 = 𝑼𝑷𝑷𝑇𝚲𝑷 = 𝑼 sort𝚲sort .

15
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1.7.5 Similar matrices

Two matrices 𝑨 and 𝑩 are called similar if they share the same eigenvalues.

From 𝑨 with eigenvalues 𝚲 and eigenvectors 𝑼 we can construct a similar 𝑩 via
the similarity transformation 𝑩 = 𝑴𝑨𝑴−1 where 𝑴 is an invertible matrix.

Then 𝚲 are the eigenvalues of 𝑩 and 𝑽 = 𝑴𝑼 its eigenvectors as

𝑩𝑽 = 𝑴𝑨𝑴−1𝑴𝑼 = 𝑴𝑨𝑼 = 𝑴𝑼𝚲 = 𝑽𝚲 .

1.7.6 Defective matrix

In most cases the eigenvectors 𝒖 𝑖 will be linearly independent so that they form
a basis to span a 𝑑 dimensional space.

However, if this is not the case and the matrix 𝑨 does not have a complete basis
of eigenvectors, then the matrix is called defective. In this case the matrix 𝑼
containing the eigenvectors is singular and det(𝑼 ) = 0.

An example of a defective matrix is
(
1 1
0 1

)
which has determinant 1 so that it

can be inverted and its column vectors do form a complete basis but has only
one distinct eigenvector (1, 0)𝑇 so that the eigenvector basis is incomplete.

1.7.7 Eigenvalues of a diagonal or triangular matrix

In the special case that 𝑨 is diagonal or a triangular matrix the eigenvalues are
easily determined. This follows from the simple form of their determinants as
the product of the diagonal elements. Hence for these matrices the characteristic
equation becomes

∏𝑑
𝑖 (𝑎𝑖𝑖 − �) = 0 and has solution �𝑖 = 𝑎𝑖𝑖 , i.e. the eigenvalues

are equal to the diagonal elements.

1.7.8 Eigenvalues and vectors of a symmetric matrix

If 𝑨 is symmetric, i.e. 𝑨 = 𝑨𝑇 , then its eigenvalues and eigenvectors have special
properties:

i) all eigenvalues of 𝑨 are real,
ii) the eigenvectors are orthogonal, i.e 𝒖𝑇

𝑖
𝒖 𝑗 = 0 for 𝑖 ≠ 𝑗, and real. Thus,

the matrix 𝑼 containing the standardised orthonormal eigenvectors is
orthogonal.

iii) 𝑨 is never defective as 𝑼 forms a complete basis.
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Furthermore, for a symmetric matrix 𝑨 with diagonal elements 𝑝1 ≥ . . . ≥ 𝑝𝑑
and eigenvalues �1 ≥ . . . ≥ �𝑑 (note both written in decreasing order) the sum
of the largest 𝑘 eigenvalues forms an upper bound of the sum of the largest 𝑘
diagonal elements:

𝑘∑
𝑖

�𝑖 ≥
𝑘∑
𝑖

𝑝𝑖

This theorem is due to Schur (1923) 2. The equality holds for 𝑘 = 𝑑 (as the trace
of 𝑨 equals the sum of its eigenvalues) and for any 𝑘 if 𝑨 is diagonal (as in this
case of the diagonal elements equal the eigenvalues).

1.7.9 Eigenvalues of orthogonal matrices

The eigenvalues of an orthogonal matrix 𝑸 are not necessarily real but they all
have modulus 1 and lie on the unit circle . Thus, the eigenvalues of 𝑸 all have
the form � = 𝑒 𝑖𝜙 = cos 𝜙 + 𝑖 sin 𝜙.

In any real matrix complex eigenvalues come in conjugate pairs. Hence if an
orthogonal matrix 𝑸 has the complex eigenvalue 𝑒 𝑖𝜙 it also has an complex
eigenvalue 𝑒−𝑖𝜙 = cos 𝜙− 𝑖 sin 𝜙. The product of these two conjugate eigenvalues
is 1. Thus, an orthogonal matrix of uneven dimension has at least one real
eigenvalue (+1 or -1).

The eigenvalues of a Hausholder matrix 𝑸𝐻𝐻(𝒗) are all real (recall that it is
symmetric!). In fact, in dimension 𝑑 its eigenvalues are -1 (one time) and 1 ( 𝑑 − 1
times). Since a transposition matrix 𝑻 is a special Householder matrix they have
the same eigenvalues.

1.7.10 Positive definite matrices

If all eigenvalues of a square matrix 𝑨 are real and �𝑖 ≥ 0 then 𝑨 is called positive
semi-definite. If all eigenvalues are strictly positive �𝑖 > 0 then 𝑨 is called positive
definite.

Note that a matrix does not need to be symmetric to be positive definite, e.g.(
2 3
1 4

)
has positive eigenvalues 5 and 1. It also has a complete set of eigenvectors

and is diagonalisable.

A symmetric matrix 𝑨 is positive definite if the quadratic form 𝒙𝑇𝑨𝒙 > 0 for any
non-zero 𝒙, and it is positive semi-definite if 𝒙𝑇𝑨𝒙 ≥ 0. This holds also the other
way around: a symmetric positive definite matrix (with positive eigenvalues)

2Schur, I. 1923. Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinanten-
theorie. Sitzungsber. Berl. Math. Ges. 22:9–29.
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has a positive quadratic form, and a symmetric positive semi-definite matrix
(with non-negative eigenvalues) a non-negative quadratic form.

A symmetric positive definite matrix always has a positive diagonal (this can be
seen by setting 𝒙 above to a unit vector with 1 at a single position, and 0 at all
other elements). However, just requiring a positive diagonal is too weak to ensure

positive definiteness of a symmetric matrix, for example
(

1 10
10 1

)
has a negative

eigenvalue of -9. On the other hand, a symmetric matrix is indeed positive
definite if it is strictly diagonally dominant, i.e. if all its diagonal elements are
positive and are larger than the absolute value of any of the corresponding row
or column elements. However, diagonal dominance is too restrictive as criterion
to characterise all symmetric positive definite matrices, since there are many
symmetric matrices that are positive definite but not diagonally dominant, such

as
(
1 2
2 5

)
.

Finally, the sum of a symmetric positive semi-definite matrix 𝑨 and a symmetric
positive definite matrix 𝑩 is itself symmetric positive definite because the
corresponding quadratic form 𝒙𝑇(𝑨 + 𝑩)𝒙 = 𝒙𝑇𝑨𝒙 + 𝒙𝑇𝑩𝒙 > 0 is positive.
Similarly, the sum of two symmetric positive (semi)-definite matrices is itself
symmetric positive (semi)-definite.

1.8 Matrix decompositions

1.8.1 Diagonalisation and eigenvalue decomposition

If 𝑨 is a square non-defective matrix then the eigensystem 𝑼 is invertible and
we can rewrite the eigenvalue equation to

𝑨 = 𝑼𝚲𝑼−1 .

This is called the eigendecomposition, or spectral decomposition, of 𝑨 and
equivalently

𝚲 = 𝑼−1𝑨𝑼

is the diagonalisation of 𝑨.

If 𝑨 is defective (i.e. 𝑼 is singular) one can still approximately diagonalise 𝑨 as
there always exists a similarity transformation to 𝑱 = 𝑴𝑨𝑴−1 where 𝑴 is a
invertible matrix and 𝑱 has Jordan canonical form, i.e. 𝑱 is upper triangular with
the (potentially complex) eigenvalues on the diagonal and some non-zero entries
equal to 1 immediately above the main diagonal.
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1.8.2 Orthogonal eigenvalue decomposition

For symmetric 𝑨 with real eigenvalues and orthogonal matrix 𝑼 the spectral
decomposition becomes

𝑨 = 𝑼𝚲𝑼𝑇

and
𝚲 = 𝑼𝑇𝑨𝑼 .

This special case is known as the orthogonal diagonalisation of 𝑨.

The orthogonal decomposition for symmetric 𝑨 is unique apart from the signs
of the eigenvectors (columns of 𝑼 ). Thus, in a computer application depend-
ing on the specific implementation of a numerical algorithm for eigenvalue
decomposition the signs may vary.

1.8.3 Singular value decomposition

The singular value decomposition (SVD) is a generalisation of the orthogonal
eigenvalue decomposition for symmetric matrices.

Any (!) rectangular matrix 𝑨 of size 𝑛 × 𝑑 can be factored into the product

𝑨 = 𝑼𝑫𝑽𝑇

where 𝑼 is a 𝑛 × 𝑛 orthogonal matrix, 𝑽 is a second 𝑑 × 𝑑 orthogonal matrix
and 𝑫 is a diagonal but rectangular matrix of size 𝑛 × 𝑑 with 𝑚 = 𝑚𝑖𝑛(𝑛, 𝑑) real
diagonal elements 𝑑1 , . . . 𝑑𝑚 . The 𝑑𝑖 are called singular values, and appear along
the diagonal in 𝑫 by order of magnitude.

The SVD is unique apart from the signs of the columns vectors in 𝑼 , 𝑽 and
𝑫 (you can freely specify the column signs of any two of the three matrices).
By convention the signs are chosen such that the singular values in 𝑫 are all
non-negative, which leaves ambiguity in columns signs of𝑼 and𝑽 . Alternatively,
one may fix the columns signs of 𝑼 and 𝑽 , e.g. by requiring a positive diagonal,
which then determines the sign of the singular values (thus allowing for negative
singular values as well).

If 𝑨 is symmetric then the SVD and the orthogonal eigenvalue decomposition
coincide (apart from different sign conventions for singular values, eigenvalues
and eigenvectors).

Since 𝑨𝑇𝑨 = 𝑽𝑫𝑇𝑫𝑽𝑇 and 𝑨𝑨𝑇 = 𝑼𝑫𝑫𝑇𝑼𝑇 the squared singular values
correspond to the eigenvalues of 𝑨𝑇𝑨 and 𝑨𝑨𝑇 . It also follows that 𝑨𝑇𝑨 and
𝑨𝑨𝑇 are both positive semi-definite symmetric matrices, and that 𝑽 and 𝑼
contain the respective sets of eigenvectors.
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1.8.4 Polar decomposition

Any square matrix 𝑨 can be factored into the product

𝑨 = 𝑸𝑩

of an orthogonal matrix 𝑸 and a symmetric positive semi-definite matrix 𝑩.

This follows from the SVD of 𝑨 given as

𝑨 = 𝑼𝑫𝑽𝑇

= (𝑼𝑽𝑇)(𝑽𝑫𝑽𝑇)
= 𝑸𝑩

with non-negative 𝑫. Note that this decomposition is unique as the sign
ambiguities in the columns of 𝑼 and 𝑽 cancel out in 𝑸 and 𝑩.

1.8.5 Cholesky decomposition

A symmetric positive definite matrix 𝑨 can be decomposed into a product of a
triangular matrix 𝑳 with its transpose

𝑨 = 𝑳𝑳𝑇 .

Here, 𝑳 is a lower triangular matrix with positive diagonal elements.

This decomposition is unique and is called Cholesky factorisation. It is often used
to check whether a symmetric matrix is positive definite as it is algorithmically
less demanding than eigenvalue decomposition.

Note that some implementations of the Cholesky decomposition (e.g. in R)
use upper triangular matrices 𝑲 with positive diagonal so that 𝑨 = 𝑲𝑇𝑲 and
𝑳 = 𝑲𝑇 .

1.9 Matrix summaries based on eigenvalues and
singular values

1.9.1 Trace and determinant computed from eigenvalues

The eigendecomposition 𝑨 = 𝑼𝚲𝑼−1 allows to establish a link between the trace
and the determinant and the eigenvalues of a matrix.
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Specifically,

Tr(𝑨) = Tr(𝑼𝚲𝑼−1) = Tr(𝚲𝑼−1𝑼 )

= Tr(𝚲) =
𝑑∑
𝑖=1

�𝑖

thus the trace of a square matrix 𝑨 is equal to the sum of its eigenvalues.
Likewise,

det(𝑨) = det(𝑼 )det(𝚲)det(𝑼−1)

= det(𝚲) =
𝑑∏
𝑖=1

�𝑖

therefore the determinant of 𝑨 is the product of the eigenvalues.

The relationship between the eigenvalues of a square matrix and the trace and the
determinant of that matrix is shown above for diagonalisable matrices. However,
it holds more generally for any square matrix, i.e. also for defective matrices. For
the latter the Jordan canonical form 𝑱 replaces 𝚲 (in both cases the eigenvalues
are simply the entries on the diagonal).

If any of the eigenvalues are equal to zero then det(𝑨) = 0 and as hence 𝑨 is
singular and not invertible.

The trace and determinant of a real matrix are always real even though the
individual eigenvalues may be complex.

1.9.2 Eigenvalues of a squared matrix

From the eigendecomposition 𝑨 = 𝑼𝚲𝑼−1 it is easy to see that the eigenvalues
of 𝑨2 are simply the squared eigenvalues of 𝑨 as

𝑨2 = 𝑼𝚲𝑼−1𝑼𝚲𝑼−1 = 𝑼𝚲2𝑼−1

As a result we can compute the trace of 𝑨2 as the sum of the squared eigenvalues
of 𝑨, i.e. Tr(𝑨2) =

∑𝑑
𝑖=1 �

2
𝑖
, and the determinant as the product of squared

eigenvalues, i.e det(𝑨2) = ∏𝑑
𝑖=1 �

2
𝑖
.

If 𝑨 is symmetric then Tr(𝑨2) = Tr(𝑨𝑨𝑇) = | |𝐴| |2
𝐹
=
∑𝑑

𝑖=1
∑𝑑

𝑗=1 𝑎
2
𝑖 𝑗
. This leads to

the identity
𝑑∑
𝑖=1

�2
𝑖 =

𝑑∑
𝑖=1

𝑑∑
𝑗=1

𝑎2
𝑖 𝑗

between the sum of the squared eigenvalues and the sum of all squared entries
of a symmetric matrix 𝑨.
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1.9.3 Rank and condition number

The rank is the dimension of the space spanned by both the column and row
vectors. A rectangular matrix of dimension 𝑛 × 𝑑 will have rank of at most
𝑚 = min(𝑛, 𝑑), and if the maximum is indeed achieved then it has full rank.

The condition number describes how well- or ill-conditioned a full rank matrix is.
For example, for a square matrix a large condition number implies that the matrix
is close to being singular and thus ill-conditioned. If the condition number is
infinite then the matrix is not full rank.

The rank and condition of a matrix can both be determined from the 𝑚 singular
values 𝑑1 , . . . , 𝑑𝑚 of a matrix obtained by SVD:

i) The rank is number of non-zero singular values.
ii) The condition number is the ratio of the largest singular value divided by

the smallest singular value (absolute values if signs are allowed).

If a square matrix 𝑨 is singular then the condition number is infinite, and it will
not have full rank. On the other hand, a non-singular square matrix, such as a
positive definite matrix, has full rank.

1.10 Functions of symmetric matrices

We focus on symmetric square matrices 𝑨 = 𝑼𝚲𝑼𝑇 which are always diagonalis-
able with real eigenvalues 𝚲 and orthogonal eigenvectors 𝑼 .

1.10.1 Definition of a matrix function

Assume a real-valued function 𝑓 (𝑎) of a real number 𝑎. Then the corresponding
matrix function 𝑓 (𝑨) is defined as

𝑓 (𝑨) = 𝑼 𝑓 (𝚲)𝑼𝑇 = 𝑼
©«
𝑓 (�1) . . . 0
...

. . .
...

0 . . . 𝑓 (�𝑑)

ª®®¬𝑼𝑇

where the function 𝑓 (𝑎) is applied to the eigenvalues of 𝑨. By construction 𝑓 (𝑨)
is real, symmetric and has real eigenvalues 𝑓 (�𝑖).
Examples:

Example 1.2. Matrix power: 𝑓 (𝑎) = 𝑎𝑝 (with 𝑝 a real number)

Special cases of matrix power include :
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• Matrix inversion: 𝑓 (𝑎) = 𝑎−1

Note that if the matrix 𝑨 is singular, i.e. contains one or more eigenvalues
�𝑖 = 0, then 𝑨−1 is not defined and therefore 𝑨 is not invertible.

However, a so-called pseudoinverse can still be computed, by inverting the non-zero
eigenvalues, and keeping the zero eigenvalues as zero.

• Matrix square root: 𝑓 (𝑎) = 𝑎1/2

Since there are multiple solutions to the square root there are also multiple
matrix square roots. The principal matrix square root is obtained by using
the positive square roots of all the eigenvalues. Thus the principal matrix
square root of a positive semi-definite matrix is also positive semi-definite
and it is unique.

Example 1.3. Matrix exponential: 𝑓 (𝑎) = exp(𝑎)
Note that because exp(𝑎) ≥ 0 for all real 𝑎 the matrix exp(𝑨) is positive semi-
definite. Thus, the matrix exponential can be used to generate positive semi-
definite matrices.

If 𝑨 and 𝑩 commute, i.e. if 𝑨𝑩 = 𝑩𝑨, then exp(𝑨+𝑩) = exp(𝑨) exp(𝑩). However,
this is not the case otherwise!

Example 1.4. Matrix logarithm: 𝑓 (𝑎) = log(𝑎)
As the logarithm requires 𝑎 > 0 the matrix 𝑨 needs to be positive definite for
log(𝑨) to be defined.

1.10.2 Identities for the matrix exponential and logarithm

The above give rise to useful identities:

1) For any symmetric matrix 𝑨 we have

det(exp(𝑨)) = exp(Tr(𝑨))

because
∏

𝑖 exp(�𝑖) = exp(∑𝑖 �𝑖) where �𝑖 are the eigenvalues of 𝑨.

2) If we take the logarithm on both sides and replace exp(𝑨) = 𝑩 we get
another identity for a symmetric positive definite matrix 𝑩:

log det(𝑩) = Tr(log(𝑩))

because log(∏𝑖 �𝑖) =
∑

𝑖 log(�𝑖) where �𝑖 are the eigenvalues of 𝑩.
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2.1 First order vector derivatives

2.1.1 Derivative and gradient

The derivative of a scalar-valued function ℎ(𝒙) with regard to its vector argument
𝒙 = (𝑥1 , . . . , 𝑥𝑑)𝑇 is the row vector

𝐷ℎ(𝒙) = 𝜕ℎ(𝒙)
𝜕𝒙

=

(
𝜕ℎ(𝒙)
𝜕𝑥1

· · · 𝜕ℎ(𝒙)
𝜕𝑥𝑑

)
The above notation follows the numerator layout convention, where the dimen-
sion of the numerator (here 1) determines the number of rows and the dimension
of the denominator (here 𝑑) the number of columns of the resulting matrix (see
https://en.wikipedia.org/wiki/Matrix_calculus for details). For a scalar
function this results in a vector of the same dimension as 𝒙𝑇 .

The gradient of ℎ(𝒙) is a column vector and the transpose of the derivative

grad ℎ(𝒙) =
(
𝜕ℎ(𝒙)
𝜕𝒙

)𝑇
It is often written using the nabla operator ∇ as

∇ℎ(𝒙) =
©«
𝜕ℎ(𝒙)
𝜕𝑥1
...

𝜕ℎ(𝒙)
𝜕𝑥𝑑

ª®®®¬
with

∇ =

©«
𝜕

𝜕𝑥1
...
𝜕

𝜕𝑥𝑑

ª®®®¬
Note that

(∇ℎ(𝒙))𝑇 = ∇𝑇 ℎ(𝒙) = 𝐷ℎ(𝒙) = 𝜕ℎ(𝒙)
𝜕𝒙
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Example 2.1. Examples for the gradient and derivative:

• ℎ(𝒙) = 𝒂𝑇𝒙 + 𝑏.
Then ∇ℎ(𝒙) = 𝒂 and 𝐷ℎ(𝒙) = 𝜕ℎ(𝒙)

𝜕𝒙 = 𝒂𝑇 .
• ℎ(𝒙) = 𝒙𝑇𝒙.

Then ∇ℎ(𝒙) = 2𝒙 and 𝐷ℎ(𝒙) = 𝜕ℎ(𝒙)
𝜕𝒙 = 2𝒙𝑇 .

• ℎ(𝒙) = 𝒙𝑇𝑨𝒙.
Then ∇ℎ(𝒙) = (𝑨 + 𝑨𝑇)𝒙 and 𝐷ℎ(𝒙) = 𝜕ℎ(𝒙)

𝜕𝒙 = 𝒙𝑇(𝑨 + 𝑨𝑇).

2.1.2 Jacobian matrix

Similarly, we can also compute the derivative of a vector-valued function

𝒉(𝒙) = (ℎ1(𝒙), . . . , ℎ𝑚(𝒙))𝑇

with regard to 𝒙. This yields (again in numerator layout convention) a matrix of
size 𝑚 rows and 𝑑 columns whose rows contain the derivatives of the components
of 𝒉(𝒙).

𝐷𝒉(𝒙) = 𝜕𝒉(𝒙)
𝜕𝒙

=

(
𝜕ℎ𝑖(𝒙)
𝜕𝑥 𝑗

)
=

©«
𝜕ℎ1(𝒙)
𝜕𝑥1

· · · 𝜕ℎ1(𝒙)
𝜕𝑥𝑑

...
. . .

...
𝜕ℎ𝑚 (𝒙)
𝜕𝑥1

· · · 𝜕ℎ𝑚 (𝒙)
𝜕𝑥𝑑

ª®®®¬
=
©«

∇𝑇 ℎ1(𝒙)
...

∇𝑇 ℎ𝑚(𝒙)

ª®®¬
= 𝑱𝒉(𝒙)

This matrix is also called the Jacobian matrix

Example 2.2. 𝒉(𝒙) = 𝑨𝑇𝒙 + 𝒃. Then 𝐷𝒉(𝒙) = 𝜕𝒉(𝒙)
𝜕𝒙 = 𝑱𝒉(𝒙) = 𝑨𝑇 .

If 𝑚 = 𝑑 then the Jacobian matrix is a square and this allows to compute the
determinant of the Jacobian matrix. Both the Jacobian matrix and the Jacobian
determinant are often called “the Jacobian” so one needs to determine from the
context whether this refers to the matrix or the determinant.

If 𝒚 = 𝒉(𝒙) is an invertible function with 𝒙 = 𝒉−1(𝒚) then the Jacobian matrix is
invertible and the inverted matrix is the Jacobian matrix of the inverse function:

𝐷𝒙(𝒚) = (𝐷𝒚(𝒙))−1 |𝒙=𝒙(𝒚)

25



2 Vector and matrix calculus

or in alternative notation

𝜕𝒙(𝒚)
𝜕𝒚

=

(
𝜕𝒚(𝒙)
𝜕𝒙

)−1
�����
𝒙=𝒙(𝒚)

In this case the Jacobian determinant of the back-transformation can be computed
as the inverse of the Jacobian determinant of the original function:

det𝐷𝒙(𝒚) = det (𝐷𝒚(𝒙))−1 |𝒙=𝒙(𝒚)

and

det
(
𝜕𝒙(𝒚)
𝜕𝒚

)
= det

(
𝜕𝒚(𝒙)
𝜕𝒙

)−1
�����
𝒙=𝒙(𝒚)

2.2 Second order vector derivatives

The matrix of all second order partial derivates of scalar-valued function with
vector-valued argument is called the Hessian matrix:

∇∇𝑇 ℎ(𝒙) =

©«

𝜕2ℎ(𝒙)
𝜕𝑥2

1

𝜕2ℎ(𝒙)
𝜕𝑥1𝜕𝑥2

· · · 𝜕2ℎ(𝒙)
𝜕𝑥1𝜕𝑥𝑑

𝜕2ℎ(𝒙)
𝜕𝑥2𝜕𝑥1

𝜕2ℎ(𝒙)
𝜕𝑥2

2
· · · 𝜕2ℎ(𝒙)

𝜕𝑥2𝜕𝑥𝑑
...

...
. . .

...
𝜕2ℎ(𝒙)
𝜕𝑥𝑑𝜕𝑥1

𝜕2ℎ(𝒙)
𝜕𝑥𝑑𝜕𝑥2

· · · 𝜕2ℎ(𝒙)
𝜕𝑥2

𝑑

ª®®®®®®®¬
=

(
𝜕ℎ(𝒙)
𝜕𝑥𝑖𝜕𝑥 𝑗

)
=

𝜕

𝜕𝒙

(
𝜕ℎ(𝒙)
𝜕𝒙

)𝑇
= 𝐷(𝐷ℎ(𝒙))𝑇

By construction the Hessian matrix is square and symmetric.

Example 2.3. ℎ(𝒙) = 𝒙𝑇𝑨𝒙. Then ∇∇𝑇 ℎ(𝒙) = (𝑨 + 𝑨𝑇).

2.3 Chain rules for gradient vector and Hessian matrix

Suppose ℎ(𝒙) is a scalar-valued function and 𝑔(𝒚) = ℎ(𝒙(𝒚)) is a composite
scalar-valued function where 𝒙(𝒚) a map from 𝒚 to 𝒙.
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The gradient of the composite function 𝑔(𝒚) = ℎ(𝒙(𝒚)) can be computed from
the gradient of ℎ(𝒙) and the Jacobian matrix for 𝒙(𝒚) as follows:

∇𝑔(𝒚) = (𝐷𝒙(𝒚))𝑇 ∇ℎ(𝒙)|𝒙=𝒙(𝒚)

and

∇𝑔(𝒚) =
(
𝜕𝒙(𝒚)
𝜕𝒚

)𝑇
∇ℎ(𝒙)|𝒙=𝒙(𝒚)

Similarly, the Hessian matrix of 𝑔(𝒚) can be computed from the Hessian of ℎ(𝒙)
and the Jacobian matrix for 𝒙(𝒚):

∇∇𝑇 𝑔(𝒚) = (𝐷𝒙(𝒚))𝑇 ∇∇𝑇 ℎ(𝒙)|𝒙=𝒙(𝒚) 𝐷𝒙(𝒚)

and

∇∇𝑇 𝑔(𝒚) =
(
𝜕𝒙(𝒚)
𝜕𝒚

)𝑇
∇∇𝑇 ℎ(𝒙)|𝒙=𝒙(𝒚)

𝜕𝒙(𝒚)
𝜕𝒚

2.4 First order matrix derivatives

The derivative of a scalar-valued function ℎ(𝑿 ) with regard to a matrix argument
𝑿 = (𝑥𝑖 𝑗) is defined as below and and results (in numerator layout convention)
in a matrix of the same dimension as 𝑿𝑇 :

𝐷ℎ(𝑿 ) = 𝜕ℎ(𝑿 )
𝜕𝑿

=

(
𝜕ℎ(𝑿 )
𝜕𝑥 𝑗𝑖

)
Example 2.4. Examples for first order matrix derivatives:

• 𝜕Tr(𝑨𝑇𝑿 )
𝜕𝑿 = 𝑨𝑇

• 𝜕Tr(𝑨𝑇𝑿𝑩)
𝜕𝑿 = 𝑩𝑨𝑇

• 𝜕Tr(𝑿𝑇𝑨𝑿 )
𝜕𝑿 = 𝑿𝑇(𝑨 + 𝑨𝑇)

• 𝜕 log det(𝑿 )
𝜕𝑿 =

𝜕Tr(log𝑿 )
𝜕𝑿 = 𝑿−1

2.5 Linear and quadratic approximation

A linear and quadratic approximation of a differentiable function is given by a
Taylor series of first and second order, respectively.
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i) Linear and quadratic approximation of a scalar-valued function of a scalar:

ℎ(𝑥) ≈ ℎ(𝑥0) + ℎ′(𝑥0) (𝑥 − 𝑥0) +
1
2 ℎ

′′(𝑥0) (𝑥 − 𝑥0)2

Note that ℎ′(𝑥0) = ℎ′(𝑥) | 𝑥0 is first derivative of ℎ(𝑥) evaluated at 𝑥0 and
ℎ′′(𝑥0) = ℎ′′(𝑥) | 𝑥0 is the second derivative of ℎ(𝑥) evaluated 𝑥0.
With 𝑥 = 𝑥0 + � the approximation can also be written as

ℎ(𝑥0 + �) ≈ ℎ(𝑥0) + ℎ′(𝑥0) � +
1
2 ℎ

′′(𝑥0) �2

The first two terms on the right comprise the linear approximation, all
three terms the quadratic approximation.

ii) Linear and quadratic approximation of a scalar-valued function of a vector:

ℎ(𝒙) ≈ ℎ(𝒙0) + ∇𝑇 ℎ(𝒙0) (𝒙 − 𝒙0) +
1
2 (𝒙 − 𝒙0)𝑇 ∇∇𝑇 ℎ(𝒙0) (𝒙 − 𝒙0)

Note that ∇𝑇 ℎ(𝒙0) is the transposed gradient (i.e the vector derivative) of
ℎ(𝒙) evaluated at 𝒙0 and ∇∇𝑇 ℎ(𝒙0) the Hessian matrix of ℎ(𝒙) evaluated at
𝒙0. With 𝒙 = 𝒙0 + 𝜺 this approximation can also be written as

ℎ(𝒙0 + 𝜺) ≈ ℎ(𝒙0) + ∇𝑇 ℎ(𝒙0) 𝜺 +
1
2 𝜺

𝑇 ∇∇𝑇 ℎ(𝒙0) 𝜺

The first two terms on the right comprise the linear approximation, all
three terms the quadratic approximation.

iii) Linear approximation of a vector-valued function of a vector:

𝒉(𝒙) ≈ 𝒉(𝒙0) + 𝐷𝒉(𝒙0) (𝒙 − 𝒙0)

Note that 𝐷𝒉(𝒙0) is Jacobian matrix (i.e the vector derivative) of 𝒉(𝒙)
evaluated at 𝒙0. With 𝒙 = 𝒙0 + 𝜺 this approximation can also be written as

𝒉(𝒙0 + 𝜺) ≈ ℎ(𝒙0) + 𝐷𝒉(𝒙0) 𝜺

Example 2.5. Examples of Taylor series approximations of second order:

• log(𝑥0 + �) ≈ log(𝑥0) + �
𝑥0

− �2

2𝑥2
0

• 𝑥0
𝑥0+� ≈ 1 − �

𝑥0
+ �2

𝑥2
0

Example 2.6. Around a local extremum 𝒙0 (maximum or minimum) where the
gradient vanishes (ℎ(𝒙0) = 0) the quadratic approximation of the function ℎ(𝒙)
simplifies to

ℎ(𝒙0 + 𝜺) ≈ ℎ(𝒙0) +
1
2 𝜺

𝑇∇∇𝑇 ℎ(𝒙0)𝜺
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2.6 Conditions for a local extremum of a function

To check if 𝑥0 or 𝒙0 is a local extremum, i.e. a local maximum or a local minimum,
of a differentiable function ℎ(𝑥) or ℎ(𝒙) we can use the following conditions:

For a function of a single variable:

i) First derivative is zero at the extremum: ℎ′(𝑥0) = 0.
ii) If the second derivative ℎ′′(𝑥0) < 0 at the extremum is negative then it is a

maximum.
iii) If the second derivative ℎ′′(𝑥0) > 0 at the extremum is positive it is a

minimum.

Note that conditions ii) and iii) are sufficient but not necessary. For a minimum,
it is necessary that the second derivative is non-negative, and for a maximum
that the second derivative is non-positive.

For a function of several variables:

i) Gradient vanishes at extremum: ∇ℎ(𝒙0) = 0.
ii) If the Hessian ∇∇𝑇 ℎ(𝒙0) is negative definite (= all eigenvalues of Hessian

matrix are negative) then the extremum is a maximum.
iii) If the Hessian is positive definite (= all eigenvalues of Hessian matrix are

positive) then the extremum is a minimum.

Again, conditions ii) and iii) are sufficient but not necessary. For a minimum it is
necessary that the Hessian is positive semi-definite, and for a maximum that the
Hessian is negative semi-definite.

Example 2.7. Minimum with vanishing second derivative:

𝑥4 clearly has a minimum at 𝑥0 = 0. As required the first derivative 4𝑥3 vanishes
at 𝑥0 = 0. However, the second derivative 12𝑥2 also vanishes at 𝑥0 = 0, showing
that a positive second derivative is not necessary for a minimum.

2.7 Convex and concave functions

A function ℎ(𝒙) is convex if for all 𝒙1 and 𝒙2 the line segment from point
(𝒙1 , ℎ(𝒙1)) to point (𝒙2 , ℎ(𝒙2)) never lies below the function. Moreover, the
function is strictly convex if the line segment always lies above the curve, apart
from the two end points:

�ℎ(𝒙1) + (1 − �)ℎ(𝒙2) ≥ ℎ(�𝒙1 + (1 − �)𝒙2)
for all � ∈ [0, 1].
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Equivalently, a differentiable function ℎ(𝒙) is convex (strictly convex) if for all
𝒙0 the function ℎ(𝒙) never lies below (always lies above, except at 𝒙0) the linear
approximation through the point (𝒙0 , ℎ(𝒙0)):

ℎ(𝒙) ≥ ℎ(𝒙0) + ∇𝑇 ℎ(𝒙0) (𝒙 − 𝒙0)

For a convex function a vanishing gradient at 𝒙0 indicates a minimum at
𝒙0. Furthermore, any local minimum must also be a global minimum (for a
differentiable function this follows directly from the last inequality). For a strictly
convex function the minimum is unique so there is at most one local/global
minimum in that case.

If ℎ(𝒙) is convex, then −ℎ(𝒙) is concave, and the criteria above can be adapted
accordingly to check for concavity and strict concavity, as well as to identify
local/global maxima.

(Strictly) convex and concave functions are convenient objective functions in
optimisation as it is straightforward to find their local/global extrema, both
analytically and numerically.

As the shape of a convex function resembles that of a valley, one way to memorise
that fact is that a valley is convex.

Example 2.8. Convex functions:

This is a convex function but not a strictly convex function:

• max(𝑥2 , |𝑥 |)

The following are strictly convex functions:

• 𝑥2,
• 𝑥4,
• 𝑒𝑥 ,
• 𝑥 log(𝑥) for 𝑥 > 0.

On the other hand, this is not a convex function:

• 1
𝑥2 for all 𝑥 ≠ 0.

However, the function in last example is strictly convex if the domain is restricted
to either 𝑥 > 0 or 𝑥 < 0.

Example 2.9. Concave functions:

The following are strictly concave functions:

• −𝑥2,
• log(𝑥) for 𝑥 > 0,
•

√
𝑥 for 𝑥 > 0.
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