
Multivariate Statistics and Machine
Learning

Korbinian Strimmer

10 April 2024

Table of contents

Welcome 1
Updates . 1
License . 1

Preface 2
About the author . 2
About the module . 2
Prerequisites . 3
Acknowledgements . 3

1 Multivariate random variables 4
1.1 Essentials in multivariate statistics 4
1.2 Multivariate distributions . 12
1.3 Multivariate normal distribution 12

2 Multivariate estimation 22
2.1 Overview . 22
2.2 Empirical estimates . 22
2.3 Maximum likelihood estimation 25
2.4 Sampling distribution of the empirical / maximum likelihood

estimates . 27
2.5 Small sample estimation . 28
2.6 Full Bayesian multivariate modelling 32
2.7 Conclusion . 34

3 Transformations and dimension reduction 35
3.1 Linear Transformations . 35
3.2 Nonlinear transformations . 40
3.3 General whitening transformations 43
3.4 Natural whitening procedures . 52
3.5 Principal Component Analysis (PCA) 65

4 Unsupervised learning and clustering 71
4.1 Challenges in unsupervised learning 71
4.2 Hierarchical clustering . 74
4.3 𝐾-means clustering . 81
4.4 Mixture models . 87
4.5 Fitting mixture models to data and inferring the latent states . . . 91

ii

Table of contents

4.6 Application of Gaussian mixture models 96
4.7 The EM algorithm . 98

5 Supervised learning and classification 106
5.1 Aims of supervised learning . 106
5.2 Bayesian discriminant rule or Bayes classifier 108
5.3 Normal Bayes classifier . 109
5.4 The training step — learning QDA, LDA and DDA classifiers from

data . 112
5.5 Quantifying prediction error . 116
5.6 Goodness of fit and variable ranking 118
5.7 Variable selection . 121

6 Multivariate dependencies 123
6.1 Measuring the linear association between two sets of random

variables . 123
6.2 Canonical Correlation Analysis (CCA) aka CCA whitening 124
6.3 Vector correlation and RV coefficient 126
6.4 Limits of linear models and correlation 128
6.5 Mutual information as generalisation of correlation 130
6.6 Graphical models . 135

7 Nonlinear and nonparametric models 143
7.1 Random forests . 144
7.2 Gaussian processes . 146
7.3 Neural networks . 153

Bibliography 156

Appendices 157

A Further study 157
A.1 Recommended reading . 157
A.2 Advanced reading . 157

iii

List of Figures

1.1 Illustration of the density of the normal distribution. 13
1.2 Illustration of the density of the bivariate normal distribution. . . 16
1.3 Contor lines for a spherical covariance matrix. 18
1.4 Contour lines for a diagonal covariance matrix. 19
1.5 Contour lines for a general covariance matrix. 20
1.6 Concentration of probability mass in the center of a multivariate

normal distribution. 21

2.1 Very brief sketch of the statistics in the 20th and 21st century. . . . 29
2.2 Bias-variance tradeoff to find optimal shrinkage intensity. 31

3.1 Comparison of ZCA, PCA and Cholesky whitening procedures. . 62
3.2 Cumulative explained variation (covariance loadings) for various

whitening procedures for the Iris flower data. 63
3.3 Cumulative explained variation (correlation-loadings) for various

whitening procedures for the Iris flower data. 64
3.4 PCA proportion of total variation for the iris flower data. 67
3.5 Scatter plot of first two principal components. 68
3.6 Correlation loadings plot between the first two principal correla-

tions and the original variables. 70

4.1 Principal components scatter plot for the iris flower data. 72
4.2 Principal components Swiss banknote data. 77
4.3 Ward clustering of Swiss banknote data. 78
4.4 Average linkage clustering of Swiss banknote data. 78
4.5 Complete linkage clustering of Swiss banknote data. 79
4.6 Single linkage clustering of Swiss banknote data. 79
4.7 Pairwise scatter plots for the original four variables of the iris

flower data. 84
4.8 Within and between group error in dependence of the number of

groups 𝐾 in 𝐾-means. 86
4.9 Mixture of two normal distributions with two modes. 90
4.10 Mixture of two normal distributions with a single mode. 90
4.11 Mixture of two bivariate normal distributions with two modes. . 92
4.12 Mclust fit of mixture model to the iris flower data. 97
4.13 Mclust BIC plot to select optimal number of groups for the iris

flower data. 98

iv

List of Figures

5.1 Illustration of a decision boundary in a two-group classification
problem. 107

5.2 Comparison of the linear decision boundary for LDA (left) com-
pared with the nonlinear boundary for QDA (right. 111

5.3 Comparison of model complexity of QDA, LDA and DDA. 113
5.4 Decision boundaries for LDA and QDA in the non-nested case. . . 115
5.5 Decision boundaries for LDA and QDA in the nested case. 115

6.1 The Anscombe (1973) quartet of datasets. 129
6.2 Relationship between correlation and mutual information. 132

7.1 Decision boundaries for decision trees and random forests in the
non-nested case. 145

7.2 Decision boundaries for decision trees and random forests in the
nested case. 145

v

List of Tables

1.1 Number of distinct elements in a covariance matrix. 7

3.1 Applications of natural whitening procedures. 65

4.1 Number of ways to partition 𝑛 samples into 𝐾 groups. 73

vi

Welcome

These are the lecture notes for MATH38161, a course in Multivariate Statistics
and Machine Learning for third year mathematics students at the Department
of Mathematics of the University of Manchester.

The course text was written by Korbinian Strimmer from 2018–2024. This version
is from 10 April 2024.

If you have any questions, comments, or corrections please get in touch! 1

Updates

The notes will be updated from time to time. To view the current version visit
the

• online MATH38161 lecture notes.

You may also wish to download the MATH38161 lecture notes as

• PDF in A4 format for printing (double page layout), or as
• 6x9 inch PDF for use on tablets (single page layout).

License

These notes are licensed to you under Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

1Email address: korbinian.strimmer@manchester.ac.uk

1

https://www.maths.manchester.ac.uk
https://www.maths.manchester.ac.uk
https://strimmerlab.github.io/korbinian.html
https://strimmerlab.github.io/publications/lecture-notes/MATH38161/index.html
https://strimmerlab.github.io/publications/lecture-notes/MATH38161/math38161-script-a4.pdf
https://strimmerlab.github.io/publications/lecture-notes/MATH38161/math38161-script.pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:korbinian.strimmer@manchester.ac.uk

Preface

About the author

Hello! My name is Korbinian Strimmer and I am a Professor in Statistics. I
am a member of the Statistics group at the Department of Mathematics of the
University of Manchester. You can find more information about me on my home
page.

I have first taught this module in the winter semester 2018 at the University of
Manchester, and subsequently all the following years until (including) the winter
semester 2023.

About the module

Topics covered

The MATH38161 module is designed to run over the course of 11 weeks. It has
six parts, each covering a particular aspect of multivariate statistics and machine
learning:

1. Multivariate random variables and estimation in large and small sample
settings (W1 and W2)

2. Transformations and dimension reduction (W3 and W4)
3. Unsupervised learning/clustering (W5 and W6)
4. Supervised learning/classification (W7 and W8)
5. Measuring and modelling multivariate dependencies (W9)
6. Nonlinear and nonparametric models (W10, W11)

This module focuses on:

• Concepts and methods (not on theory)
• Implementation and application in R
• Practical data analysis and interpretation (incl. report writing)
• Modern tools in data science and statistics (R markdown, R studio)

2

https://www.maths.manchester.ac.uk/research/expertise/statistics/
https://www.maths.manchester.ac.uk/research/expertise/statistics/
https://strimmerlab.github.io/korbinian.html
https://strimmerlab.github.io/korbinian.html

Prerequisites

Additional support material

If you are a University of Manchester student and enrolled in this module you
will find on Blackboard:

• a weekly learning plan for an 11 week study period,
• weekly worksheets with with examples (theory and application in R) and

solutions in R Markdown, and
• exam papers of previous years.

Furthermore, there is also an MATH38161 online reading list hosted by the
University of Manchester library.

Prerequisites

Multivariate statistics relies heavily on matrix algebra and vector and matrix
calculus. For a refresher of the essentials please refer to the supplementary

• Matrix and Calculus Refresher notes.

Furthermore, this module builds on earlier statistics modules, especially on
likelihood estimation and Bayesian statistics as discussed, e.g., in the module

• MATH27720 Statistics 2.

For an overview of essential probability distributions see the

• Probability and Distributions Refresher notes.

Acknowledgements

Many thanks to Beatriz Costa Gomes for her help to compile the first draft of these
course notes in the winter term 2018 while she was a graduate teaching assistant
for this course. I also thank the many students who suggested corrections.

3

https://online.manchester.ac.uk
https://www.readinglists.manchester.ac.uk/leganto/public/44MAN_INST/lists/323040818490001631
https://strimmerlab.github.io/publications/lecture-notes/matrix-calculus-refresher/index.html
https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/
https://strimmerlab.github.io/publications/lecture-notes/probability-distribution-refresher/index.html
https://mooniean.github.io/

1 Multivariate random variables

1.1 Essentials in multivariate statistics

Why multivariate statistics?

In science we use experiments to learn about underlying mechanisms of interest,
both deterministic and stochastic, to compare different models and to verify
or reject hypotheses about the world. Statistics provides tools to quantify this
procedure and offers methods to link data (experiments) with probabilistic
models (hypotheses).

In univariate statistics with we use relatively simple approaches based on a
single random variable or single parameter. However, in practise we often have
to consider multiple random variables and multiple parameters, so we need
more complex models and also be able to deal with more complex data. Hence,
the need for multivariate statistical approaches and models.

Specifically, multivariate statistics is concerned with methods and models for
random vectors and random matrices, rather than just random univariate (scalar)
variables. Therefore, in multivariate statistics we will frequently make use of
matrix notation.

Closely related to multivariate statistics (traditionally a subfield of statistics) is
machine learning (ML) which is traditionally a subfield of computer science. ML
used to focus more on algorithms rather on probabilistic modelling but nowadays
most machine learning methods are fully based on statistical multivariate
approaches, so the two fields are converging.

Multivariate models provide a means to learn dependencies and interactions
among the components of the random variables which in turn allow us to draw
conclusion about underlying mechanisms of interest (e.g. in biological or medical
problems).

Two main tasks:

• unsupervised learning (finding structure, clustering)
• supervised learning (training from labelled data, followed by prediction)

Challenges:

4

1 Multivariate random variables

• complexity of model needs to be appropriate for problem and available
data

• high dimensions make estimation and inference difficult
• computational issues

Univariate vs. multivariate random variables

Univariate random variable (dimension 𝑑 = 1):

𝑥 ∼ 𝐹

where 𝑥 is a scalar and 𝐹 is the distribution. E(𝑥) = 𝜇 denotes the mean and
Var(𝑥) = 𝜎2 the variance of 𝑥.

Multivariate random vector of dimension 𝑑:

𝒙 = (𝑥1 , 𝑥2 , ..., 𝑥𝑑)𝑇 ∼ 𝐹

𝒙 is vector valued random variable.

The vector 𝒙 is column vector (=matrix of size 𝑑× 1). Its components 𝑥1 , 𝑥2 , ..., 𝑥𝑑
are univariate random variables. The dimension 𝑑 is also often denoted by 𝑝 or
𝑞.

Note that for simplicity of notation we use the same symbol to denote the random
variable and its elementary outcomes (in particular we don’t use capitalisation
to indicate a random variable). This convention greatly facilitates working with
random vectors and matrices and follows, e.g., the classic multivariate statistics
textbook by Mardia, Kent, and Bibby (1979). If a quantity is random we will
always specify this explicitly in the context.

Multivariate data

Vector notation:

Samples from a multivariate distribution are vectors (not scalars as for univariate
normal):

𝒙1 , 𝒙2 , ..., 𝒙𝑛
iid∼ 𝐹

Matrix and component notation:

All the data points are commonly collected into a matrix 𝑿 .

In statistics the convention is to store each data vector in the rows of the data
matrix 𝑿 :

5

1 Multivariate random variables

𝑿 = (𝒙1 , 𝒙2 , ..., 𝒙𝑛)𝑇 =

©­­­­«
𝑥11 𝑥12 . . . 𝑥1𝑑
𝑥21 𝑥22 . . . 𝑥2𝑑
...
𝑥𝑛1 𝑥𝑛2 . . . 𝑥𝑛𝑑

ª®®®®¬
Therefore,

𝒙1 =
©­­«
𝑥11
...
𝑥1𝑑

ª®®¬ , 𝒙2 =
©­­«
𝑥21
...
𝑥2𝑑

ª®®¬ , . . . , 𝒙𝑛 =
©­­«
𝑥𝑛1
...
𝑥𝑛𝑑

ª®®¬
Thus, in statistics the first index runs over (1, ..., 𝑛) and denotes the samples
while the second index runs over (1, ..., 𝑑) and refers to the variables.

The statistics convention on data matrices is not universal! In fact, in most of
the machine learning literature in engineering and computer science the data
samples are stored in the columns so that the variables appear in the rows (thus
in the engineering convention the data matrix is transposed compared to the
statistics convention).

In order to avoid confusion and ambiguity it is recommended to prefer vector
notation to describe data over matrix or component notation (see also the section
below on estimating covariance matrices for examples).

Mean of a random vector

The mean / expectation of a random vector with dimensions 𝑑 is also a vector
with dimensions 𝑑:

E(𝒙) = 𝝁 =

©­­­­«
E(𝑥1)
E(𝑥2)
...

E(𝑥𝑑)

ª®®®®¬
=

©­­­­«
𝜇1
𝜇2
...
𝜇𝑑

ª®®®®¬
Variance of a random vector

Recall the definition of mean and variance for a univariate random variable:

E(𝑥) = 𝜇

Var(𝑥) = 𝜎2 = E((𝑥 − 𝜇)2) = E((𝑥 − 𝜇)(𝑥 − 𝜇)) = E(𝑥2) − 𝜇2

Definition of variance of a random vector:

6

1 Multivariate random variables

Var(𝒙) = 𝚺︸︷︷︸
𝑑×𝑑

= E
©­­­«(𝒙 − 𝝁)︸ ︷︷ ︸

𝑑×1

(𝒙 − 𝝁)𝑇︸ ︷︷ ︸
1×𝑑

ª®®®¬ = E(𝒙𝒙𝑇) − 𝝁𝝁𝑇

The variance of a random vector is, therefore, not a vector but a matrix!

𝚺 = (𝜎𝑖 𝑗) =
©­­«
𝜎11 . . . 𝜎1𝑑
...

. . .
...

𝜎𝑑1 . . . 𝜎𝑑𝑑

ª®®¬︸ ︷︷ ︸
𝑑×𝑑

Properties of the covariance matrix

1. 𝚺 is real valued: 𝜎𝑖 𝑗 ∈ R
2. 𝚺 is symmetric: 𝜎𝑖 𝑗 = 𝜎𝑗𝑖
3. The diagonal of 𝚺 contains 𝜎𝑖𝑖 = Var(𝑥𝑖) = 𝜎2

𝑖
, i.e. the variances of the

components of 𝒙.
4. Off-diagonal elements 𝜎𝑖 𝑗 = Cov(𝑥𝑖 , 𝑥 𝑗) represent linear dependencies

among the 𝑥𝑖 . =⇒ linear regression, correlation

Table 1.1: Number of distinct elements in a covariance matrix.
𝑑 # entries
1 1
10 55
100 5050
1000 500500
10000 50005000

How many distinct elements does 𝚺 have?

𝑑(𝑑 + 1)
2

This grows with the square of the dimension 𝑑, i.e. it grows with order 𝑂(𝑑2)
(Table 1.1).

For large dimension 𝑑 the covariance matrix has many components!

–> computationally expensive (both for storage and in handling) –> very chal-
lenging to estimate 𝚺 in high dimensions 𝑑.

7

1 Multivariate random variables

Note: matrix inversion requires 𝑂(𝑑3) operations using standard algorithms
such as Gauss Jordan elimination. 1 Hence, computing 𝚺−1 is computationally
expensive for large 𝑑!

Eigenvalue decomposition of 𝚺

Recall from linear matrix algebra that any real symmetric matrix has real
eigenvalues and a complete set of orthogonal eigenvectors. These can be
obtained by orthogonal eigendecomposition. 2

Applying eigenvalue decomposition to the covariance matrix yields

𝚺 = 𝑼𝚲𝑼𝑇

where 𝑼 is an orthogonal matrix 3 containing the eigenvectors of the covariance
matrix and

𝚲 =
©­­«
𝜆1 . . . 0
...

. . .
...

0 . . . 𝜆𝑑

ª®®¬
contains the corresponding eigenvalues 𝜆𝑖 .

Importantly, the eigenvalues of a covariance matrix are not only real-valued but
are by construction further constrained to be non-negative. This can be seen by
computing the quadratic form 𝒛𝑇𝚺𝒛 where 𝒛 is a non-random vector. For any
non-zero 𝒛

𝒛𝑇𝚺𝒛 = 𝒛𝑇E
(
(𝒙 − 𝝁)(𝒙 − 𝝁)𝑇

)
𝒛

= E
(
𝒛𝑇(𝒙 − 𝝁)(𝒙 − 𝝁)𝑇𝒛

)
= E

((
𝒛𝑇(𝒙 − 𝝁)

)2
)
≥ 0 .

Furthermore, with 𝒚 = 𝑼𝑇𝒛 we get

𝒛𝑇𝚺𝒛 = 𝒛𝑇𝑼𝚲𝑼𝑇𝒛

= 𝒚𝑇𝚲𝒚 =

𝑑∑
𝑖=1

𝑦2
𝑖 𝜆𝑖

1Specialised matrix algorithms improve this to about 𝑂(𝑑2.373). Matrices with special symmetries
(e.g. diagonal and block diagonal matrices) or particular properties (e.g. orthogonal matrix) can
also be inverted much easier.

2A brief summary of eigenvalue decompositon is found in the supplementary Matrix and Calculus
Refresher notes.

3An orthogonal matrix 𝑸 satisfies 𝑸𝑇𝑸 = 𝑰, 𝑸𝑸𝑇 = 𝑰 and 𝑸−1 = 𝑸𝑇 and is also called rotation-
reflection matrix. We will make frequent use of orthogonal matrices so this might be a good time
to revisit their properties, see e.g. the Matrix and Calculus Refresher notes..

8

https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations#Matrix_algebra
https://strimmerlab.github.io/publications/lecture-notes/matrix-calculus-refresher/index.html
https://strimmerlab.github.io/publications/lecture-notes/matrix-calculus-refresher/index.html
https://strimmerlab.github.io/publications/lecture-notes/matrix-calculus-refresher/index.html

1 Multivariate random variables

and hence all the 𝜆𝑖 ≥ 0. Therefore the covariance matrix 𝚺 is always positive
semi-definite.

In fact, unless there is collinearity (i.e. a variable is a linear function the other
variables) all eigenvalues will be positive and 𝚺 is positive definite.

Joint covariance matrix

Assume we have random vector 𝒛 with mean E(𝒛) = 𝝁𝒛 and covariance matrix
Var(𝒛) = 𝚺𝒛 .

Often it makes sense to partion the components of 𝒛 into two groups

𝒛 =

(
𝒙
𝒚

)
This induces a corresponding partition in the expectation

𝝁𝒛 =

(
𝝁𝒙
𝝁𝒚

)
where E(𝒙) = 𝝁𝒙 and E(𝒚) = 𝝁𝒚.

Furthermore, the joint covariance matrix for 𝒙 and 𝒚 can then be written as

𝚺𝒛 =

(
𝚺𝒙 𝚺𝒙𝒚

𝚺𝒚𝒙 𝚺𝒚

)
It contains the within-group group covariance matrices 𝚺𝒙 and 𝚺𝒚 as diagonal
elements and the cross-covariance matrix 𝚺𝒙𝒚 = 𝚺𝑇𝒚𝒙 as off-diagonal element.

Note that the cross-covariance matrix 𝚺𝒙𝒚 is rectangular and not symmetric. We
also write Cov(𝒙 , 𝒚) = 𝚺𝒙𝒚 and we can define cross-covariance directly by

Cov(𝒙 , 𝒚) = E
(
(𝒙 − 𝝁𝒙)(𝒚 − 𝝁𝒚)

𝑇
)
= E(𝒙𝒚𝑇) − 𝝁𝒙𝝁

𝑇
𝒚

Quantities related to the covariance matrix

Correlation matrix 𝑷

The correlation matrix𝑷 (= upper case greek “rho”) is the standardised covariance
matrix

𝜌𝑖 𝑗 =
𝜎𝑖 𝑗
√
𝜎𝑖𝑖𝜎𝑗 𝑗

= Cor(𝑥𝑖 , 𝑥 𝑗)

9

1 Multivariate random variables

𝜌𝑖𝑖 = 1 = Cor(𝑥𝑖 , 𝑥𝑖)

𝑷 = (𝜌𝑖 𝑗) =
©­­«

1 . . . 𝜌1𝑑
...

. . .
...

𝜌𝑑1 . . . 1

ª®®¬
where 𝑷 (“upper case rho”) is a symmetric matrix (𝜌𝑖 𝑗 = 𝜌 𝑗𝑖).

Note the variance-correlation decomposition

𝚺 = 𝑽
1
2 𝑷𝑽

1
2

where 𝑽 is a diagonal matrix containing the variances:

𝑽 =
©­­«
𝜎11 . . . 0
...

. . .
...

0 . . . 𝜎𝑑𝑑

ª®®¬
𝑷 = 𝑽−

1
2𝚺𝑽−

1
2

This is the definition of correlation written in matrix notation.

As with the covariance matrix, in many applications it makes sense to partition a
joint correlation matrix

𝑷𝒛 =

(
𝑷𝒙 𝑷𝒙𝒚

𝑷𝒚𝒙 𝑷𝒚

)
into within-group group correlation matrices

𝑷𝒙 = 𝑽
− 1

2
𝒙 𝚺𝒙𝑽

− 1
2

𝒙

and
𝑷𝒚 = 𝑽

− 1
2

𝒚 𝚺𝒚𝑽
− 1

2
𝒚

and the cross-correlation matrix

𝑷𝒙𝒚 = 𝑽
− 1

2
𝒙 𝚺𝒙𝒚𝑽

− 1
2

𝒚

with
𝑷𝒚𝒙 = 𝑷𝑇𝒙𝒚 = 𝑽

− 1
2

𝒚 𝚺𝒚𝒙𝑽
− 1

2
𝒙 .

10

1 Multivariate random variables

Precision matrix or concentration matrix

𝛀 = (𝜔𝑖 𝑗) = 𝚺−1

𝛀 (“Omega”) is the inverse of the covariance matrix.

The inverse of the covariance matrix can be obtained via the spectral decomposi-
tion, followed by inverting the eigenvalues 𝜆𝑖 :

𝚺−1 = 𝑼𝚲−1𝑼𝑇 = 𝑼
©­­«
𝜆−1

1 . . . 0
...

. . .
...

0 . . . 𝜆−1
𝑑

ª®®¬𝑼𝑇

Note that all eigenvalues 𝜆𝑖 need to be positive so that 𝚺 can be inverted. (i.e.,
𝚺 needs to be positive definite).
If any 𝜆𝑖 = 0 then 𝚺 is singular and not invertible.

Importance of 𝚺−1:

• Many expressions in multivariate statistics contain 𝚺−1 and not 𝚺.
• 𝚺−1 has close connection with graphical models (e.g. conditional indepen-

dence graph, partial correlations).
• 𝚺−1 is a natural parameter from an exponential family perspective.

Partial correlation matrix

This is a standardised version of the precision matrix, see later chapter on
graphical models.

Total variation and generalised variance

To summarise the covariance matrix 𝚺 in a single scalar value there are two
commonly used measures:

• total variation: Tr(𝚺) = ∑𝑑
𝑖=1 𝜆𝑖

• generalised variance: det(𝚺) = ∏𝑑
𝑖=1 𝜆𝑖

The generalised variance det(𝚺) is also known as the volume of 𝚺.

11

1 Multivariate random variables

1.2 Multivariate distributions

Common distributions

In multivariate statistics we make use of multivariate distributions. These are
typically generalisations of corresponding univariate distribution.

Among the most commonly used multivariate distributions are:

• The multivariate normal distribution 𝑁𝑑(𝝁,𝚺) as a generalisation of
univariate normal distribution 𝑁(𝜇, 𝜎2)

• The categorical distribution Cat(𝝅) as a generalisation of the Bernoulli
distribution Ber(𝜃)

• The multinomial distribution Mult(𝑛,𝝅) as a generalisation of binomial
distribution Bin(𝑛, 𝜃)

The above distribution have already been introduced earlier in MATH27720
Statistics 2.

Conceptually, these multivariate generalisation work behave exactly the same as
their univariate counterparts and are employed in the same settings.

Further multivariate distributions

For multivariate Bayesian analyis we also need to consider a number of further
multivariate distributions:

• The Dirichlet distribution Dir(𝜶) as the generalisation of the beta distri-
bution Beta(𝛼, 𝛽),

• The Wishart distribution as the generalisation of the gamma distribution
Gam(𝛼, 𝜃),

• The inverse Wishart distribution as the generalisation of the inverse
gamma distribution IG(𝛼, 𝛽).

For technical details of the densities etc. of the multivariate distribution families
we refer to the supplementary Probability and Distribution refresher notes.

1.3 Multivariate normal distribution

The multivariate normal disribution is ubiquitous in multivariate statistics and
hence it is important to discuss it in more detail.

The multivariate normal model is a generalisation of the univariate normal
distribution from dimension 1 to dimension 𝑑.

12

https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/
https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/
https://strimmerlab.github.io/publications/lecture-notes/probability-distribution-refresher/index.html

1 Multivariate random variables

−4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Density Normal Distribution

x

f(
x)

Figure 1.1: Illustration of the density of the normal distribution.

Univariate normal distribution:

Dimension 𝑑 = 1

𝑥 ∼ 𝑁(𝜇, 𝜎2)
E(𝑥) = 𝜇,Var(𝑥) = 𝜎2

Probability Density Function:

𝑓 (𝑥 |𝜇, 𝜎2) = 1√
2𝜋𝜎2

exp
(
−(𝑥 − 𝜇)

2

2𝜎2

)
Plot of univariate normal density

See Figure 1.1. The density is unimodal with a mode at 𝜇 and width determined
by 𝜎 (in this plot: 𝜇 = 2, 𝜎2 = 1)

Special case: standard normal with 𝜇 = 0 and 𝜎2 = 1:

𝑓 (𝑥 |𝜇 = 0, 𝜎2 = 1) = 1√
2𝜋

exp
(
−𝑥

2

2

)

13

1 Multivariate random variables

Differential entropy:

𝐻(𝐹) = 1
2 (log(2𝜋𝜎2) + 1)

Cross-entropy:

𝐻(𝐹ref , 𝐹) =
1
2

(
(𝜇 − 𝜇ref)2

𝜎2 +
𝜎2

ref
𝜎2 + log(2𝜋𝜎2)

)
KL divergence:

𝐷KL(𝐹ref , 𝐹) = 𝐻(𝐹ref , 𝐹) − 𝐻(𝐹ref) =
1
2

(
(𝜇 − 𝜇ref)2

𝜎2 +
𝜎2

ref
𝜎2 − log

(
𝜎2

ref
𝜎2

)
− 1

)
Maximum entropy characterisation: the normal distribution is the unique
distribution that has the highest (differential) entropy over all continuous distri-
butions with support from minus infinity to plus infinity with a given mean and
variance.

This is in fact one of the reasons why the normal distribution is so important
(und useful) – if we only know that a random variable has a mean and variance,
and not much else, then using the normal distribution will be a reasonable and
well justified model.

Multivariate normal model

Dimension 𝑑

𝒙 ∼ 𝑁𝑑(𝝁,𝚺)
E(𝒙) = 𝝁,Var(𝒙) = 𝚺

Density:

𝑓 (𝒙 |𝝁,𝚺) = det(2𝜋𝚺)− 1
2 exp

©­­­­­­­­­«
−1

2 (𝒙 − 𝝁)
𝑇︸ ︷︷ ︸

1×𝑑

𝚺−1︸︷︷︸
𝑑×𝑑

(𝒙 − 𝝁)︸ ︷︷ ︸
𝑑×1︸ ︷︷ ︸

1×1=scalar!

ª®®®®®®®®®¬
• the density contains the precision matrix 𝚺−1

• to invert the covariance matrix 𝚺 we need to invert its eigenvalues 𝜆𝑖 (hence
we require that all 𝜆𝑖 > 0)

14

1 Multivariate random variables

• the density also contains det(𝚺) =
𝑑∏
𝑖=1

𝜆𝑖 ≡ product of the eigenvalues of 𝚺

• note that det(2𝜋𝚺)− 1
2 = det(2𝜋𝑰𝑑)−

1
2 det(𝚺)− 1

2 = (2𝜋)−𝑑/2 det(𝚺)− 1
2

Special case: standard multivariate normal with

𝝁 = 0,𝚺 = 𝑰 =
©­­«
1 . . . 0
...

. . .
...

0 . . . 1

ª®®¬
𝑓 (𝒙 |𝝁 = 0,𝚺 = 𝑰) = (2𝜋)−𝑑/2 exp

(
−1

2 𝒙
𝑇𝒙

)
=

𝑑∏
𝑖=1

1√
2𝜋

exp

(
−
𝑥2
𝑖

2

)
which is equivalent to the product of 𝑑 univariate standard normals!

Misc:

• for 𝑑 = 1, the multivariate normal density reduces to the univariate normal
density.

• for 𝚺 diagonal (i.e. 𝑷 = 𝑰, no correlation), the multivariate normal density
is the product of univariate normal densities (see Worksheet 2).

Plot of the multivariate normal density:

Figure 1.2 illustrates the bivariate normal distribution, with location determined
by 𝝁, shape determined by 𝚺 and a single mode. The support ranges from −∞
to +∞ in each dimension.

An interactive R Shiny web app of the bivariate normal density plot is available
online at https://minerva.it.manchester.ac.uk/shiny/strimmer/bvn/.

Differential entropy:

𝐻 =
1
2 (log det(2𝜋𝚺) + 𝑑)

Cross-entropy:

𝐻(𝐹ref , 𝐹) =
1
2

{
(𝝁 − 𝝁ref)

𝑇𝚺−1(𝝁 − 𝝁ref) + Tr
(
𝚺−1𝚺ref

)
+ log det

(
2𝜋𝚺

)}
KL divergence:

𝐷KL(𝐹ref , 𝐹) = 𝐻(𝐹ref , 𝐹) − 𝐻(𝐹ref)

=
1
2

{
(𝝁 − 𝝁ref)

𝑇𝚺−1(𝝁 − 𝝁ref) + Tr
(
𝚺−1𝚺ref

)
− log det

(
𝚺−1𝚺ref

)
− 𝑑

}

15

https://shiny.rstudio.com/
https://minerva.it.manchester.ac.uk/shiny/strimmer/bvn/

1 Multivariate random variables

x1

−5
−4

−3
−2

−1
0

1
2

3
4

5

x2

−5

−4
−3

−2
−1

0
1
2
3
4
5

density

0.00
0.02

0.04
0.06

0.08
0.10

0.12
0.14

0.16
0.18

Bivariate Normal Density

Figure 1.2: Illustration of the density of the bivariate normal distribution.

16

1 Multivariate random variables

Shape of the multivariate normal density

Now we show that the contour lines of the multivariate normal density always
take on the form of an ellipse, and that the radii and orientation of the ellipse is
determined by the eigenvalues of 𝚺.

We start by observing that a circle with radius 𝑟 around the origin can be described
as the set of points (𝑥1 , 𝑥2) satisfying 𝑥2

1 + 𝑥
2
2 = 𝑟2, or equivalently, 𝑥

2
1
𝑟2 +

𝑥2
2
𝑟2 = 1.

This is generalised to the shape of an ellipse by allowing (in two dimensions) for
two radii 𝑟1 and 𝑟2 with 𝑥2

1
𝑟2
1
+ 𝑥2

2
𝑟2
2
= 1, or in vector notation 𝒙𝑇Diag(𝑟2

1 , 𝑟
2
2)−1𝒙 = 1.

Here two axes of the ellipse are parallel to the two coordinate axes.

In 𝑑 dimensions and allowing for rotation of the axes and a shift of the origin
from 0 to 𝝁 the condition for an ellipse is

(𝒙 − 𝝁)𝑇𝑸 Diag(𝑟2
1 , . . . , 𝑟

2
𝑑
)−1𝑸𝑇(𝒙 − 𝝁) = 1

where 𝑸 is an orthogonal matrix whose column vectors indicate the direction
of the axes. These are also called the principal axes of the ellipse, and by
construction all 𝑑 principal axes are perpendicular to each other.

A contour line of a probability density function is a set of connected points where
the density assumes the same constant value. In the case of the multivariate
normal distribution keeping the density 𝑓 (𝒙 |𝝁,𝚺) at some fixed value implies that
(𝒙−𝝁)𝑇𝚺−1(𝒙−𝝁) = 𝑐 where 𝑐 is a constant. Using the eigenvalue decomposition
of 𝚺 = 𝑼𝚲𝑼𝑇 we can rewrite this condition as

(𝒙 − 𝝁)𝑇𝑼𝚲−1𝑼𝑇(𝒙 − 𝝁) = 𝑐 .

This implies that

i) the contour lines of the multivariate normal density are indeed ellipses,
ii) the direction of the principal axes of the ellipse are given correspond to

the colum vectors in 𝑼 (i.e. the eigenvectors of 𝚺), and
iii) the squared radii of the ellipse are proportional to the eigenvalues of 𝚺

Equivalently, the positive square roots of the eigenvalues are proportional
to the radii of the ellipse. Hence, for a singular covariance matrix with one
or more 𝜆𝑖 = 0 the corresponding radii are zero.

An interactive R Shiny web app to play with the contour lines of the bivariate
normal distribution is available online at https://minerva.it.manchester.ac.uk/
shiny/strimmer/bvn/.

17

https://shiny.rstudio.com/
https://minerva.it.manchester.ac.uk/shiny/strimmer/bvn/
https://minerva.it.manchester.ac.uk/shiny/strimmer/bvn/

1 Multivariate random variables

Three types of covariances

Following the above we can parametrise a covariance matrix in terms of its i)
volume, ii) shape and iii) orientation by writing

𝚺 = 𝜅𝑼𝑨𝑼𝑇 = 𝑼 (𝜅𝑨) 𝑼𝑇

with 𝑨 = Diag(𝑎1 , . . . , 𝑎𝑑) and det(𝑨) = ∏𝑑
𝑖=1 𝑎𝑖 = 1. Note that in this parametri-

sation the eigenvalues of 𝚺 are 𝜆𝑖 = 𝜅𝑎𝑖 .

i) The volume is det(𝚺) = 𝜅𝑑, determined by a single parameter 𝜅. This
parameter can be interpreted as the length of the side of a 𝑑-dimensional
hypercube.

ii) The shape is determined by the diagonal matrix𝑨with 𝑑−1 free parameters.
Note that there are only 𝑑 − 1 and not 𝑑 free parameters because of the
constraint det(𝑨) = 1.

iii) The orientation is given by the orthogonal matrix 𝑼 , with 𝑑(𝑑 − 1)/2 free
parameters.

This leads to classification of covariances into three varieties:

Type 1: spherical covariance 𝚺 = 𝜅𝑰, with spherical contour lines, 1 free
parameter (𝑨 = 𝑰, 𝑼 = 𝑰).

Example (Figure 1.3): 𝚺 =

(
2 0
0 2

)
with

√
𝜆1/𝜆2 = 1:

Contour Lines

x1

x2

 0.01

 0.02

 0.03 0.04

 0.05

−4 0 2 4

−
4

0
2

4 Circle

−4 0 2 4

−
4

0
2

4

Simulated Data

x1

x2

Figure 1.3: Contor lines for a spherical covariance matrix.

18

1 Multivariate random variables

Type 2: diagonal covariance 𝚺 = 𝜅𝑨, with elliptical contour lines and the
principal axes of the ellipse oriented parallel to the coordinate axes, 𝑑 free
parameters (𝑼 = 𝑰).

Example (Figure 1.4): 𝚺 =

(
1 0
0 2

)
with

√
𝜆1/𝜆2 ≈ 1.41:

Contour Lines

x1

x2

 0.01

 0.02

 0
.0

3

 0
.0

4

 0.05

−4 0 2 4

−
4

0
2

4 Ellipse (1.41:1)

−4 0 2 4

−
4

0
2

4

Simulated Data

x1

x2

Figure 1.4: Contour lines for a diagonal covariance matrix.

Type 3: general unrestricted covariance 𝚺, with elliptical contour lines, with
the principal axes of the ellipse oriented according to the column vectors in 𝑼 ,
𝑑(𝑑 + 1)/2 free parameters.

Example (Figure 1.5): 𝚺 =

(
2 0.6

0.6 1

)
with

√
𝜆1/𝜆2 ≈ 2.20:

Concentration of probability mass for small and large dimension

The density of the multivariate normal distribution has a bell shape with a single
mode. Intuitively, we may assume that most of the probability mass is always
concentrated around this mode, as it is in the univariate case (𝑑 = 1). While this
is still true for small dimensions (small 𝑑) we now show that this intuition is
incorrect for high dimensions (large 𝑑).

For simplicity we consider the standard multivariate normal distribution with
dimension 𝑑

𝒙 ∼ 𝑁𝑑(0, 𝑰𝑑)

19

1 Multivariate random variables

Contour Lines

x1

x2

 0.01

 0.02

 0.03

 0.04

−4 0 2 4

−
4

0
2

4 Ellipse (2.20:1)

−4 0 2 4

−
4

0
2

4

Simulated Data

x1
x2

Figure 1.5: Contour lines for a general covariance matrix.

with a spherical covariance 𝑰𝑑 and sample 𝒙. The squared Euclidean length of 𝒙
is 𝑟2 = | |𝒙 | |2 = 𝒙𝑇𝒙 =

∑𝑑
𝑖=1 𝑥

2
𝑖
. The corresponding density of the 𝑑-dimensional

standard multivariate normal distribution is

𝑔𝑑(𝒙) = (2𝜋)−𝑑/2𝑒−𝒙
𝑇𝒙/2

A natural way to define the main part of the “bell” of the standard multivariate
normal as the set of all 𝒙 for which the density is larger than a specified fraction
𝜂 (say 0.001) of the maximum value of the density 𝑔𝑑(0) at the peak at zero. To
formalise

𝐵 =

{
𝒙 :

𝑔𝑑(𝒙)
𝑔𝑑(0)

> 𝜂

}
which can be equivalently written as the set

𝐵 = {𝒙 : 𝒙𝑇𝒙 = 𝑟2 < −2 log(𝜂) = 𝑟2
max}

Each individual component in the sample 𝒙 is independently distributed as
𝑥𝑖 ∼ 𝑁(0, 1), hence 𝑟2 ∼ 𝜒2

𝑑
is chi-squared distributed with degree of freedom 𝑑.

The probability Pr(𝒙 ∈ 𝐵) can thus be obtained as the value of the cumulative
density function of a chi-squared distribution with 𝑑 degrees of freedom at
𝑟2
max. Computing this probability for fixed 𝜂 as a function of the dimension 𝑑 we

obtain the curve shown in Figure 1.6. In this plot we have used 𝜂 = 0.001. You
can see that for dimensions up to around 𝑑 = 10 the probability mass is indeed
concentrated in the center of the distribution but from 𝑑 = 30 onwards it has
moved completely to the tails.

20

1 Multivariate random variables

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Concentration of Probability Mass (MVN)

Dimension

P
ro

ba
bi

lit
y

M
as

s
in

 B
el

l

Figure 1.6: Concentration of probability mass in the center of a multivariate
normal distribution.

21

2 Multivariate estimation

2.1 Overview

In practical application of multivariate normal model we need to learn its
parameters from observed data points:

𝒙1 , 𝒙2 , ..., 𝒙𝑛
iid∼ 𝐹𝜽

We first consider the case when there are many measurements available (𝑛 large),
and then subsequently the case when the number of data points 𝑛 is small
compared to the dimensions and the number of parameters.

In a previous course in year 2 (see MATH27720 Statistics 2) the method of maxi-
mum likelihood as well as the essentials of Bayesian statistics were introduced.
Below we apply these approaches to the problem of estimating the parameters
of the multivariate normal distribution and also show how the main Bayesian
modelling strategies extend to the multivariate case.

2.2 Empirical estimates

General principle

For large 𝑛 we have thanks to the law of large numbers:

𝐹︸︷︷︸
true

≈ 𝐹𝑛︸︷︷︸
empirical

We now would like to estimate𝐴which is a functional𝐴 = 𝑚(𝐹) of the distribution
𝐹 — recall that a functional is a function that takes another function as argument.
For example all standard distributional summaries such as the mean, the median
etc. are derived from 𝐹 and hence are functionals of 𝐹.

The empirical estimate is obtained by replacing the unknown true distribution 𝐹
with the observed empirical distribution: 𝐴̂ = 𝑚(𝐹𝑛).

22

https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/

2 Multivariate estimation

For example, the expectation of a random variable is approximated/estimated
as the average over the observations:

E𝐹(𝒙) ≈ E
𝐹𝑛
(𝒙) = 1

𝑛

𝑛∑
𝑘=1

𝒙𝑘

E𝐹(𝑔(𝒙)) ≈ E
𝐹𝑛
(𝑔(𝒙)) = 1

𝑛

𝑛∑
𝑘=1

𝑔(𝒙𝑘)

Simple recipe to obtain an empirical estimator: simply replace the expectation
operator by the sample average.

What does this work: the empirical distribution 𝐹𝑛 is the nonparametric
maximum likelihood estimate of 𝐹 (see below for likelihood estimation).

Note: the approximation of 𝐹 by 𝐹𝑛 is also the basis other approaches such as
Efron’s bootstrap method (1979) 1.

Empirical estimates of mean and covariance

Recall the definitions:
𝝁 = E(𝒙)

and
𝚺 = E

(
(𝒙 − 𝝁)(𝒙 − 𝝁)𝑇

)
For the empirical estimate we replace the expectations by the corresponding
sample averages.

These resulting estimators can be written in three different ways:

Vector notation:

𝝁̂ =
1
𝑛

𝑛∑
𝑘=1

𝒙𝑘

𝚺̂ =
1
𝑛

𝑛∑
𝑘=1
(𝒙𝑘 − 𝝁̂)(𝒙𝑘 − 𝝁̂)𝑇 =

1
𝑛

𝑛∑
𝑘=1

𝒙𝑘𝒙𝑇𝑘 − 𝝁̂𝝁̂
𝑇

Component notation:

1Efron, B. 1979. Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7:1–26.
https://doi.org/10.1214/aos/1176344552

23

https://doi.org/10.1214/aos/1176344552

2 Multivariate estimation

The corresponding component notation with 𝑿 = (𝑥𝑘𝑖) and following the
statistics convention with samples contained in rows of 𝑿 we get:

𝜇̂𝑖 =
1
𝑛

𝑛∑
𝑘=1

𝑥𝑘𝑖

𝜎̂𝑖 𝑗 =
1
𝑛

𝑛∑
𝑘=1
(𝑥𝑘𝑖 − 𝜇̂𝑖)(𝑥𝑘 𝑗 − 𝜇̂𝑗)

𝝁̂ =
©­­«
𝜇̂1
...
𝜇̂𝑑

ª®®¬ , 𝚺̂ = (𝜎̂𝑖 𝑗)

Variance estimate:

𝜎̂𝑖𝑖 =
1
𝑛

𝑛∑
𝑘=1
(𝑥𝑘𝑖 − 𝜇̂𝑖)2

Note the factor 1
𝑛 (not 1

𝑛−1)

Data matrix notation:

The empirical mean and covariance can also be written in terms of the data
matrix 𝑿 .

If the data matrix 𝑿 follows the statistics convention we can write

𝝁̂ =
1
𝑛
𝑿𝑇1𝑛

𝚺̂ =
1
𝑛
𝑿𝑇𝑿 − 𝝁̂𝝁̂𝑇

On the other hand, if 𝑿 follows the engineering convention with samples in
columns the estimators are written as:

𝝁̂ =
1
𝑛
𝑿1𝑛

𝚺̂ =
1
𝑛
𝑿𝑿𝑇 − 𝝁̂𝝁̂𝑇

To avoid confusion when using matrix or component notation you need to always
state which convention is used! In these notes we exlusively follow the statistics
convention.

24

2 Multivariate estimation

2.3 Maximum likelihood estimation

General principle

R.A. Fisher (1922) 2: model-based estimators using the density or probability
mass function

Log-likelihood function:

Observing data 𝐷 = {𝒙1 , . . . , 𝒙𝑛} the log-likelihood function is

log 𝐿(𝜽 |𝐷) =
𝑛∑
𝑘=1

log 𝑓︸︷︷︸
log-density

(𝒙𝑘 |𝜽)

Maximum likelihood estimate:

𝜽̂ML = arg max
𝜽

log 𝐿(𝜽 |𝐷)

Maximum likelihood (ML) finds the parameters that make the observed data
most likely (it does not find the most probable model!)

Recall from MATH27720 Statistics 2 that maximum likelihood is closely linked
to minimising the Kullback-Leibler (KL) divergence 𝐷KL(𝐹, 𝐹𝜽) between the
unknown true model 𝐹 and the specified model 𝐹𝜽. Specifically, for large sample
size 𝑛 the model 𝐹𝜽̂ fit by maximum likelihood is indeed the model that is closest
to 𝐹.

Correspondingly, the great appeal of maximum likelihood estimates (MLEs) is
that they are optimal for large n, i.e. so that for large sample size no estimator can
be constructed that outperforms the MLE (note the emphasis on “for large 𝑛”!).
A further advantage of the method of maximum likelihood is that it does not only
provide a point estimate but also the asymptotic error (via the observed Fisher
information which is related to the curvature of the log-likelihood function).

2Fisher, R. A. 1922. On the mathematical foundations of theoretical statistics. Philosophical
Transactions of the Royal Society A 222:309–368. https://doi.org/10.1098/rsta.1922.0009

25

https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/
https://doi.org/10.1098/rsta.1922.0009

2 Multivariate estimation

Maximum likelihood estimates of the parameters of the
multivariate normal distribution

We now derive the MLE of the parameters 𝝁 and 𝚺 of the multivariate normal
distribution. The corresponding log-likelihood function is

log 𝐿(𝝁,𝚺|𝐷) =
𝑛∑
𝑘=1

log 𝑓 (𝒙𝑘 |𝝁,𝚺)

= −𝑛𝑑2 log(2𝜋) − 𝑛2 log det(𝚺) − 1
2

𝑛∑
𝑘=1
(𝒙𝑘 − 𝝁)𝑇𝚺−1(𝒙𝑘 − 𝝁) .

Written in terms of the precision matrix 𝛀 = 𝚺−1 this becomes

log 𝐿(𝝁,𝛀|𝐷) = −𝑛𝑑2 log(2𝜋) + 𝑛2 log det(𝛀) − 1
2

𝑛∑
𝑘=1
(𝒙𝑘 − 𝝁)𝑇𝛀(𝒙𝑘 − 𝝁) .

First, to find the MLE for 𝝁 we compute the derivative with regard to the vector
𝝁

𝜕 log 𝐿(𝝁,𝛀|𝐷)
𝜕𝝁

=

𝑛∑
𝑘=1
(𝒙𝑘 − 𝝁)𝑇𝛀

noting that 𝛀 is symmetric. Setting this equal to zero we get
∑𝑛
𝑘=1 𝒙𝑘 = 𝑛𝝁̂𝑀𝐿

and thus

𝝁̂𝑀𝐿 =
1
𝑛

𝑛∑
𝑘=1

𝒙𝑘 .

Next, to obtain the MLE for 𝛀 we compute the derivative with regard to the
matrix 𝛀

𝜕 log 𝐿(𝝁,𝛀|𝐷)
𝜕𝛀

=
𝑛

2𝛀
−1 − 1

2

𝑛∑
𝑘=1
(𝒙𝑘 − 𝝁)(𝒙𝑘 − 𝝁)𝑇

. Setting this equal to zero and substituting the MLE for 𝝁 we get

𝛀̂
−1
𝑀𝐿 =

1
𝑛

𝑛∑
𝑘=1
(𝒙𝑘 − 𝝁̂)(𝒙𝑘 − 𝝁̂)𝑇 = 𝚺̂𝑀𝐿 .

See the supplementary Matrix Refresher notes for the relevant formulas in vector
and matrix calculus.

Therefore, the MLEs are identical to the empirical estimates.

Note the factor 1
𝑛 in the MLE of the covariance matrix.

26

https://strimmerlab.github.io/publications/lecture-notes/matrix-refresher/index.html

2 Multivariate estimation

2.4 Sampling distribution of the empirical / maximum
likelihood estimates

With 𝒙1 , ..., 𝒙𝑛 ∼ 𝑁𝑑(𝝁,𝚺) one can find the exact distributions of the estimators.
The sample average is denoted by 𝒙̄ = 1

𝑛

∑𝑛
𝑖=1 𝒙 𝑖

1. Distribution of the estimate of the mean:

The empirical estimate of the mean is normally distributed:

𝝁̂𝑀𝐿 = 𝒙̄ ∼ 𝑁𝑑

(
𝝁,

𝚺
𝑛

)
Since E(𝝁̂𝑀𝐿) = 𝝁 =⇒ 𝝁̂𝑀𝐿 is unbiased.

2. Distribution of the covariance estimate:

The empirical and unbiased estimate of the covariance matrix is Wishart dis-
tributed:

Case of unknown mean 𝝁 (estimated by 𝒙̄):

𝚺̂𝑀𝐿 =
1
𝑛

𝑛∑
𝑖=1
(𝒙 𝑖 − 𝒙̄)(𝒙 𝑖 − 𝒙̄)𝑇 ∼Wis𝑑

(
𝚺
𝑛
, 𝑛 − 1

)
Since E(𝚺̂𝑀𝐿) = 𝑛−1

𝑛 𝚺 =⇒ 𝚺̂𝑀𝐿 is biased, with Bias(𝚺̂𝑀𝐿) = 𝚺 − E(𝚺̂𝑀𝐿) = −𝚺
𝑛 .

Easy to make unbiased: 𝚺̂𝑈𝐵 = 𝑛
𝑛−1 𝚺̂𝑀𝐿 = 1

𝑛−1
∑𝑛
𝑘=1 (𝒙𝑘 − 𝒙̄) (𝒙𝑘 − 𝒙̄)𝑇 which is

distributed as
𝚺̂𝑈𝐵 ∼Wis𝑑

(
𝚺

𝑛 − 1 , 𝑛 − 1
)

Hence E(𝚺̂𝑈𝐵) = 𝚺 =⇒ 𝚺̂𝑈𝐵 is unbiased.

But unbiasedness of an estimator is not a very relevant criterion in multivariate
statistics, especially when the number of samples is small compared to the
dimension (see further below).

Covariance estimator for known mean 𝝁:

1
𝑛

𝑛∑
𝑖=1
(𝒙 𝑖 − 𝝁)(𝒙 𝑖 − 𝝁)𝑇 ∼Wis𝑑

(
𝚺
𝑛
, 𝑛

)

27

2 Multivariate estimation

2.5 Small sample estimation

Problems with maximum likelihood in small sample settings and
high dimensions

Modern data is high dimensional!

Data sets with 𝑛 < 𝑑, i.e. high dimension 𝑑 and small sample size 𝑛 are now
common in many fields, e.g., medicine, biology but also finance and business
analytics.

𝑛 = 100 (e.g., patients/samples)

𝑑 = 20000 (e.g., genes/SNPs/proteins/variables)

Reasons:

• the number of measured variables is increasing quickly with technological
advances (e.g. genomics)

• but the number of samples cannot be similary increased (for cost and
ethical reasons)

General problems of MLEs:

1. ML estimators are optimal only if sample size is large compared to the
number of parameters. However, this optimality is not any more valid if
sample size is moderate or smaller than the number of parameters.

2. If there is not enough data the ML estimate overfits. This means ML fits
the current data perfectly but the resulting model does not generalise well
(i.e. model will perform poorly in prediction)

3. If there is a choice between different models with different complexity ML
will always select the model with the largest number of parameters.

-> for high-dimensional data with small sample size maximum likelihood
estimation does not work!!!

History of Statistics:

Much of modern statistics (from 1960 onwards) is devoted to the development of
inference and estimation techniques that work with complex, high-dimensional
data (cf. Figure 2.1).

• Maximum likelihood is a method from classical statistics (time up to about
1960).

• From 1960 modern (computational) statistics emerges, starting with “Stein
Paradox” (1956): Charles Stein showed that in a multivariate setting
ML estimators are dominated by (= are always worse than) shrinkage
estimators!

28

2 Multivariate estimation

Figure 2.1: Very brief sketch of the statistics in the 20th and 21st century.

• For example, there is a shrinkage estimator for the mean that is better (in
terms of MSE) than the average (which is the MLE)!

Modern statistics has developed many different (but related) methods for use in
high-dimensional, small sample settings:

• regularised estimators
• shrinkage estimators
• penalised maximum likelihood estimators
• Bayesian estimators
• Empirical Bayes estimators
• KL / entropy-based estimators

Most of this is out of scope for our class, but will be covered in advanced statistical
courses.

Next, we describe a simple regularised estimator for the estimation of the
covariance that we will use later (i.e. in classification).

Estimation of covariance matrix in small sample settings

Problems with ML estimate of 𝚺

1. Σ has O(𝑑2) number of parameters! =⇒ 𝚺̂
MLE requires a lot of data!

𝑛 ≫ 𝑑 or 𝑑2

2. if 𝑛 < 𝑑 then 𝚺̂ is positive semi-definite (even if the true Σ is positive
definite!)

29

2 Multivariate estimation

=⇒ 𝚺̂ will have vanishing eigenvalues (some 𝜆𝑖 = 0) and thus cannot be
inverted and is singular!

Note that in many expression in multivariate statistics we actually need to use the
inverse of the covariance matrix, e.g., in the density of the multivariate normal
distribution, so it is essential that we obtain a non-singular invertible estimate of
the covariance matrix.

Making the ML estimate of 𝚺 invertible

There is a simple numerical trick credited to A. N. Tikhonov to make 𝚺̂ invertible,
by adding a small number (say 𝜀 = 10−6 to the diagonal elements of 𝚺̂:

𝑺Tik = 𝚺̂ + 𝜀𝑰

The resulting 𝑺Tik is positive definite because the sum of a symmetric positive
definite matrix (𝜀𝑰) and a symmetric positive semi-definite matrix (𝚺̂) is always
positive definite.

However, while this simple regularisation results in an invertible matrix the
estimator itself has not improved over the MLE, and the matrix 𝑺Tik will also be
poorly conditioned (i.e. large condition number).

Simple regularised estimate of 𝚺

Regularised estimator 𝑺∗ = convex combination of 𝑺 = 𝚺̂
MLE and 𝑰𝑑 (identity

matrix) to get

Regularisation:

𝑺∗︸︷︷︸
regularised estimate

= (1 − 𝜆) 𝑺︸︷︷︸
ML estimate

+ 𝜆︸︷︷︸
shrinkage intensity

𝑰𝑑︸︷︷︸
target

Idea: choose 𝜆 ∈ [0, 1] such that 𝑺∗ is better (e.g. in terms of MSE) than both 𝑺
and 𝑰𝑑. Note that 𝜆 does not need to be small like 𝜀.

This form of estimator is corresponds to computing the mean of the Bayesian
posterior by directly shrinking the MLE towards a prior mean (target):

𝑺∗︸︷︷︸
posterior mean

= 𝜆𝑰𝑑︸︷︷︸
prior information

+(1 − 𝜆) 𝑺︸︷︷︸
data summarised by maximum likelihood

• Prior information helps to infer 𝚺 even in small samples.
• also called shrinkage estimator since the off-diagonal entries are shrunk

towards zero.
• this type of linear shrinkage/regularisation is natural for exponential

family models (Diaconis and Ylvisaker, 1979).

30

https://en.wikipedia.org/wiki/Andrey_Nikolayevich_Tikhonov

2 Multivariate estimation

Figure 2.2: Bias-variance tradeoff to find optimal shrinkage intensity.

• Instead of a diagonal target other options are possible, e.g. block-diagonal
or banded covariances.

• If 𝜆 is not prespecified but learned from data (see below) then the resulting
estimate is an empirical Bayes estimator.

• The resulting estimate will typically be biased as mixing in the target will
increase the bias.

How to find optimal shrinkage / regularisation parameter 𝜆?

One way to do this is to chose 𝜆 to minimise MSE (Mean Squared Error) — see
Figure 2.2. This is also called L2 regularisation or Ridge regularisation.

Bias-variance trade-off: MSE is composed of squared bias and variance.

MSE(𝜃) = E((𝜃̂ − 𝜃)2) = Bias(𝜃̂)2 + Var(𝜃̂)
with Bias(𝜃̂) = E(𝜃̂) − 𝜃

𝑺: ML estimate, many parameters, low bias, high variance
𝑰𝑑: “target”, no parameters, high bias, low variance
=⇒ reduce high variance of 𝑺 by introducing a bit of bias through 𝑰𝑑!
=⇒ overall, MSE is decreased

Challenge: since we don’t know the true 𝚺 we cannot actually compute the MSE
directly but have to estimate it! How is this done in practise?

• by cross-validation (=resampling procedure)
• by using some analytic approximation (e.g. Stein’s formula)

31

2 Multivariate estimation

In Worksheet 3 the empirical estimator of covariance is compared with the
regularised covariance estimator implemented in the R package “corpcor”.
This uses a regularisation similar as above (but for the correlation rather than
the covariance matrix) and it employs an analytic data-adaptive estimate of
the shrinkage intensity 𝜆. This estimator is a variant of an empirical Bayes /
James-Stein estimator (see MATH27720 Statistics 2).

2.6 Full Bayesian multivariate modelling

See also the section about multivariate distributions in the Probability and
Distribution refresher for details about the distributions used below.

Three main scenarios

As discussed in MATH27720 Statistics 2 there are three main Bayesian models in
the univariate case that cover a large range of applications:

1) the beta-binomial model to estimate proportions
2) the normal-normal model to estimate means
3) the inverse gamma-normal model to estimate variances

Below we briefly sketch the extensions of these three elementary models to the
multivariate case.

Dirichlet-multinomial model

This generalises the univariate beta-binomial model.

The Dirichlet distribution is useful as conjugate prior and posterior distribution
for the parameters of a categorical distribution.

• Data: 𝐷 = {𝒙1 , . . . , 𝒙𝑛} with 𝒙 𝑖 ∼ Cat(𝝅)
• MLE: 𝝅̂𝑀𝐿 =

1
𝑛

∑𝑛
𝑖=1 𝒙 𝑖

• Prior parameters (Dirichlet in mean parametrisation): 𝑘0, 𝝅0,

𝝅 ∼ Dir(𝝅0 , 𝑘0)
E(𝝅) = 𝝅0

• Posterior parameters: 𝑘1 = 𝑘0 + 𝑛, 𝝅1 = 𝜆𝝅0 + (1 − 𝜆) 𝝅̂𝑀𝐿 with 𝜆 =
𝑘0
𝑘1

𝝅 |𝐷 ∼ Dir(𝝅1 , 𝑘1)
E(𝝅 |𝐷) = 𝝅1

32

https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/
https://strimmerlab.github.io/publications/lecture-notes/probability-distribution-refresher/multivariate-distributions.html
https://strimmerlab.github.io/publications/lecture-notes/probability-distribution-refresher/multivariate-distributions.html
https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/

2 Multivariate estimation

• Equivalent update rule (for Dirichlet with 𝜶 parameter): 𝜶0 → 𝜶1 =

𝜶0 +
∑𝑛
𝑖=1 𝒙 𝑖 = 𝜶0 + 𝑛𝝅̂𝑀𝐿

Multivariate normal-normal model

This generalises the univariate normal-normal model.

The multivariate normal distribution is useful as conjugate prior and posterior
distribution of the mean:

• Data: 𝐷 = {𝒙1 , . . . , 𝒙𝑛} with 𝒙 𝑖 ∼ 𝑁𝑑(𝝁,𝚺)with known mean 𝚺

• MLE: 𝝁̂𝑀𝐿 =
1
𝑛

∑𝑛
𝑖=1 𝒙 𝑖

• Prior parameters: 𝑘0, 𝝁0

𝝁 ∼ 𝑁𝑑

(
𝝁0 ,

𝚺
𝑘0

)
E(𝝁) = 𝝁0

• Posterior parameters: 𝑘1 = 𝑘0 + 𝑛, 𝝁1 = 𝜆𝝁0 + (1 − 𝜆)𝝁̂𝑀𝐿 with 𝜆 =
𝑘0
𝑘1

𝝁 |𝐷 ∼ 𝑁𝑑

(
𝝁1 ,

𝚺
𝑘1

)
E(𝝁 |𝐷) = 𝝁1

Inverse Wishart-normal model

This generalises the univariate inverse gamma-normal model for the variance.

The inverse Wishart distribution is useful as conjugate prior and posterior
distribution of the covariance:

• Data: 𝐷 = {𝒙1 , . . . , 𝒙𝑛} with 𝒙 𝑖 ∼ 𝑁𝑑(𝝁,𝚺)with known mean 𝝁

• MLE: 𝚺̂𝑀𝐿 =
1
𝑛

∑𝑛
𝑖=1(𝒙 𝑖 − 𝝁)(𝒙 𝑖 − 𝝁)𝑇

• Prior parameters: 𝜅0, 𝚺0

𝚺 ∼W−1
𝑑 (𝜅0𝚺0 , 𝜅0 + 𝑑 + 1)

E(𝚺) = 𝚺0

• Posterior parameters: 𝜅1 = 𝜅0 + 𝑛, 𝚺1 = 𝜆𝚺0 + (1 − 𝜆)𝚺̂𝑀𝐿 with 𝜆 =
𝜅0
𝜅1

𝚺 |𝐷 ∼W−1
𝑑 (𝜅1𝚺1 , 𝜅1 + 𝑑 + 1)

E(𝚺 |𝐷) = 𝚺1

33

2 Multivariate estimation

• Equivalent update rule: 𝜈0 → 𝜈1 = 𝜈0 + 𝑛, 𝚿0 → 𝚿1 = 𝚿0 +
∑𝑛
𝑖=1(𝒙 𝑖 −

𝝁)(𝒙 𝑖 − 𝝁)𝑇 = 𝚿0 + 𝑛𝚺̂𝑀𝐿

2.7 Conclusion

• Multivariate models are often high-dimensional with large number of
parameters but often only a small number of samples are available. In
this instance it is useful (and often necessary) to introduce additional
information (via priors or by regularisation).

• Unbiased estimation, a highly valued property in classical univariate
statistics when sample size is large and number of parameters is small, is
typically not a good idea in multivariate settings and often leads to poor
estimators.

• Regularisation introduces bias and reduces variance, minimising overall
MSE. Likewise, Bayesian estimators also introduce bias and regularise (via
the prior) and thus are useful in multivariate settings.

34

3 Transformations and dimension
reduction

In the following we study transformations of random vectors and their distri-
butions. These transformation are very important since they either transform
simple distributions into more complex distributions or allow to simplify com-
plex models. Futhermore, they enable dimension reduction. We first consider
affine transformation, and then also nonlinear transformations.

3.1 Linear Transformations

Location-scale transformation

Also known as affine transformation.

𝒚 = 𝒂︸︷︷︸
location parameter

+ 𝑩︸︷︷︸
scale parameter

𝒙

𝒚 : 𝑚 × 1 random vector

𝒂 : 𝑚 × 1 vector, location parameter

𝑩 : 𝑚 × 𝑑 matrix, scale parameter , 𝑚 ≥ 1

𝒙 : 𝑑 × 1 random vector

Mean and variance:

Mean and variance of the original vector 𝒙:

E(𝒙) = 𝝁𝒙

Var(𝒙) = 𝚺𝒙

Mean and variance of the transformed random vector 𝒚:

E(𝒚) = 𝒂 + 𝑩𝝁𝒙

35

3 Transformations and dimension reduction

Var(𝒚) = 𝑩𝚺𝒙𝑩𝑇

Cross-covariance and cross-correlation:

Cross-covariance 𝚽 = Σ𝒙𝒚 = Cov(𝒙 , 𝒚) between 𝒙 and 𝒚:

𝚽 = Cov(𝒙 , 𝑩𝒙) = 𝚺𝒙𝑩𝑇

Note that 𝚽 is a matrix of dimensions 𝑑 × 𝑚 as the dimension of 𝒙 is 𝑑 and the
dimension of 𝒚 is 𝑚.

Cross-correlation 𝚿 = 𝑷𝒙𝒚 = Cor(𝒙 , 𝒚) between 𝒙 and 𝒚:

𝚿 = 𝑽−1/2
𝒙 𝚽𝑽−1/2

𝒚

where 𝑽 𝒙 = Diag(𝚺𝒙) and 𝑽 𝒚 = Diag(𝑩𝚺𝒙𝑩𝑇) are diagonal matrices containing
the variances for the components of 𝒙 and 𝒚. The dimensions of the matrix 𝚿
are also 𝑑 × 𝑚.

Special cases/examples:

Example 3.1. Univariate case (𝑑 = 1, 𝑚 = 1): 𝑦 = 𝑎 + 𝑏𝑥

• E(𝑦) = 𝑎 + 𝑏𝜇
• Var(𝑦) = 𝑏2𝜎2

• Cov(𝑦, 𝑥) = 𝑏𝜎2

• Cor(𝑦, 𝑥) = 𝑏𝜎2
√
𝑏2𝜎2
√
𝜎2

= 1

Note that 𝑦 can predicted perfectly from 𝑥 as Cor(𝑦, 𝑥) = 1. This is because
there is no error term in the transformation. See also the more general case with
multiple correlation further below.

Example 3.2. Sum of two random univariate variables: 𝑦 = 𝑥1 + 𝑥2, i.e. 𝑎 = 0
and 𝑩 = (1, 1)

• E(𝑦) = E(𝑥1 + 𝑥2) = 𝜇1 + 𝜇2

• Var(𝑦) = Var(𝑥1 + 𝑥2) = (1, 1)
(
𝜎2

1 𝜎12
𝜎12 𝜎2

2

) (
1
1

)
= 𝜎2

1 + 𝜎2
2 + 2𝜎12 = Var(𝑥1) +

Var(𝑥2) + 2 Cov(𝑥1 , 𝑥2)

Example 3.3. 𝑦1 = 𝑎1 + 𝑏1𝑥1 and 𝑦2 = 𝑎2 + 𝑏2𝑥2, i.e. 𝒂 =

(
𝑎1
𝑎2

)
and

𝑩 =

(
𝑏1 0
0 𝑏2

)
• E(𝒚) =

(
𝑎1
𝑎2

)
+

(
𝑏1 0
0 𝑏2

) (
𝜇1
𝜇2

)
=

(
𝑎1 + 𝑏1𝜇1
𝑎2 + 𝑏2𝜇2

)
• Var(𝒚) =

(
𝑏1 0
0 𝑏2

) (
𝜎2

1 𝜎12
𝜎12 𝜎2

2

) (
𝑏1 0
0 𝑏2

)
=

(
𝑏2

1𝜎
2
1 𝑏1𝑏2𝜎12

𝑏1𝑏2𝜎12 𝑏2
2𝜎

2
2

)
note that Cov(𝑦1 , 𝑦2) = 𝑏1𝑏2Cov(𝑥1 , 𝑥2)

36

3 Transformations and dimension reduction

Squared multiple correlation

Squared multiple correlation MCor(𝑦, 𝒙)2 is a scalar measure summarising the
linear association between a scalar response variable 𝑦 and a set of predictors
𝒙 = (𝑥1 , . . . , 𝑥𝑑)𝑇 . It is defined as

MCor(𝑦, 𝒙)2 = 𝚺𝑦𝒙𝚺−1
𝒙 𝚺𝒙𝑦/𝜎2

𝑦

= 𝑷𝑦𝒙𝑷−1
𝒙 𝑷𝒙𝑦

If 𝑦 can be perfectly linearly predicted by 𝒙 then MCor(𝑦, 𝒙)2 = 1.

The empirical estimate of MCor(𝑦, 𝒙)2 is the 𝑅2 coefficient that you will find in
any software for linear regression.

Example 3.4. Squared multiple correlation for an affine transformation.

Since we linearly transform 𝒙 into 𝒚 with no additional error involved we expect
that for each component 𝑦𝑖 in 𝒚 we have MCor(𝑦𝑖 , 𝒙)2 = 1. This can be shown
directly by computing(

MCor(𝑦1 , 𝒙)2 , . . . ,MCor(𝑦𝑚 , 𝒙)2
)𝑇

= Diag
(
𝚺𝒚𝒙𝚺−1

𝒙 𝚺𝒙𝒚

)
/Diag

(
𝚺𝒚

)
= Diag

(
𝑩𝚺𝒙𝚺−1

𝒙 𝚺𝒙𝑩𝑇
)
/Diag

(
𝑩𝚺𝒙𝑩𝑇

)
= Diag

(
𝑩𝚺𝒙𝑩𝑇

)
/Diag

(
𝑩𝚺𝒙𝑩𝑇

)
= (1, . . . , 1)𝑇

Invertible location-scale transformation

If 𝑚 = 𝑑 (square 𝑩) and det(𝑩) ≠ 0 then the affine transformation is invertible.

Forward transformation:
𝒚 = 𝒂 + 𝑩𝒙

Back transformation:
𝒙 = 𝑩−1(𝒚 − 𝒂)

Invertible transformations thus provide a one-to-one map between 𝒙 and 𝒚.

Example 3.5. Orthogonal transformation

Setting 𝒂 = 0 and 𝑩 = 𝑸 to an orthogonal matrix 𝑸 yields an orthogonal
transformation. The inverse transformation is given by setting 𝑩−1 = 𝑸𝑇 .

Assume that 𝒙 has a positive definite covariance matrix Var(𝒙) = 𝚺𝒙 with
eigenvalue decomposition 𝚺𝒙 = 𝑼1𝚲𝑼𝑇

1 . After orthogonal transformation

37

3 Transformations and dimension reduction

𝒚 = 𝑸𝒙 the covariance matrix for 𝒚 is Var(𝒚) = 𝚺𝒚 = 𝑸𝚺𝒙𝑸𝑇 = 𝑸𝑼1𝚲𝑼𝑇
1𝑸

𝑇 =

𝑼2𝚲𝑼𝑇
2 where 𝑼2 = 𝑸𝑼1 is another orthogonal matrix. This shows that

an orthogonal transformation reorientates the principal axes of the ellipse
corresponding to covariance matrix, without changing the shape of the ellipse
itself as the eigenvalues stay the same.

If you set 𝑸 = 𝑼𝑇
1 then 𝑼2 = 𝑰 and the reoriented principal axes are now parallel

to the coordinate axes. This special type of orthogonal transformation is called
principal component analysis (PCA) transformation. We revisit PCA in a later
chapter.

Example 3.6. Whitening transformation

Assume that 𝒙 has a positive definite covariance matrix Var(𝒙) = 𝚺𝒙 . The inverse
principal matrix square root is denoted by 𝚺−1/2

𝒙 . This can be obtained by
eigendecomposition of 𝚺𝒙 = 𝑼𝚲𝑼𝑇 so that 𝚺−1/2

𝒙 = 𝑼𝚲−1/2𝑼𝑇 .

Setting 𝒂 = 0 and 𝑩 = 𝑸𝚺−1/2
𝒙 where 𝑸 is an orthogonal matrix yields the

covariance-based parametrisation of the general whitening transformation. The
matrix 𝑩 is called the whitening matrix and is also often denoted by 𝑾 .
The inverse transformation is given by setting 𝑩−1 = 𝚺1/2

𝒙 𝑸𝑇 .

After transformation 𝒚 = 𝑸𝚺−1/2
𝒙 𝒙 the covariance matrix for 𝒚 is Var(𝒚) = 𝚺𝒚 =

𝑸𝚺−1/2
𝒙 𝚺𝒙𝚺

−1/2
𝒙 𝑸𝑇 = 𝑸𝑸𝑇 = 𝑰, hence the name of the transformation. Whitening

transformations are discussed in detail later.

Example 3.7. Mahalanobis transform

We assume E(𝒙) = 𝝁𝒙 and a positive definite covariance matrix Var(𝒙) = 𝚺𝒙 with
det(𝚺𝒙) > 0.

The Mahalanobis transformation is given by

𝒚 = 𝚺−1/2
𝒙 (𝒙 − 𝝁𝒙)

This corresponds to an affine transformation with 𝒂 = −𝚺−1/2
𝒙 𝝁𝒙 and 𝑩 = 𝚺−1/2

𝒙 .

The mean and the variance of 𝒚 becomes

E(𝒚) = 0

and
Var(𝒚) = 𝑰𝑑

.

The Mahalanobis transforms performs three functions:

38

3 Transformations and dimension reduction

1. Centering (−𝝁)
2. Standardisation Var(𝑦𝑖) = 1
3. Decorrelation Cor(𝑦𝑖 , 𝑦𝑗) = 0 for 𝑖 ≠ 𝑗

In the univariate case (𝑑 = 1) the coefficients reduce to 𝑎 = −𝜇𝑥
𝜎𝑥

and 𝐵 = 1
𝜎𝑥

and
the Mahalanobis transform becomes

𝑦 =
𝑥 − 𝜇𝑥
𝜎𝑥

i.e. it applies centering + standardisation.

The Mahalanobis transformation appears implicitly in many places in multivari-
ate statistics, e.g. in the multivariate normal density. It is a particular example of
a whitening transformation (plus centering).

Example 3.8. Inverse Mahalanobis transformation

The inverse of the Mahalanobis transform is given by

𝒚 = 𝝁𝒚 + 𝚺
1/2
𝒚 𝒙

As the Mahalanobis transform is a whitening transform the inverse Mahalonobis
transform is sometimes called the Mahalanobis colouring transformation. The
coefficients in the affine transformation are 𝒂 = 𝝁𝒚 and 𝑩 = 𝚺1/2

𝒚 .

Starting with E(𝒙) = 0 and Var(𝒙) = 𝑰𝑑 the mean and variance of the transformed
variable are

E(𝒚) = 𝝁𝒚

and
Var(𝒚) = 𝚺𝒚

Transformation of a density under an invertible location-scale
transformation:

Assume 𝒙 ∼ 𝐹𝒙 with density 𝑓𝒙(𝒙).
After linear transformation 𝒚 = 𝒂 + 𝑩𝒙 we get 𝒚 ∼ 𝐹𝒚 with density

𝑓𝒚(𝒚) = | det(𝑩)|−1 𝑓𝒙

(
𝑩−1(𝒚 − 𝒂)

)
Example 3.9. Transformation of standard normal with inverse Mahalanobis
transform

39

3 Transformations and dimension reduction

Assume 𝒙 is multivariate standard normal 𝒙 ∼ 𝑁𝑑(0, 𝑰𝑑)with density

𝑓𝒙(𝒙) = (2𝜋)−𝑑/2 exp
(
−1

2 𝒙
𝑇𝒙

)
Then the density after applying the inverse Mahalanobis transform
𝒚 = 𝝁𝒚 + 𝚺

1/2
𝒚 𝒙 is

𝑓𝒚(𝒚) = | det(𝚺1/2
𝒚)|−1(2𝜋)−𝑑/2 exp

(
−1

2 (𝒚 − 𝝁𝒚)
𝑇𝚺−1/2

𝒚 𝚺−1/2
𝒚 (𝒚 − 𝝁𝒚)

)
= (2𝜋)−𝑑/2 det(𝚺𝒚)−1/2 exp

(
−1

2 (𝒚 − 𝝁𝒚)
𝑇𝚺−1

𝒚 (𝒚 − 𝝁𝒚)
)

=⇒ 𝒚 has multivariate normal density 𝑁𝑑(𝝁𝒚 ,𝚺𝒚)

Application: e.g. random number generation: draw from 𝑁𝑑(0, 𝑰𝑑) (easy!) then
convert to multivariate normal by tranformation (see Worksheet 4).

3.2 Nonlinear transformations

General transformation

𝒚 = 𝒉(𝒙)
with 𝒉 an arbitrary vector-valued function

• linear case: 𝒉(𝒙) = 𝒂 + 𝑩𝒙

Delta method

Assume that we know the mean E(𝒙) = 𝝁𝒙 and variance Var(𝒙) = 𝚺𝒙 of 𝒙. Is
it possible to say something about the mean and variance of the transformed
random variable 𝒚?

E(𝒚) = E(𝒉(𝒙)) =?
Var(𝒚) = Var(𝒉(𝒙)) =?

In general, for a transformation 𝒉(𝒙) the exact mean and variance of the trans-
formed variable cannot be obtained analytically.

However, we can find a linear approximation and then compute its mean and
variance. This approximation is called the “Delta Method”, or the “law of
propagation of errors”, and is credited to Gauss 1.

1Gorroochurn, P. 2020. Who Invented the Delta Method, Really? The Mathematical Intelligencer
42:46–49. https://doi.org/10.1007/s00283-020-09982-0

40

https://doi.org/10.1007/s00283-020-09982-0

3 Transformations and dimension reduction

Linearisation of 𝒉(𝒙) is achieved by a Taylor series approximation of first order
of 𝒉(𝒙) around 𝒙0:

𝒉(𝒙) ≈ 𝒉(𝒙0) + 𝐷𝒉(𝒙0)︸ ︷︷ ︸
Jacobian matrix

(𝒙 − 𝒙0) = 𝒉(𝒙0) − 𝐷𝒉(𝒙0) 𝒙0︸ ︷︷ ︸
𝒂

+𝐷𝒉(𝒙0)︸ ︷︷ ︸
𝑩

𝒙

If ℎ(𝒙) is scalar-valued then gradient ∇ℎ(𝒙) is given by the vector of partial
correlations

∇ℎ(𝒙) =
©­­­«
𝜕ℎ(𝒙)
𝜕𝑥1
...

𝜕ℎ(𝒙)
𝜕𝑥𝑑

ª®®®¬
where ∇ is the nabla operator.

The Jacobian matrix is used if 𝒉(𝒙) is vector-valued:

𝐷𝒉(𝒙) =
©­­«
∇𝑇 ℎ1(𝒙)

...

∇𝑇 ℎ𝑚(𝒙)

ª®®¬ =

©­­­«
𝜕ℎ1(𝒙)
𝜕𝑥1

. . .
𝜕ℎ1(𝒙)
𝜕𝑥𝑑

...
. . .

...
𝜕ℎ𝑚 (𝒙)
𝜕𝑥1

. . .
𝜕ℎ𝑚 (𝒙)
𝜕𝑥𝑑

ª®®®¬
Note that in the Jacobian matrix by convention the gradient for each individual
component of 𝒉(𝒙) is contained in the row of the matrix so the number of
rows corresponds to the dimension of 𝒉(𝒙) and the number of columns to the
dimension of 𝒙.

First order approximation of 𝒉(𝒙) around 𝒙0 = 𝝁𝒙 yields 𝒂 = 𝒉(𝝁𝒙) − 𝐷𝒉(𝝁𝒙)𝝁𝒙
and 𝑩 = 𝐷𝒉(𝝁𝒙) and leads directly to the multivariate Delta method:

E(𝒚) ≈ 𝒉(𝝁𝒙)

Var(𝒚) ≈ 𝐷𝒉(𝝁𝒙)𝚺𝒙 𝐷𝒉(𝝁𝒙)
𝑇

The univariate Delta method is a special case:

E(𝑦) ≈ ℎ(𝜇𝑥)

Var(𝑦) ≈ 𝜎2
𝑥 ℎ
′(𝜇𝑥)2

Note that the Delta approximation breaks down if Var(𝒚) is singular, for example
if the first derivative (or gradient or Jacobian matrix) at 𝝁𝒙 is zero.

41

3 Transformations and dimension reduction

Example 3.10. Variance of the odds ratio

The proportion 𝑝̂ =
𝑛1
𝑛 resulting from 𝑛 repeats of a Bernoulli experiment has

expectation E(𝑝̂) = 𝑝 and variance Var(𝑝̂) = 𝑝(1−𝑝)
𝑛 . What are the (approximate)

mean and the variance of the corresponding odds ratio 𝑂𝑅 =
𝑝̂

1−𝑝̂ ?

With ℎ(𝑥) = 𝑥
1−𝑥 , 𝑂𝑅 = ℎ(𝑝̂) and ℎ′(𝑥) = 1

(1−𝑥)2 we get using the Delta method
E(𝑂𝑅) ≈ ℎ(𝑝) = 𝑝

1−𝑝 and Var(𝑂𝑅) ≈ ℎ′(𝑝)2Var(𝑝̂) = 𝑝

𝑛(1−𝑝)3 .

Example 3.11. Log-transform as variance stabilisation

Assume 𝑥 has some mean E(𝑥) = 𝜇 and variance Var(𝑥) = 𝜎2𝜇2, i.e. the standard
deviation SD(𝑥) is proportional to the mean 𝜇. What are the (approximate) mean
and the variance of the log-transformed variable log(𝑥)?
With ℎ(𝑥) = log(𝑥) and ℎ′(𝑥) = 1

𝑥 we get using the Delta method E(log(𝑥)) ≈

ℎ(𝜇) = log(𝜇) and Var(log(𝑥)) ≈ ℎ′(𝜇)2Var(𝑥) =
(

1
𝜇

)2
𝜎2𝜇2 = 𝜎2. Thus, after

applying the log-transform the variance does not depend any more on the mean!

Transformation of a probability density function under a general
invertible transformation

Assume 𝒚(𝒙) = 𝒉(𝒙) is invertible: 𝒙(𝒚) = 𝒉−1(𝒚)
𝒙 ∼ 𝐹𝒙 with probability density function 𝑓𝒙(𝒙)
The density 𝑓𝒚(𝒚) of the transformed random vector 𝒚 is then given by

𝑓𝒚(𝒚) = | det (𝐷𝒙(𝒚)) | 𝑓𝒙 (𝒙(𝒚))

where 𝐷𝒙(𝒚) is the Jacobian matrix of the inverse transformation.

Special cases:

• Univariate version: 𝑓𝑦(𝑦) = |𝐷𝑥(𝑦)| 𝑓𝑥 (𝑥(𝑦))with 𝐷𝑥(𝑦) = 𝑑𝑥(𝑦)
𝑑𝑦

• Linear transformation 𝒉(𝒙) = 𝒂 + 𝑩𝒙, with 𝒙(𝒚) = 𝑩−1(𝒚 − 𝒂) and 𝐷𝒙(𝒚) =
𝑩−1:

𝑓𝒚(𝒚) = |det(𝑩)|−1 𝑓𝒙

(
𝑩−1(𝒚 − 𝒂)

)

42

3 Transformations and dimension reduction

Normalising flows

In this module we will focus mostly on linear transformations as these underpin
much of classical multivariate statistics, but it is important to keep in mind for
later study the importance of nonlinear transformations

In machine learning (sequences of) invertible nonlinear transformations are
known as “normalising flows”. They are used both in a generative way (building
complex models from simple models) and for simplification and dimension
reduction.

If you are interested in normalising flows then a good start to learn more are the
review papers by Kobyzev et al (2021)2 and Papamakarios et al. (2021) 3.

3.3 General whitening transformations

Overview

Whitening transformations are a special and widely used class of invertible
location-scale transformations (Example 3.6).

Terminology: whitening refers to the fact that after the transformation the
covariance matrix is spherical, isotropic, white (𝑰𝑑)

Whitening is useful in preprocessing, as they allow to turn multivariate
models into uncorrelated univariate models (via decorrelation property). Some
whitening transformations reduce the dimension in an optimal way (via
compression property).

The Mahalanobis transform is a specific example of a whitening transformation.
It is also know as “zero-phase component analysis” or short ZCA transform.

In so-called latent variable models whitening procedures are implicitly used in
linear models to link observed (correlated) variables and latent variables (which
typically are uncorrelated and standardised):

Whitening
↓

𝒙
↑
𝒛

Observed variable (can be measured)
external, typically correlated

Unobserved "latent" variable (cannot be directly measured)
internal, typically chosen to be uncorrelated

2Kobyzev et al. 2021. Normalizing Flows: Introduction and Ideas. IEEE Trans. Pattern Anal. Mach.
Intell. 43:3964-3979

3Papamakarios et al. 2021. Normalizing Flows for Probabilistic Modeling and Inference.
JMLR 22:1-64

43

https://doi.org/10.1109/TPAMI.2020.2992934
https://doi.org/10.1109/TPAMI.2020.2992934
https://jmlr.csail.mit.edu/papers/v22/19-1028.html

3 Transformations and dimension reduction

Whitening transformation and whitening constraint

Starting point:

Random vector 𝒙 ∼ 𝐹𝒙 not necessarily from multivariate normal.

𝒙 has mean E(𝒙) = 𝝁 and a positive definite (invertible) covariance matrix
Var(𝒙) = 𝚺.

Note that in the following we leave out the subscript 𝒙 for the covariance of 𝒙
unless it is needed for clarification.

The covariance can be split into positive variances 𝑽 and a positive definite
invertible correlation matrix 𝑷 so that 𝚺 = 𝑽 1/2𝑷𝑽 1/2.

Whitening transformation:

𝒛︸︷︷︸
𝑑×1 vector

= 𝑾︸︷︷︸
𝑑×𝑑 whitening matrix

𝒙︸︷︷︸
𝑑×1 vector

Objective: choose 𝑾 so that Var(𝒛) = 𝑰𝑑

For Mahalanobis/ZCA whitening we already know from Example 3.7 that
𝑾ZCA = 𝚺−1/2.

In general, the whitening matrix 𝑾 needs to satisfy a constraint:

Var(𝒛) = 𝑰𝑑
=⇒ Var(𝑾𝒙) = 𝑾𝚺𝑾𝑇 = 𝑰𝑑
=⇒ 𝑾 𝚺𝑾𝑇𝑾 = 𝑾

=⇒ constraint on whitening matrix: 𝑾𝑇𝑾 = 𝚺−1

Clearly, the ZCA whitening matrix satisfies this constraint: (𝑾 𝑍𝐶𝐴)𝑇𝑾 𝑍𝐶𝐴 =

𝚺−1/2𝚺−1/2 = 𝚺−1

Parametrisation of whitening matrix

Covariance-based parametrisation of whitening matrix:

A general way to specify a valid whitening matrix is

𝑾 = 𝑸1𝚺
−1/2

where 𝑸1 is an orthogonal matrix.

Recall that an orthogonal matrix 𝑸 has the property that 𝑸−1 = 𝑸𝑇 and and as
a consequence 𝑸𝑇𝑸 = 𝑸𝑸𝑇 = 𝑰.

44

3 Transformations and dimension reduction

As a result, the above 𝑾 satisfies the whitening constraint:

𝑾𝑇𝑾 = 𝚺−1/2 𝑸𝑇
1𝑸1︸ ︷︷ ︸
𝑰

𝚺−1/2 = 𝚺−1

Note the converse is also true: any whitening whitening matrix, i.e. any 𝑾
satisfying the whitening constraint, can be written in the above form as 𝑸1 =

𝑾𝚺1/2 is orthogonal by construction.

=⇒ instead of choosing 𝑾 , we choose the orthogonal matrix 𝑸1!

• recall that orthogonal matrices geometrically represent rotations (plus
reflections).

• it is now clear that there are infinitely many whitening procedures, because
there are infinitely many rotations! This also means we need to find ways
to choose/select among whitening procedures.

• for the Mahalanobis/ZCA transformation 𝑸ZCA
1 = 𝑰

• whitening can be interpreted as Mahalanobis transformation followed by
further rotation-reflection

Correlation-based parametrisation of whitening matrix:

Instead of working with the covariance matrix 𝚺, we can express 𝑾 also in terms
of the corresponding correlation matrix 𝑷 = (𝜌𝑖 𝑗) = 𝑽−1/2𝚺𝑽−1/2 where 𝑽 is the
diagonal matrix containing the variances.

Specifically, we can specify the whitening matrix as

𝑾 = 𝑸2𝑷
−1/2𝑽−1/2

It is easy to verify that this 𝑾 also satisfies the whitening constraint:

𝑾𝑇𝑾 = 𝑽−1/2𝑷−1/2 𝑸𝑇
2𝑸2︸ ︷︷ ︸
𝑰

𝑷−1/2𝑽−1/2

= 𝑽−1/2𝑷−1𝑽−1/2 = 𝚺−1

Conversely, any whitening matrix 𝑾 can also be written in this form as 𝑸2 =

𝑾𝑽 1/2𝑷1/2 is orthogonal by construction.

• Another interpretation of whitening: first standardising (𝑽−1/2), then
decorrelation (𝑷−1/2), followed by rotation-reflection (𝑸2)

• for Mahalanobis/ZCA transformation 𝑸ZCA
2 = 𝚺−1/2𝑽 1/2𝑷1/2

45

3 Transformations and dimension reduction

Both forms to write 𝑾 using 𝑸1 and 𝑸2 are equally valid (and interchange-
able).

Note that for the same 𝑾

𝑸1 ≠ 𝑸2 Two different orthogonal matrices!

and also
𝚺−1/2︸︷︷︸

Symmetric

≠ 𝑷−1/2𝑽−1/2︸ ︷︷ ︸
Not Symmetric

even though

𝚺−1/2𝚺−1/2 = 𝚺−1 = 𝑽−1/2𝑷−1/2𝑷−1/2𝑽−1/2

Cross-covariance and cross-correlation for general whitening
transformations

A useful criterion to characterise and to distinguish among whitening transfor-
mations is the cross-covariance and cross-correlation matrix between the original
variable 𝒙 and the whitened variable 𝒛:

a) Cross-covariance 𝚽 = Σ𝒙𝒛 between 𝒙 and 𝒛:

𝚽 = Cov(𝒙 , 𝒛) = Cov(𝒙 ,𝑾𝒙)
= 𝚺𝑾𝑇

= 𝚺𝚺−1/2𝑸𝑇
1

= 𝚺1/2𝑸𝑇
1

In component notation we write 𝚽 = (𝜙𝑖 𝑗) where the row index 𝑖 refers to
𝒙 and the column index 𝑗 to 𝒛.

Cross-covariance is linked with 𝑸1! Thus, choosing cross-covariance
determines 𝑸1 (and vice versa).

Note that the above cross-covariance matrix 𝚽 satisfies the condition
𝚽𝚽𝑇 = 𝚺.

The whitening matrix expressed in terms of cross-covariance is𝑾 = 𝚽𝑇𝚺−1,
so as required 𝑾𝑇𝑾 = 𝚺−1𝚽𝚽𝑇𝚺−1 = 𝚺−1. Furthermore, 𝚽 is the inverse

of the whitening matrix, as 𝑾−1 =

(
𝑸1𝚺

−1/2
)−1

= 𝚺1/2𝑸−1
1 = 𝚺1/2𝑸𝑇

1 = 𝚽.

46

3 Transformations and dimension reduction

b) Cross-correlation 𝚿 = 𝑷𝒙𝒛 between 𝒙 and 𝒛:

𝚿 = Cor(𝒙 , 𝒛) = 𝑽−1/2𝚽

= 𝑽−1/2𝚺𝑾𝑇

= 𝑽−1/2𝚺𝑽−1/2𝑷−1/2𝑸𝑇
2

= 𝑷1/2𝑸𝑇
2

In component notation we write 𝚿 = (𝜓𝑖 𝑗) where the row index 𝑖 refers to
𝒙 and the column index 𝑗 to 𝒛.

Cross-correlation is linked with 𝑸2! Hence, choosing cross-correlation
determines 𝑸2 (and vice versa). The whitening matrix expressed in terms
of cross-correlation is 𝑾 = 𝚿𝑇𝑷−1𝑽−1/2.

Note that the factorisation of the cross-covariance 𝚽 = 𝚺1/2𝑸𝑇
1 and the cross-

correlation 𝚿 = 𝑷1/2𝑸𝑇
2 into the product of a positive definite symmetric matrix

and an orthogonal matrix are examples of a polar decomposition.

Inverse whitening transformation and loadings

Inverse transformation:

Recall that 𝒛 = 𝑾𝒙. Therefore, the reverse transformation going from the
whitened to the original variable is 𝒙 = 𝑾−1𝒛. This can be expressed also in
terms of cross-covariance and cross-correlation. With 𝑾−1 = 𝚽 we get

𝒙 = 𝚽𝒛 .

Furthermore, since 𝚿 = 𝑽−1/2𝚽 we have 𝑾−1 = 𝑽 1/2𝚿 and hence

𝑽−1/2𝒙 = 𝚿𝒛 .

The reverse whitening transformation is also known as colouring transformation
(the previously discussed inverse Mahalanobis transform is one example).

Definition of loadings:

Loadings are the coefficients of the linear transformation from the latent variable
back to the observed variable. If the variables are standardised to unit variance
then the loadings are also called correlation loadings.

Hence, the cross-covariance matrix 𝚽 plays the role of loadings linking the latent
variable 𝒛 with the original 𝒙. Similarly, the cross-correlation matrix 𝚿 contains
the correlation loadings linking the (already standardised) latent variable 𝒛 with
the standardised 𝒙.

47

3 Transformations and dimension reduction

In the convention we use here the rows correspond to the original variables and
the columns to the whitened latent variables.

Multiple correlation coefficients from 𝒛 back to 𝒙:

We consider the backtransformation from the whitened variable 𝒛 to the original
variables 𝒙 and note that the components of 𝒛 are all uncorrelated witth 𝑷𝒛 = 𝑰.
The squared multiple correlation coefficient MCor(𝑥𝑖 , 𝒛) between each 𝑥𝑖 and all 𝒛
is therefore just the sum of the corresponding squared correlations Cor(𝑥𝑖 , 𝑧 𝑗)2:

MCor(𝑥𝑖 , 𝒛)2 = 𝑷𝑥𝑖𝒛𝑷
−1
𝒛 𝑷𝒛𝑥𝑖 =

𝑑∑
𝑗=1

Cor(𝑥𝑖 , 𝑧 𝑗)2

=

𝑑∑
𝑗=1

𝜓2
𝑖 𝑗 = 1

As shown earlier for a general linear one-to-one- transformation (which includes
whitening as special case) the squared multiple correlation must be 1 because
there is no error. We can confirm this by computing the row sums of squares of
the cross-correlation matrix 𝚿 in matrix notation

Diag
(
𝚿𝚿𝑇

)
= Diag

(
𝑷1/2𝑸𝑇

2𝑸2𝑷
1/2

)
= Diag(𝑷)
= (1, . . . , 1)𝑇

from which it is clear that the choice of 𝑸2 is not relevant.

Similarly, the row sums of squares of the cross-covariance matrix 𝚽 equal the
variances of the original variables, regardless of 𝑸1:

𝑑∑
𝑗=1

𝜙2
𝑖 𝑗 = Var(𝑥𝑖)

or in matrix notation

Diag
(
𝚽𝚽𝑇

)
= Diag

(
𝚺1/2𝑸𝑇

1𝑸1𝚺
1/2

)
= Diag(𝚺)
= (Var(𝑥1), . . . ,Var(𝑥𝑑)𝑇

Summaries of cross-covariance 𝚽 and cross-correlation 𝚿
resulting from whitening transformations

Matrix trace:

48

3 Transformations and dimension reduction

A simply summary of a matrix is its trace. For the cross-covariance matrix 𝚽 the
trace is the sum of all covariances between corresponding elements in 𝒙 and 𝒛:

Tr(𝚽) =
𝑑∑
𝑖=1

Cov(𝑥𝑖 , 𝑧𝑖) =
𝑑∑
𝑖=1

𝜙𝑖𝑖 = Tr
(
𝚺1/2𝑸𝑇

1

)
Likewise, for the cross-correlation matrix𝚿 the trace is the sum of all correlations
between corresponding elements in 𝒙 and 𝒛:

Tr(𝚿) =
𝑑∑
𝑖=1

Cor(𝑥𝑖 , 𝑧𝑖) =
𝑑∑
𝑖=1

𝜓𝑖𝑖 = Tr
(
𝑷1/2𝑸𝑇

2

)
In both cases the value of the trace depends on 𝑸1 and 𝑸2. Interestingly, there is
unique choice such that the trace is maximised.

Specifically, to maximise Tr(𝚽)we conduct the following steps:

i) Apply eigendecomposition to 𝚺 = 𝑼𝚲𝑼𝑇 . Note that 𝚲 is diagonal with
positive eigenvalues 𝜆𝑖 > 0 as 𝚺 is positive definite and 𝑼 is an orthogonal
matrix.

ii) The objective function becomes

Tr(𝚽) = Tr
(
𝚺1/2𝑸𝑇

1

)
= Tr

(
𝑼𝚲1/2𝑼𝑇𝑸𝑇

1

)
= Tr

(
𝚲1/2 𝑼𝑇𝑸𝑇

1𝑼
)

= Tr
(
𝚲1/2 𝑩

)
=

𝑑∑
𝑖=1

𝜆1/2
𝑖
𝑏𝑖𝑖 .

Note that the product of two orthogonal matrices is itself an orthogonal
matrix. Therefore, 𝑩 = 𝑼𝑇𝑸𝑇

1𝑼 is an orthogonal matrix and 𝑸1 = 𝑼𝑩𝑇𝑼𝑇 .
iii) As 𝜆𝑖 > 0 and all 𝑏𝑖𝑖 ∈ [−1, 1] the objective function is maximised for 𝑏𝑖𝑖 = 1,

i.e. for 𝑩 = 𝑰.
iv) In turn this implies that Tr(𝚽) is maximised for 𝑸1 = 𝑰.

Similarly, to maximise Tr(𝚿)we

• decompose 𝑷 = 𝑮𝚯𝑮𝑇 and then, following the above,

• find that Tr(𝚿) = Tr
(
𝚯1/2 𝑮𝑇𝑸𝑇

2 𝑮
)

is maximised for 𝑸2 = 𝑰.

49

3 Transformations and dimension reduction

Squared Frobenius norm and total variation:

Another way to summarise and dissect the association between 𝒙 and the
corresponding whitened 𝒛 is the squared Frobenius norm and the total variation
based on 𝚽 and 𝚿.

The squared Frobenius norm (Euclidean) norm is the sum of squared elements
of a matrix.

If we consider the squared Frobenius norm of the cross-covariance matrix, i.e. the
sum of squared covariances between 𝒙 and 𝒛,

| |𝚽| |2𝐹 =

𝑑∑
𝑖=1

𝑑∑
𝑗=1

𝜙2
𝑖 𝑗 = Tr(𝚽𝑇𝚽) = Tr(𝚺)

we find that this equals the total variation of 𝚺 and that it does not depend on
𝑸1. Likewise, computing the squared Frobenius norm of the cross-correlation
matrix, i.e. the sum of squared correlations between 𝒙 and 𝒛,

| |𝚿| |2𝐹 =

𝑑∑
𝑖=1

𝑑∑
𝑗=1

𝜓2
𝑖 𝑗 = Tr

(
𝚿𝑇𝚿

)
= Tr (𝑷) = 𝑑

yields the total variation of 𝑷 which also does not depend on 𝑸2. Note this is
because the squared Frobenius norm is invariant against rotations and reflec-
tions.

Proportion of total variation:

We can now compute the contribution of each whitened component 𝑧 𝑗 to the
total variation. The sum of squared covariances of each 𝑧 𝑗 with all 𝑥1 , . . . , 𝑥𝑑 is

ℎ 𝑗 =

𝑑∑
𝑖=1

Cov(𝑥𝑖 , 𝑧 𝑗)2 =

𝑑∑
𝑖=1

𝜙2
𝑖 𝑗

with
∑𝑑
𝑗=1 ℎ 𝑗 = Tr (𝚺) the total variation. In vector notation the contributions are

written as the column sums of squares of 𝚽

𝒉 = (ℎ1 , . . . , ℎ𝑑)𝑇 = Diag(𝚽𝑇𝚽) = Diag
(
𝑸1𝚺𝑸

𝑇
1

)
.

The relative contribution of 𝑧 𝑗 versus the total variation is

ℎ 𝑗

Tr (𝚺) .

Crucially, in contrast to total variation, the contributions ℎ 𝑗 depend on the choice
of 𝑸1.

50

3 Transformations and dimension reduction

Similarly, the sum of squared correlations of each 𝑧 𝑗 with all 𝑥1 , . . . , 𝑥𝑑 is

𝑘 𝑗 =

𝑑∑
𝑖=1

Cor(𝑥𝑖 , 𝑧 𝑗)2 =

𝑑∑
𝑖=1

𝜓2
𝑖 𝑗

with
∑𝑑
𝑖=𝑗 𝑘 𝑗 = Tr(𝑷) = 𝑑. In vector notation this correspoinds to the column

sums of squares of 𝚿

𝒌 = (𝑘1 , . . . , 𝑘𝑑)𝑇 = Diag
(
𝚿𝑇𝚿

)
= Diag

(
𝑸2𝑷𝑸

𝑇
2

)
.

The relative contribution of 𝑧 𝑗 with regard to the total variation of the correlation
𝑷 is

𝑘 𝑗

Tr(𝑷) =
𝑘 𝑗

𝑑
.

As above, the contributions 𝑘 𝑗 depend on the choice of 𝑸2.

Maximising the proportion of total variation:

Interestingly, it is possible to choose a unique whitening transformation such that
the contributions are maximised, i.e. that the sum of the 𝑚 largest contributions
of ℎ 𝑗 and 𝑘 𝑗 is as large as possible.

Specifically, we note that 𝚽𝑇𝚽 and 𝚿𝑇𝚿 are symmetric real matrices. For these
type of matrices we know from Schur’s theorem (1923) that the eigenvalues
𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑑 majorise the diagonal elements 𝑝1 ≥ 𝑝2 ≥ . . . ≥ 𝑝𝑑. More
precisely,

𝑚∑
𝑖=1

𝜆𝑖 ≥
𝑚∑
𝑖=1

𝑝𝑖 ,

i.e. the sum of the largest 𝑚 eigenvalues is larger than or equal to the sum of
the 𝑚 largest diagonal elements. The maximum (and equality) is only achieved
if the matrix is diagonal, as in this case the diagonal elements are equal to the
eigenvalues.

Therefore, the optimal solution to problem of maximising the relative contri-
butions is obtained by computing the eigendecompositions 𝚺 = 𝑼𝚲𝑼𝑇 and
𝑷 = 𝑮𝚯𝑮𝑇 and diagonalise 𝚽𝑇𝚽 = 𝑸1𝚺𝑸

𝑇
1 and 𝚿𝑇𝚿 = 𝑸2𝑷𝑸

𝑇
2 by setting

𝑸1 = 𝑼𝑇 and 𝑸2 = 𝑮𝑇 , respectively. This yields for the maximised contribu-
tions

𝒉 = Diag (𝚲) = (𝜆1 , . . . ,𝜆𝑑)𝑇

and
𝒌 = Diag (𝚯) = (𝜃1 , . . . , 𝜃𝑑)𝑇

with eigenvalues 𝜆𝑖 and 𝜃𝑖 arranged in decreasing order.

51

3 Transformations and dimension reduction

3.4 Natural whitening procedures

We now introduce several strategies (maximise correlation between individual
components, maximise compression, structural constraints) to select an optimal
whitening procedure.

Specifically, we discuss the following whitening transformations:

• Mahalanobis whitening, also known as ZCA (zero-phase component
analysis) whitening in machine learning (based on covariance)

• ZCA-cor whitening (based on correlation)
• PCA whitening (based on covariance)
• PCA-cor whitening (based on correlation)
• Cholesky whitening

Thus, in the following we consider three main types (ZCA, PCA, Cholesky) of
whitening.

In the following 𝒙𝑐 = 𝒙−𝝁𝒙 and 𝒛𝑐 = 𝒛−𝝁𝒛 denote the mean-centered variables.

ZCA whitening

Aim: remove correlations and standardise but otherwise make sure that the
whitened vector 𝒛 does not differ too much from the original vector 𝒙. Specifically,
each latent component 𝑧𝑖 should be as close as as possible to the corresponding
original variable 𝑥𝑖 :

𝑧1 ↔ 𝑥1
𝑧2 ↔ 𝑥2
𝑧3 ↔ 𝑥3
. . .

𝑧𝑑 ↔ 𝑥𝑑

One possible way to implement this is to compute the expected squared difference
between the two centered random vectors 𝒛𝑐 and 𝒙𝑐 .

ZCA objective function: minimise E
(
| |𝒙𝑐 − 𝒛𝑐 | |2𝐹

)
to find an optimal whitening

procedure.

The ZCA objective function can be simplified as follows:

E
(
| |𝒙𝑐 − 𝒛𝑐 | |2𝐹

)
= E

(
| |𝒙𝑐 | |2𝐹

)
− 2E

(
Tr

(
𝒙𝑐𝒛𝑇𝑐

))
+ E

(
| |𝒛𝑐 | |2𝐹

)
= Tr(E(𝒙𝑐𝒙𝑇𝑐)) − 2Tr(E(𝒙𝑐𝒛𝑇𝑐)) + Tr(E(𝒛𝑐𝒛𝑇𝑐))
= Tr(Var(𝒙)) − 2Tr(Cov(𝒙 , 𝒛)) + Tr(Var(𝒛))
= Tr(𝚺) − 2Tr(𝚽) + 𝑑

52

3 Transformations and dimension reduction

The same objective function can also be obtained by putting a diagonal constraint
on the cross-covariance 𝚽. Specifically, we are looking for the 𝚽 that is closest
to the diagonal matrix 𝑰 by minimising

| |𝚽 − 𝑰 | |2𝐹 = | |𝚽| |2𝐹 − 2Tr(𝚽𝑇 𝑰) + ||𝑰 | |2𝐹
= Tr(𝚺) − 2Tr(𝚽) + 𝑑

This will force the off-diagonal elements of 𝚽 to be close to zero and thus leads
to sparsity in the cross-covariance matrix.

The only term in the above that depends on the whitening transformation is
−2Tr(𝚽) as 𝚽 is a function of 𝑸1. Therefore we can use the following alternative
objective:

ZCA equivalent objective: maximise Tr(𝚽) = Tr(𝚺1/2𝑸𝑇
1) to find the optimal 𝑸1

Solution:

From the earlier discussion we know that the optimal matrix is

𝑸ZCA
1 = 𝑰

The corresponding whitening matrix for ZCA is therefore

𝑾ZCA = 𝚺−1/2

and the cross-covariance matrix is

𝚽ZCA = 𝚺1/2

and the cross-correlation matrix

𝚿ZCA = 𝑽−1/2𝚺1/2

Note that𝚺1/2 is a symmetric positive definite matrix, hence its diagonal elements
are all positive. As a result, the diagonals of 𝚽ZCA and 𝚿ZCA are positive,
i.e. Cov(𝑥𝑖 , 𝑧𝑖) > 0 and Cor(𝑥𝑖 , 𝑧𝑖) > 0. Hence, for ZCA two corresponding
components 𝑥𝑖 and 𝑧𝑖 are always positively correlated!

Proportion of total variation:

For ZCA with 𝑸1 = 𝑰 we find that 𝒉 = Diag(𝚺) = ∑𝑑
𝑗=1 Var(𝑥 𝑗) with ℎ𝑖 =

Var(𝑥𝑖) hence for ZCA the proportion of total variation contributed by the latent
component 𝑧𝑖 is the ratio Var(𝑥𝑖)∑𝑑

𝑗=1 Var(𝑥 𝑗)
.

Summary:

• ZCA/Mahalanobis transform is the unique transformation that minimises
the expected total squared component-wise difference between 𝒙𝑐 and 𝒛𝑐 .

53

3 Transformations and dimension reduction

• In ZCA corresponding components in the whitened and original variables
are always positively correlated. This facilitates the interpretation of the
whitened variables.

• Use ZCA aka Mahalanobis whitening if you want to “just” remove correla-
tions.

ZCA-Cor whitening

Aim: same as above but remove scale in 𝒙 first before comparing to 𝒛.

ZCA-cor objective function: minimise E
(
| |𝑽−1/2𝒙𝑐 − 𝒛𝑐 | |2𝐹

)
to find an optimal

whitening procedure.

This can be simplified as follows:

E
(
| |𝑽−1/2𝒙𝑐 − 𝒛𝑐 | |2𝐹

)
= E

(
| |𝑽−1/2𝒙𝑐 | |2𝐹

)
− 2E

(
Tr

(
𝑽−1/2𝒙𝑐𝒛𝑇𝑐

))
+ E

(
| |𝒛𝑐 | |2𝐹

)
= Tr(E(𝑽−1/2𝒙𝑐𝒙𝑇𝑐𝑽

−1/2)) − 2Tr(E(𝑽−1/2𝒙𝑐𝒛𝑇𝑐)) + Tr(E(𝒛𝑐𝒛𝑇𝑐))
= Tr(Cor(𝒙 , 𝒙)) − 2Tr(Cor(𝒙 , 𝒛)) + Tr(Var(𝒛))
= 𝑑 − 2Tr(𝚿) + 𝑑
= 2𝑑 − 2Tr(𝚿)

The same objective function can also be obtained by putting a diagonal constraint
on the cross-correlation 𝚿. Specifically, we are looking for the 𝚿 that is closest
to the diagonal matrix 𝑰 by minimising

| |𝚿 − 𝑰 | |2𝐹 = | |𝚿| |2𝐹 − 2Tr(𝚿𝑇 𝑰) + ||𝑰 | |2𝐹
= 𝑑 − 2Tr(𝚿) + 𝑑
= 2𝑑 − 2Tr(𝚿)

This will force the off-diagonal elements of 𝚿 to be close to zero and thus leads
to sparsity in the cross-correlation matrix.

The only term in the above that depends on the whitening transformation is
−2Tr(𝚿) as 𝚿 is a function of 𝑸2. Thus we can use the following alternative
objective instead:

ZCA-cor equivalent objective: maximise Tr(𝚿) = Tr(𝑷1/2𝑸𝑇
2) to find optimal 𝑸2

Solution: same as above for ZCA but using correlation instead of covariance:

From the earlier discussion we know that the optimal matrix is

𝑸ZCA-Cor
2 = 𝑰

The corresponding whitening matrix for ZCA-cor is therefore

𝑾ZCA-Cor = 𝑷−1/2𝑽−1/2

54

3 Transformations and dimension reduction

and the cross-covariance matrix is

𝚽ZCA-Cor = 𝑽 1/2𝑷1/2

and the cross-correlation matrix is

𝚿ZCA-Cor = 𝑷1/2

For the ZCA-cor transformation we also have Cov(𝑥𝑖 , 𝑧𝑖) > 0 and Cor(𝑥𝑖 , 𝑧𝑖) > 0
so that two corresponding components 𝑥𝑖 and 𝑧𝑖 are always positively corre-
lated!

Proportion of total variation:

For ZCA-cor with 𝑸2 = 𝑰 we find that 𝒌 = Diag(𝑷) = 𝑑 with all 𝑘𝑖 = 1. Thus, in
ZCA-cor each whitened component 𝑧𝑖 contributes equally to the total variation
Tr(𝑷) = 𝑑, with relative proportion 1

𝑑
.

Summary:

• ZCA-cor whitening is the unique whitening transformation maximising
the total correlation between corresponding elements in 𝒙 and 𝒛.

• ZCA-cor leads to interpretable 𝒛 because each individual element in 𝒛 is
(typically strongly) positively correlated with the corresponding element
in the original 𝒙.

• As ZCA-cor is explicitly constructed to maximise the total pairwise corre-
lations it achieves higher total correlation than ZCA.

• If 𝒙 is standardised to Var(𝑥𝑖) = 1 then ZCA and ZCA-cor are identical.

PCA whitening

Aim: remove correlations and at the same time compress information into a few
latent variables. Specifically, we would like that the first latent component 𝑧1 is
maximally linked with all variables in 𝒙, followed by the second component 𝑧2
and so on:

𝑧1 → 𝑥1 , 𝑥2 , . . . , 𝑥𝑑
𝑧2 → 𝑥1 , 𝑥2 , . . . , 𝑥𝑑

. . .
𝑧𝑑 → 𝑥1 , 𝑥2 , . . . , 𝑥𝑑

One way to measure the total association of the latent component 𝑧 𝑗 with all the
original 𝑥1 , . . . , 𝑥𝑑 is the sum of the corresponding squared covariances

ℎ 𝑗 =

𝑑∑
𝑖=1

Cov(𝑥𝑖 , 𝑧 𝑗)2 =

𝑑∑
𝑖=1

𝜙2
𝑖 𝑗

55

3 Transformations and dimension reduction

or equivalently the column sum of squares of 𝚽

𝒉 = (ℎ1 , . . . , ℎ𝑑)𝑇 = Diag(𝚽𝑇𝚽) = Diag
(
𝑸1𝚺𝑸

𝑇
1

)
Each ℎ 𝑗 is the contribution of 𝑧 𝑗 to Tr

(
𝑸1𝚺𝑸

𝑇
1

)
= Tr(𝚺) i.e. to the total variation

based on𝚺. As Tr(𝚺) is constant this implies that there are only 𝑑−1 independent
ℎ 𝑗 .

In PCA-whitening we wish to concentrate most of the contributions to the total
variation based on 𝚺 in a small number of latent components.

PCA whitening objective function: find an optimal optimal 𝑸1 so that the resulting
set ℎ1 ≥ ℎ2 . . . ≥ ℎ𝑑 in 𝒉 = Diag

(
𝑸1𝚺𝑸

𝑇
1

)
majorizes any other set of relative

contributions.

Solution:

Following the earlier discussion we apply Schur’s theorem and find the optimal
solution by diagonalising 𝚽𝑇𝚽 through eigendecomposition of 𝚺 = 𝑼𝚲𝑼𝑇 .
Hence, the optimal value for the 𝑸1 matrix is

𝑸PCA
1 = 𝑼𝑇

However, recall that 𝑼 is not uniquely defined — you are free to change the
columns signs. The corresponding whitening matrix is

𝑾 PCA = 𝑼𝑇𝚺−1/2 = 𝚲−1/2𝑼𝑇

and the cross-covariance matrix is

𝚽PCA = 𝑼𝚲1/2

and the cross-correlation matrix is

𝚿PCA = 𝑽−1/2𝑼𝚲1/2

Identifiability:

Note that all of the above (i.e. 𝑸PCA
1 ,𝑾 PCA ,𝚽PCA ,𝚿PCA) is not unique due to

the sign ambiguity in the columns of 𝑼 .

Therefore, for identifiability reasons we may wish to impose a further constraint
on 𝑸PCA

1 or equivalently 𝚽PCA. A useful condition is to require (for the given
ordering of the original variables!) that 𝑸PCA

1 has a positive diagonal or equiv-
alently that 𝚽PCA has a positive diagonal. This implies that Diag(𝑼) > 0 and
Diag(𝚿PCA) > 0, hence all pairs 𝑥𝑖 and 𝑧𝑖 are positively correlated.

56

3 Transformations and dimension reduction

It is particularly important to pay attention to the sign ambiguity when comparing
different computer implementations of PCA whitening (and the related PCA
approach).

Note that the actual objective of PCA whitening Diag(𝚽𝑇𝚽) is not affected by
the sign ambiguity since the column signs of 𝚽 do not matter.

Proportion of total variation:

In PCA whitening the contribution ℎPCA
𝑖

of each latent component 𝑧𝑖 to the
total variation based on the covariance Tr(𝚺) = ∑𝑑

𝑗=1 𝜆 𝑗 is ℎPCA
𝑖

= 𝜆𝑖 . The
fraction 𝜆𝑖∑𝑑

𝑗=1 𝜆𝑗
is the relative contribution of each element in 𝒛 to explain the

total variation.

Thus, low ranking components 𝑧𝑖 with small ℎPCA
𝑖

= 𝜆𝑖 may be discarded. In
this way PCA whitening achieves both compression and dimension reduction.

Summary:

• PCA whitening is a whitening transformation that maximises compres-
sion with the sum of squared cross-covariances as underlying optimality
criterion.

• There are sign ambiguities in the PCA whitened variables which are
inherited from the sign ambiguities in eigenvectors.

• If a positive-diagonal condition on the orthogonal matrices is imposed then
these sign ambiguities are fully resolved and corresponding components
𝑧𝑖 and 𝑥𝑖 are always positively correlated.

PCA-cor whitening

Aim: same as for PCA whitening but remove scale in 𝒙 first. This means we use
squared correlations rather than squared covariances to measure compression, i.e.

𝑘 𝑗 =

𝑑∑
𝑖=1

Cor(𝑥𝑖 , 𝑧 𝑗)2 =

𝑑∑
𝑖=1

𝜓2
𝑖 𝑗

or in vector notation the column sum of squares of 𝚿

𝒌 = (𝑘1 , . . . , 𝑘𝑑)𝑇 = Diag
(
𝚿𝑇𝚿

)
= Diag

(
𝑸2𝑷𝑸

𝑇
2

)
Each 𝑘 𝑗 is the contribution of 𝑧 𝑗 to Tr

(
𝑸2𝑷𝑸

𝑇
2

)
= Tr(𝑷) = 𝑑 i.e. the total

variation based on 𝑷. As Tr(𝑷) = 𝑑 is constant this implies that there are only
𝑑 − 1 independent 𝑘 𝑗 .

In PCA-cor-whitening we wish to concentrate most of the contributions to the
total variation based on 𝑷 in a small number of latent components.

57

3 Transformations and dimension reduction

PCA-cor whitening objective function: find an optimal optimal 𝑸2 so that the
resulting set 𝑘1 ≥ 𝑘2 . . . ≥ 𝑘𝑑 in 𝒌 = Diag

(
𝑸2𝑷𝑸

𝑇
2

)
majorizes any other set of

relative contributions.

Solution:

Following the earlier discussion we apply Schur’s theorem and find the optimal
solution by diagonalising 𝚿𝑇𝚿 through eigendecomposition of 𝑷 = 𝑮𝚯𝑮𝑇 .
Hence, the optimal value for the 𝑸2 matrix is

𝑸PCA-Cor
2 = 𝑮𝑇

Again 𝑮 is not uniquely defined — you are free to change signs of the columns.
The corresponding whitening matrix is

𝑸PCA-Cor
2 = 𝑮𝑇

The corresponding whitening matrix is

𝑾 PCA-Cor = 𝚯−1/2𝑮𝑇𝑽−1/2

and the cross-covariance matrix is

𝚽PCA-Cor = 𝑽 1/2𝑮𝚯1/2

and the cross-correlation matrix is

𝚿PCA-Cor = 𝑮𝚯1/2

Identifiability:

As with PCA whitening, there are sign ambiguities in the above because the
column signs of 𝑮 can be freely chosen. For identifiability we may wish to
impose further constraints on 𝑸PCA-Cor

2 or equivalently on 𝚿PCA-Cor. A useful
condition is to require (for the given ordering of the original variables!) that the
diagonal elements of 𝑸PCA-Cor

2 are all positive or equivalently that 𝚿PCA-Cor has
a positive diagonal. This implies that Diag(𝑮) > 0 and Diag(𝚽PCA-Cor) > 0.

Note that the actual objective of PCA-cor whitening Diag(𝚿𝑇𝚿) is not affected
by the sign ambiguity since the column signs of 𝚿 do not matter.

Proportion of total variation:

In PCA-cor whitening the contribution 𝑘PCA-Cor
𝑖

of each latent component 𝑧𝑖
to the total variation based on the correlation Tr(𝑷) = 𝑑 is 𝑘PCA-Cor

𝑖
= 𝜃𝑖 . The

fraction 𝜃𝑖
𝑑

is the relative contribution of each element in 𝒛 to explain the total
variation.

Summary:

58

3 Transformations and dimension reduction

• PCA-cor whitening is a whitening transformation that maximises compres-
sion with the sum of squared cross-correlations as underlying optimality
criterion.

• There are sign ambiguities in the PCA-cor whitened variables which are
inherited from the sign ambiguities in the eigenvectors.

• If a positive-diagonal condition on the orthogonal matrices is imposed then
these sign ambiguities are fully resolved and corresponding components
𝑧𝑖 and 𝑥𝑖 are always positively correlated.

• If 𝒙 is standardised to Var(𝑥𝑖) = 1, then PCA and PCA-cor whitening are
identical.

Cholesky whitening

Cholesky matrix decomposition:

The Cholesky decomposition of a square matrix 𝑨 = 𝑳𝑳𝑇 requires a positive
definite 𝑨 and is unique. 𝑳 is a lower triangular matrix with positive diagonal
elements. Its inverse 𝑳−1 is also lower triangular with positive diagonal elements.
If 𝑫 is a diagonal matrix with positive elements then 𝑫𝑳 is also a lower triangular
matrix with a positive diagonal and the Cholesky factor for the matrix 𝑫𝑨𝑫.

Aim in Cholesky whitening:

Find a whitening transformation such that the cross-covariance 𝚽 and cross-
correlation 𝚿 have lower triangular structure. Specifically, we wish that the
first whitened variable 𝑧1 is linked to all original variables 𝑥1 , . . . , 𝑥𝑑, the second
latent variable 𝑧2 is linked to 𝑥2 , . . . , 𝑥𝑑, and so on, and the last variable 𝑧𝑑 is
linked only to 𝑥𝑑.

𝑧1 → 𝑥1 , 𝑥2 , 𝑥3 , . . . , 𝑥𝑑
𝑧2 → 𝑥2 , 𝑥3 , . . . , 𝑥𝑑
𝑧3 → 𝑥3 , . . . , 𝑥𝑑
. . .
𝑧𝑑 → 𝑥𝑑

We also assume that Cor(𝑥𝑖 , 𝑧𝑖) > 0, i.e. that the cross-correlations between
corresponding pairs of original and whitened variables are positive. This
requirement of a positive diagonal 𝚿 ensures the uniqueness of the whitening
transformation (similar as in PCA whitening above).

The Cholesky whitening procedure can be viewed as a middle ground between
ZCA whitening and PCA whitening.

Solution: In order to find such a whitening transformation we use the Cholesky
decomposition and apply it to the covariance matrix 𝚺 = 𝑳𝑳𝑇

The resulting whitening matrix is

𝑾Chol = 𝑳−1

59

3 Transformations and dimension reduction

By construction, 𝑾Chol is a lower triangular matrix with positive diagonal. The
whitening constraint is satisfied as (𝑾Chol)𝑇𝑾Chol = (𝑳−1)𝑇𝑳−1 = (𝑳𝑇)−1𝑳−1 =

(𝑳𝑳𝑇)−1 = 𝚺−1.

The cross-covariance matrix is the inverse of the whitening matrix

𝚽Chol = 𝑳

and the cross-correlation matrix is

𝚿Chol = 𝑽−1/2𝑳

Both 𝚽Chol and 𝚿Chol are lower triangular matrices with positive diagonal
elements. Hence two corresponding components 𝑥𝑖 and 𝑧𝑖 are always positively
correlated!

Finally, the corresponding orthogonal matrices are

𝑸Chol
1 = 𝚽𝑇𝚺−1/2 = 𝑳𝑇𝚺−1/2

and
𝑸Chol

2 = 𝚿𝑇𝑷−1/2 = 𝑳𝑇𝑽−1/2𝑷−1/2

Application to correlation instead of covariance:

We may also apply the Cholesky decomposition to the correlation rather than
the covariance matrix. However, unlike for ZCA and PCA this does not lead to a
different whitening transform:

Let’s denote the Cholesky composition of the correlation matrix by 𝑷 = 𝑳𝑃𝑳𝑇𝑃 .
Then the corresponding whitening matrix is 𝑾Chol

𝑃 = 𝑳−1
𝑃
𝑽−1/2. As 𝑷 =

𝑽−1/2𝚺𝑽−1/2 = 𝑽−1/2𝑳𝑳𝑇𝑽−1/2 we see that 𝑳𝑃 = 𝑽−1/2𝑳 and hence 𝑾Chol
𝑃 =

(𝑽−1/2𝑳)−1𝑽−1/2 = 𝑳−1 = 𝑾Chol.

Dependence on the input order:

Cholesky whitening depends on the ordering of input variables. Each ordering
of the original variables will yield a different triangular constraint and thus a
different Cholesky whitening transform. For example, by inverting the ordering
to 𝑥𝑑 , 𝑥𝑑−1 , . . . , 𝑥1 we effectively enforce an upper triangular shape.

An alternative formulation of Cholesky whitening decomposes the precision
matrix rather than the covariance matrix. This yields the upper triangular
structure directly and is otherwise fully equivalent to Cholesky whitening based
on decomposing the covariance.

60

3 Transformations and dimension reduction

Comparison of whitening procedures - simulated data

For comparison, Figure 3.1 shows the results of ZCA, PCA and Cholesky
whitening applied to a simulated bivariate normal data set with correlation
𝜌 = 0.8.

In column 1 you can see the simulated data as scatter plot.

Column 2 shows the scatter plots of the whitened data — as expect all three
methods remove correlation and produce an isotropic covariance.

However, the three approaches differ in the cross-correlations. Columns 3 and 4
show the cross-correlations between the first two corresponding components (𝑥1
and 𝑧1, and 𝑥2 and 𝑧2) for ZCA, PCA and Cholesky whitening. As expected, in
ZCA both pairs show strong correlation, but this is not the case for PCA and
Cholesky whitening.

Note that for Cholesky whitening the first component 𝑧1 is perfectly positively
correlated with the original component 𝑥1 because the whitening matrix is lower
triangular with a positive diagonal and hence 𝑧1 is just 𝑥1 multiplied with a
positive constant.

Comparison of whitening procedures - iris flowers

As an example we consider the well known iris flower data set. It consists of
botanical measures (sepal length, sepal width, petal length and petal width) for
150 iris flowers comprising three species (Iris setosa, Iris versicolor, Iris virginica).
Hence this data set has dimension 𝑑 = 4 and sample size 𝑛 = 150.

We apply all discussed whitening transforms to this data, and then sort the
whitened components by their relative contribution to the total variation. For
Cholesky whitening we used the input order for the shape constraint.

Figure 3.2 shows the results for explained variation based on covariance load-
ings:

As expected, the two PCA whitening approaches compress the data most. On
the other end of the spectrum, the ZCA whitening methods are the two least
compressing approaches. Cholesky whitening is a compromise between ZCA
and PCA in terms of compression.

Similar results are obtained based on correlation loadings (Figure 3.3). Note how
ZCA-cor provides equal weight for each latent variable.

61

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Iris_setosa
https://en.wikipedia.org/wiki/Iris_versicolor
https://en.wikipedia.org/wiki/Iris_virginica

3 Transformations and dimension reduction

−4 0 2 4

−
4

0
2

4

Simulated Data

X1

X
2

−4 0 2 4

−
4

0
2

4
ZCA Whitened Data

Z1.ZCA

Z
2.

Z
C

A

−4 0 2 4

−
4

0
2

4

Cross−Cor #1

Z1.ZCA

X
1

−4 0 2 4

−
4

0
2

4

Cross−Cor #2

Z2.ZCA

X
2

−4 0 2 4

−
4

0
2

4

PCA Whitened Data

Z1.PCA

Z
2.

P
C

A

−4 0 2 4

−
4

0
2

4

Cross−Cor #1

Z1.PCA

X
1

−4 0 2 4

−
4

0
2

4

Cross−Cor #2

Z2.PCA

X
2

−4 0 2 4

−
4

0
2

4

Chol. Whitened Data

Z1.Chol

Z
2.

C
ho

l

−4 0 2 4

−
4

0
2

4

Cross−Cor #1

Z1.Chol

X
1

−4 0 2 4

−
4

0
2

4

Cross−Cor #2

Z2.Chol

X
2

Figure 3.1: Comparison of ZCA, PCA and Cholesky whitening procedures.

62

3 Transformations and dimension reduction

0
20

40
60

80
10

0

Cumulative Explained Variation (Covariance)

Components

E
xp

la
in

ed
 V

ar
ia

tio
n

(%
)

1 2 3 4

PCA
PCA−cor
Cholesky
ZCA
ZCA−cor

Figure 3.2: Cumulative explained variation (covariance loadings) for various
whitening procedures for the Iris flower data.

63

3 Transformations and dimension reduction

0
20

40
60

80
10

0

Cumulative Explained Variation (Correlation)

Components

E
xp

la
in

ed
 V

ar
ia

tio
n

(%
)

1 2 3 4

PCA
PCA−cor
Cholesky
ZCA
ZCA−cor

Figure 3.3: Cumulative explained variation (correlation-loadings) for various
whitening procedures for the Iris flower data.

64

3 Transformations and dimension reduction

Recap

See Table 3.1 for a summery of the usuage types for the various whitening
procedures.

If data are standardised then 𝚽 and 𝚿 will be the same and hence ZCA will
become ZCA-cor and PCA becomes PCA-cor. The triangular shape constraint of
Cholesky whitening depends on the ordering of the original variables.

Table 3.1: Applications of natural whitening procedures.
Method Type of usage
ZCA, ZCA-cor: pure decorrelate, maintain similarity to original data

set, interpretability
PCA, PCA-cor: compression, find effective dimension, reduce

dimensionality, feature identification
Cholesky triangular shaped 𝑾 , 𝚽 and 𝚿, sparsity

3.5 Principal Component Analysis (PCA)

PCA transformation

Principal component analysis was proposed in 1933 by Harald Hotelling 4

and is very closely related to PCA whitening. The underlying mathematics
was developed earlier in 1901 by Karl Pearson 5 for the problem of orthogonal
regression.

Assume random vector 𝒙 with Var(𝒙) = 𝚺 = 𝑼𝚲𝑼𝑇 . PCA is a particular
orthogonal transformation (Example 3.5) of the original 𝒙 such that the resulting
components are orthogonal:

𝒕PCA︸︷︷︸
Principal components

= 𝑼𝑇︸︷︷︸
Orthogonal matrix

𝒙

Var(𝒕PCA) = 𝚲 =
©­­«
𝜆1 . . . 0
...

. . .
...

0 . . . 𝜆𝑑

ª®®¬
4Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components. Journal

of Educational Psychology 24:417–441 (Part 1) and 24:498–520 (Part 2). https://doi.org/10.1037/
h0071325 and https://doi.org/10.1037/h0070888

5Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine 2:559–572. https://doi.org/10.1080/14786440109462720

65

https://doi.org/10.1037/h0071325
https://doi.org/10.1037/h0071325
https://doi.org/10.1037/h0070888
https://doi.org/10.1080/14786440109462720

3 Transformations and dimension reduction

Note that while principal components are orthogonal they do not have unit
variance. Instead, the variance of the principal components 𝑡𝑖 is equal to the
eigenvalues 𝜆𝑖 .

Thus PCA itself is not a whitening procedure but it is very closely linked to
PCA whitening which is obtained by standardising the principal components
to unit variance: 𝒛PCA = 𝚲−1/2𝒕PCA = 𝚲−1/2𝑼𝑇𝒙 = 𝑼𝑇𝚺−1/2𝒙 = 𝑸PCA

1 𝚺−1/2𝒙 =

𝑾 PCA𝒙

Compression properties:

The total variation is Tr(Var(𝒕PCA)) = Tr(𝚲) = ∑𝑑
𝑗=1 𝜆 𝑗 . With principle com-

ponents the fraction 𝜆𝑖∑𝑑
𝑗=1 𝜆𝑗

can be interpreted as the proportion of variation

contributed by each component in 𝒕PCA to the total variation. Thus, low ranking
components in 𝒕PCA with low variation may be discarded, thus leading to a
reduction in dimension.

Application to data

Written in terms of a data matrix 𝑿 instead of a random vector 𝒙 PCA becomes:

𝑻︸︷︷︸
Sample version of principal components

= 𝑿︸︷︷︸
Data matrix

𝑼

There are now two ways to obtain 𝑼 :

1. Estimate the covariance matrix, e.g. by 𝚺̂ = 1
𝑛𝑿

𝑇
𝑐 𝑿 𝑐 where 𝑿 𝑐 is the column-

centred data matrix; then apply the eigenvalue decomposition on 𝚺̂ to get
𝑼 .

2. Compute the singular value decomposition of 𝑿 𝑐 = 𝑽𝑫𝑼𝑇 . As 𝚺̂ =
1
𝑛𝑿

𝑇
𝑐 𝑿 𝑐 = 𝑼 (1𝑛𝑫2)𝑼𝑇 you can just use 𝑼 from the SVD of 𝑿 𝑐 and there is

no need to compute the covariance.

Iris flower data example

We first standardise the data, then compute PCA components and plot the
proportion of total variation contributed by each component. Figure 3.4 shows
that only two PCA components are needed to achieve 95% of the total variation.

A scatter plot plot of the the first two principal components is also informative
(Figure 3.5). Specifically, it shows that there are groupings among the 150 iris
flowers, corresponding to the three known species, and that these three groups
can be characterised by looking at just the first two principal components (rather
than at all four components).

66

3 Transformations and dimension reduction

1 2 3 4

0
20

40
60

80
10

0

Proportion of Total Variation

Component

P
ro

po
rt

io
n

(%
)

per variable
cumulative

Figure 3.4: PCA proportion of total variation for the iris flower data.

PCA correlation loadings

In an earlier section we have learned that for a general whitening transformation
the cross-correlations 𝚿 = Cor(𝒙 , 𝒛) play the role of correlation loadings in the
inverse transformation:

𝑽−1/2𝒙 = 𝚿𝒛 ,

i.e. they are the coefficients linking the whitened variable 𝒛 with the standardised
original variable 𝒙. This relationship holds therefore also for PCA-whitening
with 𝒛PCA = 𝚲−1/2𝑼𝑇𝒙 and 𝚿PCA = 𝑽−1/2𝑼𝚲1/2.

The classical PCA is not a whitening approach because Var(𝒕PCA) ≠ 𝑰. However,
we can still compute cross-correlations between 𝒙 and the principal components
𝒕PCA, resulting in

Cor(𝒙 , 𝒕PCA) = 𝑽−1/2𝑼𝚲1/2 = 𝚿PCA

Note these are the same as the cross-correlations for PCA-whitening since 𝒕PCA

and 𝒛PCA only differ in scale.

67

3 Transformations and dimension reduction

−4 −2 0 2 4

−
4

−
2

0
2

4

PCA − Iris Data

t1

t2

setosa
versicolor
virginica

Figure 3.5: Scatter plot of first two principal components.

The inverse PCA transformation is

𝒙 = 𝑼𝒕PCA

In terms of standardised PCA components 𝒛PCA = 𝚲−1/2𝒕PCA and standardised
original components it becomes

𝑽−1/2𝒙 = 𝚿𝚲−1/2𝒕PCA

Thus the cross-correlation matrix 𝚿 plays the role of correlation loadings also
in classical PCA, i.e. they are the coefficients linking the standardised PCA
components with the standardised original components.

68

3 Transformations and dimension reduction

PCA correlation loadings plot

In PCA and PCA-cor whitening as well as in classical PCA the aim is compression,
i.e. to find latent variables such that most of the total variation is contributed by
a small number of components.

In order to be able to better interpret the top ranking PCA component we can use
a visual device called correlation loadings plot. For this we compute the correlation
between the PCA components 1 and 2 (𝑡PCA

1 and 𝑡PCA
2)with all original variables

𝑥1 , . . . , 𝑥𝑑.

For each original variable 𝑥𝑖 we therefore have two numbers between -1 and
1, the correlation Cor(𝑥𝑖 , 𝑡PCA

1) = 𝜓𝑖1 and Cor(𝑥𝑖 , 𝑡PCA
2) = 𝜓𝑖2 that we use as

coordinates to draw a point in a plane. Recall that the row sums of squares
of the correlation loadings 𝚿 are all identical to 1. Hence, the sum of the
squared loadings from just the first two components is also at most 1. Thus, by
construction, all points have to lie within a unit circle around the origin.
The original variables most strongly influenced by the two latent variables will
have strong correlation and thus lie near the outer circle, whereas variables that
are not influenced by the two latent variables will lie near the origin.

For illustration Figure 3.6 shows the correlation loadings plot for the correlation
between the first two PCA components and all four variables of the iris flower
data set discussed earlier.

The interpretation of this plot is discussed in Worksheet 5.

Outlook

Related methods not discussed in this course:

• Factor models: essentially this is a probabilistic version of whitening /
PCA with dimension reduction and an additional error term. Factors have
rotational freedom exactly as whitened variables.

• Partial Least Squares (PLS): similar to Principal Components Analysis
(PCA) but in a regression setting, with the choice of latent variables
depending both on predictors and on the response variable. One can
also use PCA with regression (yielding principal components regression,
PCR) but in this case the PCA components only depend on the predictor
variables.

• Nonlinear dimension reduction methods such as SNE, tSNE and UMAP.

69

3 Transformations and dimension reduction

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Correlation Loadings Plot Iris Data

Correlation with t1

C
or

re
la

tio
n

w
ith

 t2

Sepal.Length

Sepal.Width

Petal.LengthPetal.Width

Figure 3.6: Correlation loadings plot between the first two principal correlations
and the original variables.

70

4 Unsupervised learning and
clustering

4.1 Challenges in unsupervised learning

Objective

We observe data 𝒙1 , . . . , 𝒙𝑛 for 𝑛 objects (or subjects). Each sample 𝒙 𝑖 is a vector
of dimension 𝑑. Thus, for each of the 𝑛 objects / subjects we have measurements
on 𝑑 variables. The aim of unsupervised learning is to identify patters relating
the objects/subjects based on the information available in 𝒙 𝑖 . Note that in
unsupervised learning we use only the information in 𝒙 𝑖 and nothing else.

For illustration (Figure 4.1) consider the first two principal components of the
Iris flower data (see e.g. Worksheet 5). Clearly there is a group structure int the
data that is linked to particular patterns in the first two principal components.

Note that in this plot we have used additional information, the class labels (setosa,
versicolor, virginica), to highlight the true underlying structure (the three flower
species).

In unsupervised learning the class labels are (assumed to be) unknown, and the
aim is to infer the clustering and thus the classes labels. 1

There are many methods for clustering and unsupervise learning, both purely
algorithmic as well as probabilistic. In this chapter we will study a few of the
most commonly used approaches.

Questions and problems

In order to implement unsupervised learning we need to address a number of
questions:

• how do we define clusters?
• how do we learn / infer clusters?

1In contrast, in supervised learning (to be discussed in a subsequent chapter) the class labels are
known for a subset of the data (the training data set) and are required to learn a prediction
function.

71

4 Unsupervised learning and clustering

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
2

0
1

2
3

PCA Whitening − Iris Data

Z1

Z
2

setosa
versicolor
virginica

Figure 4.1: Principal components scatter plot for the iris flower data.

• how many clusters are there? (this is surprisingly difficult!)
• how can we assess the uncertainty of clusters?

Once we know the clusters we are also interested in:

• which features define / separate each cluster?

(note this is a feature / variable selection problem, discussed in in supervised
learning).

Many of these problems and questions are highly specific to the data at hand.
Correspondingly, there are many different types of methods and models for
clustering and unsupervised learning.

In terms of representing the data, unsupervised learning tries to balance between
the following two extremes:

1) all objects are grouped into a single cluster (low complexity model)
2) all objects are put into their own cluster (high complexity model)

In practise, the aim is to find a compromise, i.e. a model that captures the
structure in the data with appropriate complexity — not too low and not too
complex.

72

4 Unsupervised learning and clustering

Why is clustering difficult?

Partioning problem (combinatorics): How many partitions of 𝑛 objects (say
flowers) into 𝐾 groups (say species) exists?

Answer:

𝑆(𝑛, 𝐾) =
{
𝑛
𝐾

}
this is the “Sterling number of the second type”.

For large n:

𝑆(𝑛, 𝐾) ≈ 𝐾
𝑛

𝐾!

Table 4.1: Number of ways to partition 𝑛 samples into 𝐾 groups.
𝑛 𝐾 Number of possible partitions

15 3 ≈ 2.4 million (106)
20 4 ≈ 2.4 billion (109)
...

100 5 ≈ 6.6 × 1076

These are enormously large numbers even for relatively small problems!

=⇒ Clustering / partitioning / structure discovery is not easy!

=⇒We cannot expect perfect answers or a single “true” clustering

In fact, as a model of the data many differnt clusterings may fit the data equally
well.

=⇒We need to assesse the uncertainty of the clustering

This can be done as part of probabilistic modelling or by resampling (e.g.,
bootstrap).

Common types of clustering methods

There are very many different clustering algorithms!

We consider the following two broad types of methods:

1) Algorithmic clustering methods (these are not explicitly based on a
probabilistic model)

73

4 Unsupervised learning and clustering

• 𝐾-means
• PAM
• hierarchical clustering (distance or similarity-based, divise and agglomera-

tive)

pros: fast, effective algorithms to find at least some grouping cons:
no probabilistic interpretation, blackbox methods

2) Model-based clustering (based on a probabilistic model)

• mixture models (e.g. Gaussian mixture models, GMMs, non-hierarchical)
• graphical models (e.g. Bayesian networks, Gaussian graphical models

GGM, trees and networks)

pros: full probabilistic model with all corresponding advantages
cons: computationally very expensive, sometimes impossible to
compute exactly.

4.2 Hierarchical clustering

Tree-like structures

Often, categorisations of objects are nested, i.e. there sub-categories of categories
etc. These can be naturally represented by tree-like hierarchical structures.

In many branches of science hierarchical clusterings are widely employed, for
example in evolutionary biology: see e.g.

• Tree of Life explaining the biodiversity of life
• phylogenetic trees among species (e.g. vertebrata)
• population genetic trees to describe human evolution
• taxonomic trees for plant species
• etc.

Note that when visualising hierarchical structures typically the corresponding
tree is depicted facing downwards, i.e. the root of the tree is shown on the top,
and the tips/leaves of the tree are shown at the bottom!

In order to obtain such a hierarchical clustering from data two opposing strategies
are commonly used:

1) divisive or recursive partitioning algorithms

• grow the tree from the root downwards
• first determine the main two clusters, then recursively refine the

clusters further.

2) agglomerative algorithms

74

http://tolweb.org/

4 Unsupervised learning and clustering

• grow the tree from the leaves upwards
• successively form partitions by first joining individual object together,

then recursively join groups of items together, until all is merged.

In the following we discuss a number of popular hierarchical agglomerative
clustering algorithms that are based on the pairwise distances / similarities (a
𝑛 × 𝑛 matrix) among all data points.

Agglomerative hierarchical clustering algorithms

A general algorithm for agglomerative construction of a hierarchical clustering
works as follows:

Initialisation:

Compute a dissimilarity / distance matrix between all pairs of objects where
“objects” are single data points at this stage but later are also be sets of data
points.

Iterative procedure:

1) identify the pair of objects with the smallest distance. These two objects
are then merged together into one set. Create an internal node in the tree
to represent this set.

2) update the distance matrix by computing the distances between the new set
and all other objects. If the new set contains all data points the procedure
terminates. The final node created is the root node.

For actual implementation of this algorithm two key ingredients are needed:

1) a distance measure 𝑑(𝒂 , 𝒃) between two individual elementary data points
𝒂 and 𝒃.

This is typically one of the following:

• Euclidean distance 𝑑(𝒂 , 𝒃) =
√∑𝑑

𝑖=1(𝑎𝑖 − 𝑏𝑖)2 =
√
(𝒂 − 𝒃)𝑇(𝒂 − 𝒃)

• Squared Euclidean distance 𝑑(𝒂 , 𝒃) = (𝒂 − 𝒃)𝑇(𝒂 − 𝒃)
• Manhattan distance 𝑑(𝒂 , 𝒃) = ∑𝑑

𝑖=1 |𝑎𝑖 − 𝑏𝑖 |
• Maximum norm 𝑑(𝒂 , 𝒃) = max

𝑖∈{1,...,𝑑}
|𝑎𝑖 − 𝑏𝑖 |

In the end, making the correct choice of distance will require subject
knowledge about the data!

2) a distance measure 𝑑(𝐴, 𝐵) between two sets of objects 𝐴 =

{𝒂1 , 𝒂2 , . . . , 𝒂𝑛𝐴 } and 𝐵 = {𝒃1 , 𝒃2 , . . . , 𝒃𝑛𝐵 } of size 𝑛𝐴 and 𝑛𝐵, respectively.

75

4 Unsupervised learning and clustering

To determine the distance 𝑑(𝐴, 𝐵)between these two sets the following
measures are often employed:

• complete linkage (max. distance): 𝑑(𝐴, 𝐵) = max
𝒂 𝑖∈𝐴,𝒃𝑖∈𝐵

𝑑(𝒂 𝑖 , 𝒃𝑖)
• single linkage (min. distance): 𝑑(𝐴, 𝐵) = min

𝒂 𝑖∈𝐴,𝒃𝑖∈𝐵
𝑑(𝒂 𝑖 , 𝒃𝑖)

• average linkage (avg. distance): 𝑑(𝐴, 𝐵) = 1
𝑛𝐴𝑛𝐵

∑
𝒂 𝑖∈𝐴

∑
𝒃𝑖∈𝐵 𝑑(𝒂 𝑖 , 𝒃𝑖)

Ward’s clustering method

Another agglomerative hierarchical procedure is Ward’s minimum variance
approach 2 (see also 3). In this approach in each iteration the two sets 𝐴 and 𝐵
are merged that lead to the smallest increase in within-group variation. The
centroids of the two sets is given by 𝝁𝐴 = 1

𝑛𝐴

∑
𝒂 𝑖∈𝐴 𝒂 𝑖 and 𝝁𝐵 = 1

𝑛𝐵

∑
𝒃𝑖∈𝐵 𝒃𝑖 .

The within-group sum of squares for group 𝐴 is

𝑤𝐴 =
∑
𝒂 𝑖∈𝐴
(𝒂 𝑖 − 𝝁𝐴)

𝑇(𝒂 𝑖 − 𝝁𝐴)

and is computed here on the basis of the difference of the observations 𝒂 𝑖 relative
to their mean 𝝁𝐴. However, since we typically only have pairwise distances
available we don’t know the group means so this formula can’t be applied.
Fortunately, it is also possible to compute 𝑤𝐴 using only the pairwise differences
using

𝑤𝐴 =
1
𝑛𝐴

∑
𝒂 𝑖 ,𝒂 𝑗∈𝐴,𝑖< 𝑗

(𝒂 𝑖 − 𝒂 𝑗)𝑇(𝒂 𝑖 − 𝒂 𝑗)

This trick is employed in Ward’s clustering method by constructing a distance
measure between two sets 𝐴 and 𝐵 as

𝑑(𝐴, 𝐵) = 𝑤𝐴∪𝐵 − 𝑤𝐴 − 𝑤𝐵

and using as the distance between two elementary data points 𝒂 and 𝒃 the
squared Euclidean distance

𝑑(𝒂 , 𝒃) = (𝒂 − 𝒃)𝑇(𝒂 − 𝒃) .

2Ward, J.H. 1963. Hierarchical grouping to optimize an objective function. JASA 58:236–244.
https://doi.org/10.1080/01621459.1963.10500845

3F. Murtagh and P Legendre. 2014. Ward’s hierarchical agglomerative clustering method: which
algorithms implement Ward’s criterion? J. Classif. 31:274–295. https://doi.org/10.1007/s00357-
014-9161-z

76

https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1007/s00357-014-9161-z
https://doi.org/10.1007/s00357-014-9161-z

4 Unsupervised learning and clustering

−1 0 1 2

−
2

−
1

0
1

2
3

PCA Swiss Banknote Data

PC 1

P
C

 2

counterfeit
genuine

Figure 4.2: Principal components Swiss banknote data.

Application to Swiss banknote data set

This data set is reports 6 pysical measurements on 200 Swiss bank notes. Of
the 200 notes 100 are genuine and 100 are counterfeit. The measurements are:
length, left width, right width, bottom margin, top margin, diagonal length of
the bank notes.

Plotting the first to PCAs of this data shows that there are indeed two well
defined groups, and that these groups correspond precisely to the genuine and
counterfeit banknotes (Figure 4.2).

We now compare the hierarchical clusterings of the Swiss bank note data using
four different methods using Euclidean distance:

77

4 Unsupervised learning and clustering

ward.D2 + euclidean

1 2 3 456 7 891011 1213 1415 161718 1920212223 24 2526 2728 29 3031 32333435 3637 3839 404142 4344 45 46 4748 4950 5152 5354 555657 5859 606162 63 646566 67686970 7172 73 7475 7677 7879 8081 8283 8485 868788 8990 9192 93 94959697 9899 100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117
118

119

120

121

122

123

124

125

126

127
128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

counterfeit
genuine

Figure 4.3: Ward clustering of Swiss banknote data.

average + euclidean

1 2 345 6 7 891011 1213 141516 171819 20212223 24 2526 2728 29 3031 32333435 3637 383940 41 4243 4445 4647 484950 5152 5354 555657 585960 6162 63 646566 67 686970 71 72 737475 76 777879 8081 82 838485 86 8788 8990 9192 9394 959697 9899 100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117
118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

counterfeit
genuine

Figure 4.4: Average linkage clustering of Swiss banknote data.

78

4 Unsupervised learning and clustering

complete + euclidean

12 3 45 67 89 10 1112 1314 1516 1718 1920 21 22 232425 2627282930 3132 33 343536 3738 3940 414243 44 45 464748 4950 51 525354 55565758 59 60 61 62 63 6465 66676869 70717273 7475 7677 78 798081 82 8384 858687 8889 9091 9293 9495 96979899 100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117
118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

counterfeit
genuine

Figure 4.5: Complete linkage clustering of Swiss banknote data.

single + euclidean

1 2 3 45 6 7 8 910 11 12 1314 1516 17 1819 20 2122 23242526 2728 2930 3132 33343536 37 383940 41 42 4344 45 464748 4950 515253 54 555657 58 596061 62 63 6465 6667 6869 7071 7273 74757677 78 798081 8283 84 85868788 89 909192 9394 959697 9899 100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117
118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146
147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

counterfeit
genuine

Figure 4.6: Single linkage clustering of Swiss banknote data.

79

4 Unsupervised learning and clustering

• Ward.D2 (=Ward’s method): Figure 4.3
• Average linkage: Figure 4.4
• Complete linkage: Figure 4.5
• Single linkage: Figure 4.6

An interactive R Shiny web app of this analysis (which also allows to explore
further distance measures) is available online at https://minerva.it.manchester.
ac.uk/shiny/strimmer/hclust/.

Result:

• All four trees / hierarchical clusterings are quite different!
• The Ward.D2 method is the only one that finds the correct grouping (except

for a single error).

Assessment of the uncertainty of hierarchical clusterings

In practical application of hierarchical clustering methods is is essential to
evaluate the stability and uncertainty of the obtained groupings. This is often
done as follows using the “bootstrap”:

• Sampling with replacement is used to generate a number of so-called
bootstrap data sets (say 𝐵 = 200) similar to the original one. Specifically,
we create new data matrices by repeately randomly selecting columns
(variables) from the original data matrix for inclusion in the bootstrap data
matrix. Note that we sample columns as our aim is to cluster the samples.

• Subsequently, a hierarchical clustering is computed for each of the bootstrap
data sets. As a result, we now have an “ensemble” of 𝐵 bootstrap trees.

• Finally, analysis of the clusters (bipartions) shown in all the bootstrap trees
allows to count the clusters that appear frequently, and also those that
appear less frequently. These counts provide a measure of the stability of
the clusterings appearing in the original tree.

• Additionally, from the bootstrap tree we can also compute a consensus tree
containing the most stable clusters. This an be viewed as an “ensemble
average” of all the bootstrap trees.

A disadvantage of this procedure is that bootstrapping trees is computationally
very expensive, as the original procedure is already time consuming but now
needs to be repeated a large number of times.

80

https://shiny.rstudio.com/
https://minerva.it.manchester.ac.uk/shiny/strimmer/hclust/
https://minerva.it.manchester.ac.uk/shiny/strimmer/hclust/

4 Unsupervised learning and clustering

4.3 𝐾-means clustering

Set-up

• We assume that there are 𝐾 groups (i.e. 𝐾 is known in advance).
• For each group 𝑘 ∈ {1, . . . , 𝐾} we assume a group mean 𝝁𝑘 .
• Aim: partition the data points 𝒙1 , . . . , 𝒙𝑛 into 𝐾 non-overlapping groups.
• Each of the 𝑛 data points 𝒙 𝑖 is assigned to exactly one of the 𝐾 groups.
• Maximise the homogeneity within each group (i.e. each group should

contain similar objects).
• Maximise the heterogeneity between the different groups (i.e each group

should differ from the other groups).

Algorithm

After running 𝐾-means we will get estimates of 𝝁̂𝑘 of the group means, as well
allocations 𝑦𝑖 ∈ {1, . . . , 𝐾} of each data point 𝒙 𝑖 to one of the classes.

Initialisation:

At the start of the algorithm the 𝑛 observations 𝒙1 , . . . , 𝒙𝑛 are randomly allocated
with equal probability to one of the 𝐾 groups. The resulting assignment is
𝑦1 , . . . , 𝑦𝑛 , with each 𝑦𝑖 = {1, . . . , 𝐾}. With 𝐺𝑘 = {𝑖 |𝑦𝑖 = 𝑘} we denote the set of
indices of the data points in cluster 𝑘, and with 𝑛𝑘 = |𝐺𝑘 | the number of samples
in cluster 𝑘.

Iterative refinement:

1) Estimate the group means by

𝝁̂𝑘 =
1
𝑛𝑘

∑
𝑖∈𝐺𝑘

𝒙 𝑖

2) Update the group allocations 𝑦𝑖 . Specifically, assign each data point 𝒙 𝑖 to
the group 𝑘 with the nearest 𝝁̂𝑘 . The distance is measured in terms of the
Euclidean norm:

𝑦𝑖 = arg min
𝑘

��𝒙 𝑖 − 𝝁̂𝑘 ��2
= arg min

𝑘

(
𝒙 𝑖 − 𝝁̂𝑘

)𝑇 (
𝒙 𝑖 − 𝝁̂𝑘

)
Steps 1 and 2 are repeated until the algorithm converges (i.e. until the group
allocations don’t change any more) or until a specified upper limit of iterations
is reached.

81

4 Unsupervised learning and clustering

Properties

𝐾-means has been proposed in the 1950 to 1970s by various authors in diverse
contexts 4. Despite its simplicity𝐾-means is, perhaps surprisingly, a very effective
clustering algorithm. The main reason for this is the close connection of 𝐾-means
with probabilistic clustering based on Gaussian mixture models (for details see
later section).

Since the clustering depends on the initialisation it is often useful to run 𝐾-
means several times with different starting group allocations of the data points.
Furthermore, non-random or non-uniform initialisations can lead to improved
and faster convergence, see the K-means++ algorithm.

The clusters constructed in 𝐾-means have linear boundaries and thus form a
Voronoi tessellation around the cluster means. Again, this can be explained by
the close link of 𝐾-means with a particular Gaussian mixture model.

Choosing the number of clusters

Once the 𝐾-means algorithm has run we can assess the homogeneity and
heterogeneity of the resulting clusters:

a) the total within-group sum of squares 𝑆𝑆𝑊 (in R: tot.withinss), or total
unexplained sum of squares:

𝑆𝑆𝑊 =

𝐾∑
𝑘=1

∑
𝑖∈𝐺𝑘

(𝒙 𝑖 − 𝝁̂𝑘)
𝑇(𝒙 𝑖 − 𝝁̂𝑘)

This quantity decreases with 𝐾 and is zero for 𝐾 = 𝑛. The 𝐾-means
algorithm tries to minimise this quantity but it will typically only find a
local minimum rather than the global one.

b) the between-group sum of squares 𝑆𝑆𝐵 (in R: betweenss), or explained
sum of squares:

𝑆𝑆𝐵 =

𝐾∑
𝑘=1

𝑛𝑘(𝝁̂𝑘 − 𝝁̂0)
𝑇(𝝁̂𝑘 − 𝝁̂0)

where 𝝁̂0 = 1
𝑛

∑𝑛
𝑖=1 𝒙 𝑖 =

1
𝑛

∑𝐾
𝑘=1 𝑛𝑘𝝁̂𝑘 is the global mean of the samples.

𝑆𝑆𝐵 increases with the number of clusters 𝐾 until for 𝐾 = 𝑛 it becomes
equal to the total sum of squares 𝑆𝑆𝑇.

4H.-H. Bock. 2008. Origins and extensions of the 𝑘-means algorithm in cluster analysis. JEHPS 4,
no. 2. https://www.jehps.net/Decembre2008/Bock.pdf

82

https://en.wikipedia.org/wiki/K-means%2B%2B
https://en.wikipedia.org/wiki/Voronoi_diagram
https://www.jehps.net/Decembre2008/Bock.pdf

4 Unsupervised learning and clustering

c) the total sum of squares

𝑆𝑆𝑇 =

𝑛∑
𝑖=1
(𝒙 𝑖 − 𝝁̂0)

𝑇(𝒙 𝑖 − 𝝁̂0) .

By construction 𝑆𝑆𝑇 = 𝑆𝑆𝐵 + 𝑆𝑆𝑊 for any 𝐾 (i.e. 𝑆𝑆𝑇 is a constant
independent of 𝐾).

Dividing the sum of squares by the sample size 𝑛 we get

• 𝑇 = 𝑆𝑆𝑇
𝑛 as the total variation,

• 𝐵 = 𝑆𝑆𝐵
𝑛 as the explained variation and

• 𝑊 = 𝑆𝑆𝑊
𝑛 as the total unexplained variation ,

• with 𝑇 = 𝐵 +𝑊 .

In order to decide on the optimal number of clusters we run 𝐾-means for different
settings for 𝐾 and then choose the smallest 𝐾 for which the explained variation
𝐵 is not significantly worse compared to a clustering with a substantially larger
𝐾 (see example below).

𝐾-medoids aka PAM

A closely related clustering method is 𝐾-medoids or PAM (“Partitioning Around
Medoids”).

This works exactly like 𝐾-means, only that

• instead of the estimated group means 𝝁̂𝑘 one member of each group is
selected as its representative (the so-called “medoid”)

• instead of squared Euclidean distance other dissimilarity measures are
also allowed.

Application of 𝐾-means to Iris data

Scatter plots of Iris data (Figure 4.7):

The R output from a 𝐾-means analysis with known true number of clusters
specified (𝐾 = 3) is:

kmeans.out = kmeans(X.iris, 3)
kmeans.out

83

4 Unsupervised learning and clustering

Sepal.Length

−
2

0
2

−2 0 1 2

−
1.

5
0.

0
1.

5

−2 0 2

Sepal.Width

Petal.Length

−1.5 0.0 1.5

−1.5 0.0 1.5

−
2

0
1

2
−

1.
5

0.
0

1.
5

Petal.Width

Figure 4.7: Pairwise scatter plots for the original four variables of the iris flower
data.

K-means clustering with 3 clusters of sizes 47, 50, 53

Cluster means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

1 1.13217737 0.08812645 0.9928284 1.0141287
2 -1.01119138 0.85041372 -1.3006301 -1.2507035
3 -0.05005221 -0.88042696 0.3465767 0.2805873

Clustering vector:
[1] 2
[38] 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 3 3 3 1 3 3 3 3 3 3 3 3 1 3 3 3 3 1 3 3 3
[75] 3 1 1 1 3 3 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 1 1 1 3 1 1 1 1
[112] 1 1 3 3 1 1 1 1 3 1 3 1 3 1 1 3 1 1 1 1 1 1 3 3 1 1 1 3 1 1 1 3 1 1 1 3 1
[149] 1 3

84

4 Unsupervised learning and clustering

Within cluster sum of squares by cluster:
[1] 47.45019 47.35062 44.08754
(between_SS / total_SS = 76.7 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"

The corresponding total within-group sum of squares (𝑆𝑆𝑊 , tot.withinss)
is

kmeans.out$tot.withinss

[1] 138.8884

and the between-group sum of squares (𝑆𝑆𝐵, betweenss) is

kmeans.out$betweenss

[1] 457.1116

By comparing with the known class assignments we can assess the accuracy of
𝐾-means clustering:

table(L.iris, kmeans.out$cluster)

L.iris 1 2 3
setosa 0 50 0
versicolor 11 0 39
virginica 36 0 14

For choosing 𝐾 we run 𝐾-means several times and compute within and between
cluster variation in dependence of 𝐾 (see Figure 4.8).

In this example 𝐾 = 3 clusters seem appropriate since the the explained vari-
ation does not significantly improve (and the unexplained variation does not
significantly decrease) with a further increase of the number of clusters.

85

4 Unsupervised learning and clustering

2 4 6 8 10

0
10

0
30

0
50

0
K−Means Iris Data

no groups

W
ith

in
/b

et
w

ee
n

G
ro

up
 S

S

Between SS (explained)
Within SS (unexplained)

Figure 4.8: Within and between group error in dependence of the number of
groups 𝐾 in 𝐾-means.

Arbitrariness of cluster labels and label switching

It is important to realise that in unsupervised learning and clustering the labels
of each group are assigned in an arbitrary fashion. Recall that for 𝐾 groups
there are 𝐾! possibilities to attach the labels, corresponding to the number of
permutations of 𝐾 groups.

Thus, different runs of a clustering algorithm such as 𝐾-means may return
the same clustering (groupings of samples) but with different labels. This
phenomenon is called “label switching” and makes it difficult to automatise
comparison of clusterings. In particular, one cannot simply rely on the automati-
cally assigned group label, instead one needs to compare the actual members of
the clusters.

A way to resolve the problem of label switching is to relabel the clusters using
additional information, such as requiring that some samples are in specific
groups (e.g.: sample 1 is always in group labelled “1”), and/or linking labels to
orderings or constraints on the group characteristics (e.g.: the group with label
“1” has always a smaller mean that group with label “2”).

86

4 Unsupervised learning and clustering

4.4 Mixture models

Finite mixture model

• 𝐾 groups / classes / categories, with finite 𝐾 known in advance.
• Probability of class 𝑘: Pr(𝑘) = 𝜋𝑘 with

∑𝐾
𝑘=1 𝜋𝑘 = 1.

• Each class 𝑘 ∈ 𝐶 = {1, . . . , 𝐾} is modelled by its own distribution 𝐹𝑘 with
own parameters 𝜽𝑘 .

• Density of class 𝑘: 𝑓𝑘(𝒙) = 𝑓 (𝒙 |𝑘).
• The conditional means and variances for each class 𝑘 ∈ 𝐶 are E(𝒙 |𝑘) = 𝝁𝑘

and Var(𝒙 |𝑘) = 𝚺𝑘 .
• The resulting mixture density for the observed variable 𝒙 is

𝑓mix(𝒙) =
𝐾∑
𝑘=1

𝜋𝑘 𝑓𝑘(𝒙)

Very often one uses multivariate normal components 𝑓𝑘(𝒙) = 𝑁(𝒙 |𝝁𝑘 ,𝚺𝑘)
=⇒ Gaussian mixture model (GMM)

Mixture models are fundamental not just in clustering but for many other
applications (e.g. classification).

Note: don’t confuse mixture model with mixed model (= terminology for a random
effects regression model).

Total mean and variance of a multivariate mixture model

Using the law of total expectation we obtain the mean of the mixture density
with multivariate 𝒙 as follows:

E(𝒙) = E(E(𝒙 |𝑘))
= E(𝝁𝑘)

=

𝐾∑
𝑘=1

𝜋𝑘𝝁𝑘

= 𝝁0

Note that we treat both 𝒙 as well as 𝑘 as random variables.

87

4 Unsupervised learning and clustering

Similarly, using the law of total variance we compute the marginal variance:

Var(𝒙)︸ ︷︷ ︸
total

= Var(E(𝒙 |𝑘))︸ ︷︷ ︸
explained / between-group

+ E(Var(𝒙 |𝑘))︸ ︷︷ ︸
unexplained / expected within-group / pooled

𝚺0 = Var(𝝁𝑘) + E(𝚺𝑘)

=

𝐾∑
𝑘=1

𝜋𝑘(𝝁𝑘 − 𝝁0)(𝝁𝑘 − 𝝁0)
𝑇 +

𝐾∑
𝑘=1

𝜋𝑘𝚺𝑘

= 𝚺explained + 𝚺unexplained

Thus, the total variance decomposes into the explained (between group)
variance and the unexplained (expected within group, pooled) variance.

Total variation

The total variation is given by the trace of the covariance matrix. The above
decomposition for the total variation is

Tr(𝚺0) = Tr(𝚺explained) + Tr(𝚺unexplained)

=

𝐾∑
𝑘=1

𝜋𝑘Tr((𝝁𝑘 − 𝝁0)(𝝁𝑘 − 𝝁0)
𝑇) +

𝐾∑
𝑘=1

𝜋𝑘Tr(𝚺𝑘)

=

𝐾∑
𝑘=1

𝜋𝑘(𝝁𝑘 − 𝝁0)
𝑇(𝝁𝑘 − 𝝁0) +

𝐾∑
𝑘=1

𝜋𝑘Tr(𝚺𝑘)

If the covariances are replaced by their empirical estimates we obtain the
𝑇 = 𝐵 +𝑊 decomposition of total variation familiar from 𝐾-means:

𝑇 = Tr
(
𝚺̂0

)
=

1
𝑛

𝑛∑
𝑖=1
(𝒙 𝑖 − 𝝁̂0)

𝑇(𝒙 𝑖 − 𝝁̂0)

𝐵 = Tr(𝚺̂explained) =
1
𝑛

𝐾∑
𝑘=1

𝑛𝑘(𝝁̂𝑘 − 𝝁̂0)
𝑇(𝝁̂𝑘 − 𝝁̂0)

𝑊 = Tr(𝚺̂unexplained) =
1
𝑛

𝐾∑
𝑘=1

∑
𝑖∈𝐺𝑘

(𝒙 𝑖 − 𝝁̂𝑘)
𝑇(𝒙 𝑖 − 𝝁̂𝑘)

88

4 Unsupervised learning and clustering

Univariate mixture

For a univariate mixture (𝑑 = 1) with 𝐾 = 2 components we get

𝜇0 = 𝜋1𝜇1 + 𝜋2𝜇2 ,

𝜎2
within = 𝜋1𝜎

2
1 + 𝜋2𝜎

2
2 = 𝜎2

pooled ,

also known as pooled variance, and

𝜎2
between = 𝜋1(𝜇1 − 𝜇0)2 + 𝜋2(𝜇2 − 𝜇0)2

= 𝜋1𝜋
2
2(𝜇1 − 𝜇2)2 + 𝜋2𝜋

2
1(𝜇1 − 𝜇2)2

= 𝜋1𝜋2(𝜇1 − 𝜇2)2

=

(
1
𝜋1
+ 1

𝜋2

)−1
(𝜇1 − 𝜇2)2

.

The ratio of the between-group variance and the within-group variance is
proportional (by factor of 𝑛) to the squared pooled-variance 𝑡-score:

𝜎2
between

𝜎2
within

=
(𝜇1 − 𝜇2)2(

1
𝜋1
+ 1

𝜋2

)
𝜎2

pooled

=
𝑡2pooled

𝑛

If you are familiar with ANOVA (e.g. linear models course) you will recognise
this ratio as the 𝐹-score.

Example of mixtures

Mixtures can take on many different shapes and forms, so it is instructive to
study a number of examples. An interactive tool to visualise two component
normal mixture is available online as R Shiny web app at https://minerva.it.m
anchester.ac.uk/shiny/strimmer/mixture/.

The first plot (Figure 4.9) shows the bimodal density of a mixture distribution
consisting of two normals with 𝜋1 = 0.7, 𝜇1 = −1, 𝜇2 = 2 and the two variances
equal to 1 (𝜎2

1 = 1 and 𝜎2
2 = 1). Because the two components are well-separated

there are two clear modes. The plot also shows the density of a normal
distribution with the same total mean (𝜇0 = −0.1) and variance (𝜎2

0 = 2.89) as
the mixture distribution. Clearly the total normal and the mixture density are
very different.

However, a two-component mixture can also be unimodal (Figure 4.10). For
example, if the mean of the second component is set to 𝜇2 = 0 then there is only
a single mode and the total normal density with 𝜇0 = −0.7 and 𝜎2

0 = 1.21 is now
almost inistinguishable in form from the mixture density. Thus, in this case it
will be very hard (or even impossible) to identify the two peaks from the data.

89

https://shiny.rstudio.com/
https://minerva.it.manchester.ac.uk/shiny/strimmer/mixture/
https://minerva.it.manchester.ac.uk/shiny/strimmer/mixture/

4 Unsupervised learning and clustering

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Bimodal Mixture of Two Normals

x

de
ns

ity

Mixture
Component 1
Component 2

Total normal

Figure 4.9: Mixture of two normal distributions with two modes.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Unimodal Mixture of Two Normals

x

de
ns

ity

Mixture
Component 1
Component 2

Total normal

Figure 4.10: Mixture of two normal distributions with a single mode.

90

4 Unsupervised learning and clustering

Most mixtures we consider in this course are multivariate. For illustration,
Figure 4.11 shows a plot of a density of the mixture of two bivariate normal

distributions, with 𝜋1 = 0.7, 𝝁1 =

(
−1
1

)
, 𝚺1 =

(
1 0.7

0.7 1

)
, 𝝁2 =

(
2.5
0.5

)
and

𝚺2 =

(
1 −0.7
−0.7 1

)
:

Sampling from a mixture model

Assuming we know how to sample from the component densities 𝑓𝑘(𝒙) of the
mixture model it is straightforward to set up a procedure for sampling from the
mixture 𝑓mix(𝒙) =

∑𝐾
𝑘=1 𝜋𝑘 𝑓𝑘(𝒙) itself.

This is done in a two-step process:

1. Draw from categorical distribution with parameter 𝝅 = (𝜋1 , . . . ,𝜋𝐾)𝑇 :

𝒛 ∼ Cat(𝝅)

Here the vector 𝒛 = (𝑧1 , . . . , 𝑧𝐾)𝑇 indicates a hard group 0/1 allocation,
with all components 𝑧≠𝑘 = 0 except for a single entry 𝑧𝑘 = 1.

2. Subsequently, sample from the component 𝑘 selected in step 1:

𝒙 ∼ 𝐹𝑘

This two-stage sampling approach is also known as hierarchical generative model
for a mixture distribution. This generative view is not only useful for simulating
data from a mixture model but also highlights the role of the latent variable (the
class allocation).

4.5 Fitting mixture models to data and inferring the
latent states

In the following we denote by

• 𝑿 = (𝒙1 , . . . , 𝒙𝑛)𝑇 the data matrix containing the observations of 𝑛 inde-
pendent and identically distributed samples 𝒙1 , . . . , 𝒙𝑛 , and

• 𝒚 = (𝑦1 , . . . , 𝑦𝑛)𝑇 the associated group memberships, as well as
• the parameters 𝜽 which for a Gaussian mixture model are 𝜽 =

{𝝅, 𝝁1 , . . . , 𝝁𝐾 ,𝚺1 , . . . ,𝚺𝐾}.

91

4 Unsupervised learning and clustering

x1

−5−4−3
−2

−1
0

1
2

3
4

5

x2

−5
−4

−3
−2
−1

0
1
2
3
4
5

density

0.00
0.02

0.04

0.06

0.08

0.10

0.12

0.14

Mixture of Two Bivariate Normals

Figure 4.11: Mixture of two bivariate normal distributions with two modes.

92

4 Unsupervised learning and clustering

Observed and latent variables

When we observe data from a mixture model we collect samples 𝒙1 , . . . , 𝒙𝑛 .
Associated with each observed 𝒙 𝑖 is the corresponding underlying class allocation
𝑦1 , . . . , 𝑦𝑛 where each 𝑦𝑖 takes on a value from 𝐶 = {1, . . . , 𝐾}. Crucially, the
class allocations 𝑦𝑖 are unknown and cannot be directly observed, thus are
latent.

• The joint density for observed and unobserved variables:

𝑓 (𝒙 , 𝑦) = 𝑓 (𝒙 |𝑦)Pr(𝑦) = 𝑓𝑦(𝒙)𝜋𝑦

The mixture density is therefore a marginal density as it arises from the joint
density 𝑓 (𝒙 , 𝑦) by marginalising over the discrete variable 𝑦.

• Marginalisation: 𝑓 (𝒙) = ∑
𝑦∈𝐶 𝑓 (𝒙 , 𝑦)

Complete data likelihood and observed data likelihood

If we know 𝒚 in advance, i.e. if we know which sample belongs to a particular
group, we can construct a complete data log-likelihood based on the joint distribution
𝑓 (𝒙 , 𝑦) = 𝜋𝑦 𝑓𝑦(𝒙). The log-likelihood for 𝜽 given the both 𝑿 and 𝒚 is

log 𝐿(𝜽 |𝑿 , 𝒚) =
𝑛∑
𝑖=1

log 𝑓 (𝒙 𝑖 , 𝑦𝑖) =
𝑛∑
𝑖=1

log
(
𝜋𝑦𝑖 𝑓𝑦𝑖 (𝒙 𝑖)

)
On the other hand, typically we do not know 𝒚 and therefore use the marginal
or mixture density 𝑓 (𝒙) to construct the observed data log-likelihood (sometimes
also called incomplete data log-likelihood) 𝑓 (𝒙 |𝜽) as

log 𝐿(𝜽 |𝑿) =
𝑛∑
𝑖=1

log 𝑓 (𝒙 𝑖 |𝜽)

=

𝑛∑
𝑖=1

log

(
𝐾∑
𝑘=1

𝜋𝑘 𝑓𝑘(𝒙 𝑖)
)

The observed data log-likelihood can also be computed from the complete data

93

4 Unsupervised learning and clustering

likelihood function by marginalising over 𝒚

log 𝐿(𝜽 |𝑿) = log
∑
𝒚

𝐿(𝜽 |𝑿 , 𝒚)

= log
∑

𝑦1 ,...,𝑦𝐾

𝑛∏
𝑖=1

𝑓 (𝒙 𝑖 , 𝑦𝑖)

= log
𝑛∏
𝑖=1

𝐾∑
𝑘=1

𝑓 (𝒙 𝑖 , 𝑘)

=

𝑛∑
𝑖=1

log

(
𝐾∑
𝑘=1

𝑓 (𝒙 𝑖 , 𝑘)
)

Clustering with a mixture model can be viewed as an incomplete or missing data
problem (see also MATH27720 Statistics 2).

Specifically, we face the problem of

• fitting the model using only the observed data 𝑿 and
• simultaneously inferring the class allocations 𝒚, i.e. states of the latent

variable.

Fitting the mixture model to the observed data

For large sample size 𝑛 the standard way to fit a mixture model is to employ
maximum likelihood to find the MLEs of the parameters of the mixture model.

The direct way to fit a mixture model by maximum likelihood is to maximise
the observed data log-likelihood function with regard to 𝜽:

𝜽̂
𝑀𝐿

= arg max
𝜽

log 𝐿(𝜽 |𝑿)

Unfortunately, in practise evaluation and optimisation of the log-likelihood
function can be difficult due to a number of reasons:

• The form of the observed data log-likelihood function prevents analytic
simplifications (note the sum inside the logarithm) and thus can be difficult
to compute.

• Because of the symmetries due to exchangeability of cluster labels the
likelihood function is multimodal and thus hard to optimise. Note this is
also linked to the general problem of label switching and non-identifiability
of cluster labels — see the discussion for 𝐾-means clustering.

94

https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/

4 Unsupervised learning and clustering

• Further identifiability issues can arise if (for instance) two neighboring
components of the mixture model are largely overlapping and thus are too
close to each other to be discriminated as two different modes. In other
words, it is difficult to determine the number of classes.

• Furthermore, the likelihood in Gaussian mixture models is singular if one
of the fitted covariance matrices becomes singular. However, this can be
easily adressed by using some form of regularisation (Bayes, penalised ML,
etc.) or simply by requiring sufficient sample size per group.

Predicting the group allocation of a given sample

In probabilistic clustering the aim is to infer the latent states 𝑦1 , . . . , 𝑦𝑛 for all
observed samples 𝒙1 , . . . , 𝒙𝑛 .

Assuming that the mixture model is known (either in advance or after fitting
it) Bayes’ theorem allows predict the probability that an observation 𝒙 𝑖 falls in
group 𝑘 ∈ {1, . . . , 𝐾}:

𝑞𝑖(𝑘) = Pr(𝑘 |𝒙 𝑖) =
𝜋𝑘 𝑓𝑘(𝒙 𝑖)
𝑓 (𝒙 𝑖)

Thus, for each of the 𝑛 samples we get a probability mass function over the 𝐾
classes with

∑𝐾
𝑘=1 𝑞𝑖(𝑘) = 1.

The posterior probabilities in 𝑞𝑖(𝑘) provide a so-called soft assignment of the
sample 𝒙 𝑖 to all classes rather than a 0/1 hard assignment to a specific class (as for
example in the 𝐾-means algorithm).

To obtain at a hard clustering and to infer the most probable latent state we select
the class with the highest probability

𝑦𝑖 = arg max
𝑘

𝑞𝑖(𝑘)

Thus, in probabilistic clustering we directly obtain an assessment of the uncer-
tainty of the class assignment for a sample 𝒙 𝑖 (which is not the case in simple
algorithmic clustering such 𝐾-means). We can use this information to check
whether there are several classes with equal or similar probability. This will be
the case, e.g., if 𝒙 𝑖 lies near the boundary between two neighbouring classes.

Using the interactive Shiny app for the univariate normal component mixture
(online at https://minerva.it.manchester.ac.uk/shiny/strimmer/mixture/) you
can explore the posterior probabilities of each class.

95

https://minerva.it.manchester.ac.uk/shiny/strimmer/mixture/

4 Unsupervised learning and clustering

4.6 Application of Gaussian mixture models

Choosing the number of classes

In an application of a GMM we need to select a suitable value for 𝐾, i.e. the
number of classes.

Since GMMs operate in a likelihood framework we can use penalised likelihood
model selection criteria to choose among different models (i.e. GMMs with
different numbers of classes).

The most popular choices are AIC (Akaike Information Criterion) and BIC
(Bayesian Information criterion) defined as follows:

AIC = −2 log 𝐿 + 2𝐾

BIC = −2 log 𝐿 + 𝐾 log(𝑛)

In order to choose a suitable model we evaluate different models with different
𝐾 and then choose the model that minimises AIC or BIC

Note that in both criteria more complex models with more parameters (in this
case groups) are penalised over simpler models in order to prevent overfitting.

Another way of choosing optimal numbers of clusters is by cross-validation (see
later chapter on supervised learning).

Application of GMMs to Iris flower data

We now explore the application of Gaussian mixture models to the Iris flower
data set we also investigated with PCA and K-means.

First, we fit a GMM with 3 clusters, using the R software “mclust” 5.

data(iris)
X.iris = scale((iris[, 1:4]), scale=TRUE) # center and standardise
L.iris = iris[, 5]

library("mclust")
gmm3 = Mclust(X.iris, G=3, verbose=FALSE)
plot(gmm3, what="classification")

The “mclust” software has used the following model when fitting the mixture:

5L. Scrucca L. et. al. 2016. mclust 5: Clustering, classification and density estimation using Gaussian
finite mixture models. The R Journal 8:205–233. See https://journal.r-project.org/archive/2016
/RJ-2016-021/ and https://mclust-org.github.io/mclust/.

96

https://journal.r-project.org/archive/2016/RJ-2016-021/
https://journal.r-project.org/archive/2016/RJ-2016-021/
https://mclust-org.github.io/mclust/

4 Unsupervised learning and clustering

Sepal.Length

Sepal.Width

S
ep

al
.L

en
gt

h

−2 0 1 2 3

Petal.Length

S
ep

al
.L

en
gt

h

Petal.Width

S
ep

al
.L

en
gt

h

−1.5 −0.5 0.5 1.5

−
2

0
1

2

Sepal.Length

S
ep

al
.W

id
th

−
2

0
2

Sepal.Width

Petal.Length

S
ep

al
.W

id
th

Petal.Width

S
ep

al
.W

id
th

Sepal.Length

P
et

al
.L

en
gt

h

Sepal.Width

P
et

al
.L

en
gt

h

Petal.Length

Petal.Width
P

et
al

.L
en

gt
h

−
1.

5
0.

0
1.

0

Sepal.Length

P
et

al
.W

id
th

−2 −1 0 1 2

−
1.

5
0.

0
1.

0

Sepal.Width

P
et

al
.W

id
th

Petal.Length

P
et

al
.W

id
th

−1.5 −0.5 0.5 1.5

Petal.Width

Figure 4.12: Mclust fit of mixture model to the iris flower data.

gmm3$modelName

[1] "VVV"

Here “VVV” is the name used by the “mclust” software for a model allowing for
an individual unrestricted covariance matrix 𝚺𝑘 for each class 𝑘.

This GMM has a substantially lower misclassification error compared to 𝐾-means
with the same number of clusters:

table(gmm3$classification, L.iris)

L.iris
setosa versicolor virginica

1 50 0 0
2 0 45 0
3 0 5 50

97

4 Unsupervised learning and clustering

−
11

50
−

10
50

−
95

0
−

85
0

Number of components

B
IC

1 2 3 4 5 6 7 8 9 10

VVV

Figure 4.13: Mclust BIC plot to select optimal number of groups for the iris flower
data.

Note that in “mclust” the BIC criterion is defined with the opposite sign
(BICmclust = 2 log 𝐿 − 𝐾 log(𝑛)), thus we need to find the maximum value rather
than the smallest value.

If we compute BIC for various numbers of groups we find that the model with
the best BICmclust is a model with 2 clusters but the model with 3 cluster has
nearly as good a BIC:

4.7 The EM algorithm

Motivation

As discussed above, the observed data log-likelihood can be difficult to maximise
directly due to its form as a log marginal likelihood. Intriguingly, it is possible to
optimise it indirectly using the complete data log-likelihood, and what’s more

98

4 Unsupervised learning and clustering

this also allows in many cases for an analytic expression of the maximisation
step.

This method is called the EM algorithm and has been formally proposed and
described by Arthur Dempster (1929–) and others in 19776 but the algorithm was
already know prior. It iteratively estimates both the parameters of the mixture
model parameters and the latent states. The key idea behind the EM algorithm
is to capitalise on the simplicity of the complete data likelihood and to obtain
estimates of 𝜽 by imputing the missing group allocations and then subsequently
iteratively refining both the imputations and the estimates of 𝜽.

More precisely, in the EM (=expectation-maximisation) algorithm we alternate
between

• Step 1) updating the soft allocations of each sample using the current
estimate of the parameters 𝜽 (obtained in step 2)

• Step 2) updating the parameter estimates by maximising the expected
complete data log-likelihood. The expectation is taken with regard to the
distribution over the latent states (obtained in step 1). Thus the complete
data log-likelihood is averaged over the soft class assignments. For an
exponential family (e.g. when the distributions for each group are normal)
maximisation of the expected complete data log-likelihood can even be
done analytically.

The EM algorithm

Specifically, the EM algorithm proceeds as follows:

1) Initialisation:

• Start with a guess of the parameters 𝜽̂(1), then continue with “E” Step, Part
A.

• Alternatively, start with a guess of the soft allocations for each sample
𝑞𝑖(𝑘)(1), collected in the matrix 𝑸(1), then continue with “E” Step, Part B.
This may be derived from some prior information, e.g., from running
𝐾-means. Caveat: some particular initialisations correspond to invariant
states and hence should be avoided (see further below).

2) E “expectation” step

6Dempster, A. P, N. M. Laird and D. B. Rubin. 1977. Maximum likelihood from incomplete data via
the EM algorithm. JRSS B 39:1–38. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

99

https://en.wikipedia.org/wiki/Arthur_P._Dempster
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

4 Unsupervised learning and clustering

• Part A: Use Bayes’ theorem to compute new probabilities of allocation to
class 𝑘 for all the samples 𝒙 𝑖 :

𝑞𝑖(𝑘)(𝑏+1) ←
𝜋̂(𝑏)
𝑘
𝑓𝑘(𝒙 𝑖 |𝜽̂

(𝑏))

𝑓 (𝒙 𝑖 |𝜽̂
(𝑏))

Note that to obtain 𝑞𝑖(𝑘)(𝑏+1) the current estimate 𝜽̂
(𝑏) of the parameters of

the mixture model is required.

• Part B: Construct the expected complete data log-likelihood function for 𝜽
using the soft allocations 𝑞𝑖(𝑘)(𝑏+1) collected in the matrix 𝑸(𝑏+1):

𝐺(𝜽 |𝑿 ,𝑸(𝑏+1)) =
𝑛∑
𝑖=1

𝐾∑
𝑘=1

𝑞𝑖(𝑘)(𝑏+1) log (𝜋𝑘 𝑓𝑘(𝒙 𝑖))

Note that in the case that the soft allocations 𝑸(𝑏+1) turn into hard 0/1
allocations then 𝐺(𝜽 |𝑿 ,𝑸(𝑏+1)) becomes equivalent to the complete data
log-likelihood.

3) M “maximisation” step — Maximise the expected complete data log-
likelihood to update the estimates of mixture model parameters:

𝜽̂
(𝑏+1) ← arg max

𝜽
𝐺(𝜽 |𝑿 ,𝑸(𝑏+1))

4) Continue with 2) “E” Step until the series 𝜽̂(1) , 𝜽̂(2) , 𝜽̂(3) , . . . has converged.

Crucially, maximisation of the expected complete data log-likelihood is typically
much easier than maximisation of the observed data log-likelihood, and in many
cases even analytically tractable, which is why in this case the EM algorithm is
often preferred over direct maximisation of the observed data log-likelihood.

Note that to avoid singularities in the expected log-likelihood function we may
need to adopt regularisation (i.e. penalised maximum likelihood or Bayesian
learning) for estimating the parameters in the M-step.

EM algorithm for multivariate normal mixture model

We now consider the EM algorithm applied to the case when the conditional
group distributions are normal, i.e. when applied to the Gaussian mixture model
(GMM). In this case the two iterative steps in the EM algorithm can be expressed
as follows:

E-step:

100

4 Unsupervised learning and clustering

Update the soft allocations:

𝑞𝑖(𝑘)(𝑏+1) =
𝜋̂(𝑏)
𝑘
𝑁(𝒙 𝑖 |𝝁̂(𝑏)𝑘 , 𝚺̂

(𝑏)
𝑘)

𝑓 (𝑏)
(
𝒙 𝑖 |𝜋̂(𝑏)1 , . . . , 𝜋̂(𝑏)

𝐾
, 𝝁̂(𝑏)1 , . . . , 𝝁̂(𝑏)

𝐾
, 𝚺̂
(𝑏)
1 , . . . , 𝚺̂

(𝑏)
𝐾

)
Correspondingly, the number of samples assigned to class 𝑘 in the current step
is

𝑛
(𝑏+1)
𝑘

=

𝑛∑
𝑖=1

𝑞𝑖(𝑘)(𝑏+1)

Note this is not necessarily an integer because of the soft allocations of samples
to groups.

The expected complete data log-likelihood becomes:

𝐺(𝜋1 , . . .𝜋𝐾 , 𝝁1 , . . . , 𝝁𝐾 ,𝚺1 , . . . ,𝚺𝐾 |𝑿 ,𝑸(𝑏+1)) =
𝑛∑
𝑖=1

𝐾∑
𝑘=1

𝑞𝑖(𝑘)(𝑏+1) log (𝜋𝑘 𝑓𝑘(𝒙 𝑖))

with

log (𝜋𝑘 𝑓𝑘(𝒙 𝑖)) = −
1
2 (𝒙 − 𝝁𝑘)

𝑇𝚺−1
𝑘
(𝒙 − 𝝁𝑘) −

1
2 log det(𝚺𝑘) + log(𝜋𝑘)

(Remark: we will encounter this expression again in the next chapter when
discussing quadratic discriminant analysis).

M-step:

The maximisation of the expected complete data log-likelihood can be done ana-
lytically as it is a weighted version of the conventional single group multivariate
normal log-likelihood. The resulting estimators are also weighted variants of
the usual MLEs.

The updated estimates of the group probabilities are

𝜋̂(𝑏+1)
𝑘

=
𝑛
(𝑏+1)
𝑘

𝑛

The updated estimates of the means are

𝝁̂(𝑏+1)
𝑘

=
1

𝑛
(𝑏+1)
𝑘

𝑛∑
𝑖=1

𝑞𝑖(𝑘)(𝑏+1)𝒙 𝑖

and the updated covariance estimates are

𝚺̂
(𝑏+1)
𝑘 =

1
𝑛
(𝑏+1)
𝑘

𝑛∑
𝑖=1

𝑞𝑖(𝑘)(𝑏+1)
(
𝒙 𝑖 − 𝝁(𝑏+1)

𝑘

) (
𝒙 𝑖 − 𝝁(𝑏+1)

𝑘

)𝑇

101

4 Unsupervised learning and clustering

Note that if 𝑞𝑖(𝑘) is a hard allocation (so that for any 𝑖 only one class has weight
1 and all others weight 0) then all estimators above reduce to the usual MLEs.

In Worksheet 8 you can find a simple R implementation of the EM algorithm for
univariate normal mixtures.

Similar analytical expressions can also be found in more general mixtures where
the components are exponential families. As mentioned above this is one of the
advantages of using the EM algorithm.

Convergence and invariant states

Under mild assumptions the EM algorithm is guaranteed to monotonically
converge to local optima of the observed data log-likelihood 7. Thus the
series 𝜽̂(1) , 𝜽̂(2) , 𝜽̂(3) , . . . converges to the estimate 𝜽̂ found when maximising the
observed data log-likelihood. However, the speed of convergence in the EM
algorithm can sometimes be slow, and there are also situations in which there
is no convergence at all to 𝜽̂ because the EM algorithm remains in an invariant
state.

An example of such an invariant state for a Gaussian mixture model is uniform
initialisation of the latent variables 𝑞𝑖(𝑘) = 1

𝐾 , where 𝐾 is the number of classes.
With this we get in the M step 𝑛𝑘 = 𝑛

𝐾 and as parameter estimates

𝜋̂𝑘 =
1
𝐾

𝝁̂𝑘 =
1
𝑛

𝑛∑
𝑖=1

𝒙 𝑖 = 𝒙̄

𝚺̂𝑘 =
1
𝑛

𝑛∑
𝑖=1
(𝒙 𝑖 − 𝒙̄)(𝒙 𝑖 − 𝒙̄)𝑇 = 𝚺̂

Crucially, none of these actually depend on the group 𝑘! Thus, in the E step
when the next soft allocations are determined this leads to

𝑞𝑖(𝑘) =
1
𝐾𝑁(𝒙 𝑖 |𝒙̄ , 𝚺̂)∑𝐾
𝑗=1

1
𝐾𝑁(𝒙 𝑖 |𝒙̄ , 𝚺̂)

=
1
𝐾

After one cycle in the EM algorithm we arrive at the same soft allocation that
we started with, and the algorithm is trapped in an invariant state! Therefore
uniform initialisation should clearly be avoided!

You will explore this effect in practise in Worksheet 8.

7Wu, C.F. 1983. On the convergence properties of the EM algorithm. The Annals of Statistics
11:95–103. https://doi.org/10.1214/aos/1176346060

102

https://doi.org/10.1214/aos/1176346060

4 Unsupervised learning and clustering

Connection with the 𝐾-means clustering method

The 𝐾-means algorithm is very closely related to the EM algorithm and proba-
bilistic clustering with a specific Gaussian mixture models.

Specifically, we assume a simplified model where the probabilities 𝜋𝑘 of all
classes are equal (i.e. 𝜋𝑘 = 1

𝐾) and where the covariances 𝚺𝑘 are all of the same
spherical form 𝜎2𝑰. Thus, the covariance does not depend on the group, there
is no correlation between the variables and the variance of all variables is the
same.

First, we consider the “E” step. Using the mixture model above the soft
assignment for the class allocation becomes

log(𝑞𝑖(𝑘)) = −
1

2𝜎2 (𝒙 𝑖 − 𝝁̂𝑘)
𝑇(𝒙 𝑖 − 𝝁̂𝑘) + const

where const does not depend on 𝑘. This can turned into a hard class allocation
by

𝑦𝑖 = arg max
𝑘

log(𝑞𝑖(𝑘))

= arg min
𝑘

(𝒙 𝑖 − 𝝁̂𝑘)
𝑇(𝒙 𝑖 − 𝝁̂𝑘)

which is exactly the 𝐾-means rule to dallocate of samples to groups.

Second, in the “M” step we compute the parameters of the model. If the class
allocations are hard the expected log-likelihood becomes the observed data
likelihood and the MLE of the group mean is the average of samples in that
group.

Thus, 𝐾-means can be viewed as an EM type algorithm to provide hard classifi-
cation based on a simple restricted Gaussian mixture model.

Why the EM algorithm works — an entropy point of view

The iterative (soft) imputation of the latent states in the EM algorithm is intuitively
clear.

However, in order to get a better understanding of EM we need to demonstrate

i) why the expected observed log-likelihood needs to be maximised rather
than, e.g., the observed log-likelihood with hard allocations, and

ii) that applying the EM algorithm versus directly maximising the marginal
likelihood both lead to the same fitted mixture model.

103

4 Unsupervised learning and clustering

Intriguingly, both these aspects of the EM algorithm are easiest to understand
from an entropy point of view, i.e. considering the entropy foundations of
maximum likelihood and Bayesian learning — for details see MATH27720
Statistics 2. Specifically, the reason for the need of using expectation is the link
between likelihood and cross-entropy (which also is defined as expectation).
Furthermore, the EM algorithm is an example of using an ELBO (“evidence lower
bound”) to successively approximate the maximised marginal log-likelihood,
with the bound only getting better in each step.

First, recall that the method of maximum likelihood results from minimis-
ing the KL divergence between an empirical distribution 𝑄𝒙 representing the
observations 𝒙1 , . . . , 𝒙𝑛 and the model family 𝐹𝜽𝒙 with parameters 𝜽:

𝜽̂
𝑀𝐿

= arg min
𝜽

𝐷KL(𝑄𝒙 , 𝐹
𝜽
𝒙)

The KL divergence decomposes into a cross-entropy and an entropy part

𝐷KL(𝑄𝒙 , 𝐹𝜽) = 𝐻(𝑄𝒙 , 𝐹
𝜽
𝒙) − 𝐻(𝑄𝒙)

hence minimising the KL divergence with regard to 𝜽 is the same as maximising
the function

−𝑛𝐻(𝑄𝒙 , 𝐹
𝜽
𝒙) = 𝑛E𝑄𝒙 (log 𝑓 (𝒙 |𝜽))

=

𝑛∑
𝑖=1

log 𝑓 (𝒙 𝑖 |𝜽)

= log 𝐿(𝜽 |𝑿)

which is indeed the observed data log-likelihood for 𝜽.

Second, we recall the chain rule for the KL divergence. Specifically, the KL
divergence for the joint model forms an upper bound of the KL divergence for
the marginal model:

𝐷KL(𝑄𝒙 ,𝑦 , 𝐹
𝜽
𝒙 ,𝑦) = 𝐷KL(𝑄𝒙 , 𝐹

𝜽
𝒙) + 𝐷KL(𝑄𝑦 |𝒙 , 𝐹

𝜽
𝑦 |𝒙)︸ ︷︷ ︸

≥0

≥ 𝐷KL(𝑄𝒙 , 𝐹
𝜽
𝒙)

Unlike for 𝒙 we do not have observations about the latent state 𝑦. Nonetheless,
we can model the joint distribution 𝑄𝒙 ,𝑦 = 𝑄𝒙𝑄𝑦 |𝒙 by assuming a distribution
𝑄𝑦 |𝒙 over the latent variable.

The EM algorithm arises from iteratively decreasing the joint KL divergence
𝐷KL(𝑄𝒙𝑄𝑦 |𝒙 , 𝐹

𝜽
𝒙 ,𝑦)with regard to both 𝑄𝑦 |𝒙 and 𝜽:

1) “E” Step: While keeping 𝜽 fixed we vary 𝑄𝑦 |𝒙 to minimise the joint KL
divergence. The minimum is reached at 𝐷KL(𝑄𝑦 |𝒙 , 𝐹

𝜽
𝑦 |𝒙) = 0. This is the

104

https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/
https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/

4 Unsupervised learning and clustering

case for 𝑄𝑦 |𝒙 = 𝐹𝜽
𝑦 |𝒙 , i.e. when the latent distribution 𝑄𝑦 |𝒙 representing the

soft allocations is computed by conditioning, i.e. using Bayes’ theorem.

2) “M” Step: While keeping 𝑄𝑦 |𝒙 fixed the joint KL divergence is further
minimised with regard to 𝜽. This is equivalent to maximising the function∑𝐾
𝑘=1

∑𝑛
𝑖=1 𝑞(𝑘 |𝒙 𝑖) log 𝑓 (𝒙 𝑖 , 𝑘 |𝜽)which is indeed the expected complete data

log-likelihood.

Thus in the “E” step the first argument in the KL divergence is optimised (“I”
projection) and in the “M” step it is the second argument that is optimised (“M”
projection). In both steps the joint KL divergence always decreases and never
increases. Furthermore, at the end of “E” step the joint KL divergence equals the
marginal KL divergence. Thus, this procedure implicitly minimises the marginal
KL divergence as well, and hence EM maximises the marginal log-likelihood.

An alternative way to look at the EM algorithm is in terms of cross-entropy.
Using 𝐻(𝑄𝒙 ,𝑦) = 𝐻(𝑄𝒙) + 𝐻(𝑄𝑦 |𝒙) we can rewrite the above upper bound for
the joint KL divergence as an equivalent lower bound for 𝑛 times the negative
marginal cross-entropy:

−𝑛𝐻(𝑄𝒙 , 𝐹
𝜽
𝒙) = −𝑛𝐻(𝑄𝒙𝑄𝑦 |𝒙 , 𝐹

𝜽
𝒙 ,𝑦) + 𝑛𝐻(𝑄𝑦 |𝒙)︸ ︷︷ ︸

lower bound, ELBO

+ 𝑛𝐷KL(𝑄𝑦 |𝒙 , 𝐹
𝜽
𝑦 |𝒙)︸ ︷︷ ︸

≥0

≥ ℱ
(
𝑄𝒙 , 𝑄𝑦 |𝒙 , 𝐹

𝜽
𝒙 ,𝑦

)
The lower bound is known as the “ELBO” (“evidence lower bound”). Then the
EM algorithm arises by iteratively maximising the ELBO ℱ with regard to 𝑄𝑦 |𝒙
(“E” step”) and 𝜽 (“M” step).

The entropy interpretation of the EM algorithm is due to Csiszàr and Tus-
nàdy (1984)8 and the ELBO interpretation was introduced by Neal and Hinton
(1998)9.

8Csiszàr, I., and G, Tusnàdy. 1984. Information geometry and alternating minimization procedures.
In Dudewicz, E. J. et al. (eds.) Recent Results in Estimation Theory and Related Topics Statistics
and Decisions, Supplement Issue No. 1. pp. 205–237.

9Neal, R. M., and G. Hinton. 1998. A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Jordan, M.I. (eds.). Learning in Graphical Models. pp. 355–368.
https://doi.org/10.1007/978-94-011-5014-9_12

105

https://doi.org/10.1007/978-94-011-5014-9_12

5 Supervised learning and
classification

5.1 Aims of supervised learning

Supervised learning vs. unsupervised learning

Unsupervised learning:

Starting point:

• unlabelled data 𝒙1 , . . . , 𝒙𝑛 .

Aim: find labels 𝑦1 , . . . , 𝑦𝑛 to attach to each sample 𝒙 𝑖 .

For discrete labels 𝑦 unsupervised learning is called clustering.

Supervised learning:

Starting point:

• labelled training data: {𝒙train
1 , 𝑦train

1 }, . . ., {𝒙train
𝑛 , 𝑦train

𝑛 }
• In addition, we have unlabelled test data: 𝒙test

Aim: use training data to learn a function, say ℎ(𝒙), to predict the label corre-
sponding to the test data. The predictor function may provide a soft (probabilistic)
assignment or a hard assignment of a class label to a test sample.

For 𝑦 discrete supervised learning is called classification. For continuous 𝑦 the
label is called response and supervised learning becomes regression.

Thus, supervised learning is a two-step procedure:

1) Learn predictor function ℎ(𝒙) using the training data 𝒙train
𝑖

plus labels
𝑦train
𝑖

.
2) Predict the label 𝑦test for the test data 𝒙test using the estimated classifier

function: 𝑦̂test = ℎ̂(𝒙test).

106

5 Supervised learning and classification

Figure 5.1: Illustration of a decision boundary in a two-group classification
problem.

Terminology

The function ℎ(𝒙) that predicts the class 𝑦 is called a classifier.

There are many types of classifiers, we focus here primarily on probabilistic
classifiers (i.e. those that output probabilities for each possible class/label).

The challenge is to find a classifier that

• explains the current training data well and
• that also generalises well to future unseen data.

Note that it is relatively easy to find a predictor that explains the training data but
especially in high dimensions (i.e. with many predictors) there is often overfitting
and then the predictor does not generalise well!

The decision boundary between the classes is defined as the set of all 𝒙 for which
the class assignment by the predictor ℎ(𝒙) switches from one class to another (cf.
Figure 5.1).

In general, simple decision boundaries are preferred over complex decision
boundaries to avoid overfitting.

107

5 Supervised learning and classification

Some commonly used probabilistic methods for classifications:

• QDA (quadratic discriminant analysis)
• LDA (linear discriminant analysis)
• DDA (diagonal discriminant analysis),
• Naive Bayes classification
• logistic regression

Depending on how the classifiers are trainined there are many variations of the
above methods, e.g. Fisher discriminant analysis, regularised LDA, shrinkage
disciminant analysis etc.

Common non-probabilistic methods for classification include:

• 𝑘-NN (Nearest Neigbors)
• SVM (support vector machine),
• random forest
• neural networks

Neural networks may in fact also be counted under probabilistic models as they
essentially are high-dimensional complex nonlinear regression models. Just like
a linear regression model can be fitted by “least squares” only without assuming
an explicit probabilistic model neural networks are also most often trained by
optimising a loss function.

5.2 Bayesian discriminant rule or Bayes classifier

Bayes classifiers are based on mixture models:

• 𝐾 groups with 𝐾 prespecified
• each group has its own distribution 𝐹𝑘 with own parameters 𝜽𝑘
• the density of each class is 𝑓𝑘(𝒙) = 𝑓 (𝒙 |𝑘).
• prior probability of group 𝑘 is Pr(𝑘) = 𝜋𝑘 with

∑𝐾
𝑘=1 𝜋𝑘 = 1

• marginal density is the mixture 𝑓 (𝒙) = ∑𝐾
𝑘=1 𝜋𝑘 𝑓𝑘(𝒙)

For the moment we do not assume anything particular about the conditional
densities 𝑓𝑘(𝒙) but later (see the following section) we will focus on normal
densities and hence normal classifiers.

The posterior probability of group 𝑘 is given by

Pr(𝑘 |𝒙) = 𝜋𝑘 𝑓𝑘(𝒙)
𝑓 (𝒙)

This provides a “soft” classification

𝒉(𝒙test) = (Pr(𝑘 = 1|𝒙test), . . . , Pr(𝑘 = 𝐾 |𝒙test))𝑇

108

5 Supervised learning and classification

where each possible class 𝑘 ∈ {1, . . . , 𝐾} is assigned a probability to be the label
for the test sample 𝒙.

The discriminant function is defined as the logarithm of the posterior probability:

𝑑𝑘(𝒙) = log Pr(𝑘 |𝒙) = log𝜋𝑘 + log 𝑓𝑘(𝒙) − log 𝑓 (𝒙)

Since we use 𝑑𝑘 to compare the different classes 𝑘we can simplify the discriminant
function by dropping all constant terms that do not depend on 𝑘 — in the above
this is the term log 𝑓 (𝒙). Hence we get for the Bayes discriminant function

𝑑𝑘(𝒙) = log𝜋𝑘 + log 𝑓𝑘(𝒙) .

For subsequent “hard” classification ℎ(𝒙test)we then select the group/label for
which the value of the discriminant function is maximised:

𝑦̂test = ℎ(𝒙test) = arg max
𝑘
𝑑𝑘(𝒙test) .

We have already encountered the Bayes classifier in the EM algorithm to predict
the state of the latent variables (soft assignment) and in the 𝐾-means algorithm
(hard assignment).

The discriminant functions 𝑑𝑘(𝒙) can be mapped back to the probabilistic class
assignment by using the softargmax function (also known as softmax function):

Pr(𝑘 |𝒙) =
exp(𝑑𝑘(𝒙))∑𝐾
𝑐=1 exp(𝑑𝑐(𝒙))

.

In practise this will be calculated as

Pr(𝑘 |𝒙) =
exp(𝑑𝑘(𝒙) − 𝑑max(𝒙))∑𝐾
𝑐=1 exp(𝑑𝑐(𝒙) − 𝑑max(𝒙))

.

because subtracting 𝑑max(𝒙) = max{𝑑1(𝒙), . . . , 𝑑𝐾(𝒙)} from all discriminant
functions, and thus standardising the maximum of the discriminant functions
to zero, avoids numerical overflow problems when computing the exponential
function on a computer.

5.3 Normal Bayes classifier

Quadratic discriminant analysis (QDA) and Gaussian assumption

Quadratic discriminant analysis (QDA) is a special case of the Bayes classi-
fier when all group-specific densities are multivariate normal with 𝑓𝑘(𝒙) =

109

5 Supervised learning and classification

𝑁(𝒙 |𝝁𝑘 ,𝚺𝑘). Note in particular that each group 𝑘 ∈ {1, . . . , 𝐾} has its own
covariance matrix 𝚺𝑘 .

Some calculation leads to the discriminant function for QDA:

𝑑
𝑄𝐷𝐴

𝑘
(𝒙) = −1

2 (𝒙 − 𝝁𝑘)
𝑇𝚺−1

𝑘
(𝒙 − 𝝁𝑘) −

1
2 log det(𝚺𝑘) + log(𝜋𝑘)

There are a number of noteworthy things here:

• Again terms are dropped that do not depend on 𝑘, such as − 𝑑2 log(2𝜋).
• Note the appearance of the squared Mahalanobis distance between 𝒙 and

𝝁𝑘 : 𝑑
Mahalanobis(𝒙 , 𝝁|𝚺)2 = (𝒙 − 𝝁)𝑇𝚺−1(𝒙 − 𝝁).

• The QDA discriminant function is quadratic in 𝒙 - hence its name!
This implies that the decision boundaries for QDA classification are
quadratic (i.e. parabolas in two dimensional settings).

For Gaussian models specifically it can useful be to multiply the discriminant
function by -2 to get rid of the factor − 1

2 , but note that in that case we then need
to find the minimum of the discriminant function rather than the maximum:

𝑑
𝑄𝐷𝐴(𝑣2)
𝑘

(𝒙) = (𝒙 − 𝝁𝑘)
𝑇𝚺−1

𝑘
(𝒙 − 𝝁𝑘) + log det(𝚺𝑘) − 2 log(𝜋𝑘)

In the literature you will find both versions of Gaussian discriminant functions
so you need to check carefully which convention is used. In the following we
will use the first version only.

Decision boundaries for the QDA classifier can be either linear or nonlinear
(quadratic curve). The decision boundary between any two classes 𝑖 and 𝑗 require
that 𝑑𝑄𝐷𝐴

𝑖
(𝒙) = 𝑑

𝑄𝐷𝐴

𝑗
(𝒙), or equivalently <𝑑𝑄𝐷𝐴

𝑖
(𝒙) − 𝑑𝑄𝐷𝐴

𝑗
(𝒙) = 0, which is a

quadratic equation.

Linear discriminant analysis (LDA)

LDA is a special case of QDA, with the assumption of common overall covariance
across all groups: 𝚺𝑘 = 𝚺.

This leads to a simplified discriminant function:

𝑑𝐿𝐷𝐴
𝑘
(𝒙) = −1

2 (𝒙 − 𝝁𝑘)
𝑇𝚺−1(𝒙 − 𝝁𝑘) + log(𝜋𝑘)

Note that term containing the log-determinant is now gone, and that LDA is
essentially now a method that tries to minimize the Mahalanobis distance (while
taking also into account the prior class probabilities).

110

5 Supervised learning and classification

Figure 5.2: Comparison of the linear decision boundary for LDA (left) compared
with the nonlinear boundary for QDA (right.

The above function can be further simplified, by noting that the quadratic term
𝒙𝑇𝚺−1𝒙 does not depend on 𝑘 and hence can be dropped:

𝑑𝐿𝐷𝐴
𝑘
(𝒙) = 𝝁𝑇

𝑘
𝚺−1𝒙 − 1

2𝝁
𝑇
𝑘
𝚺−1𝝁𝑘 + log(𝜋𝑘)

= 𝒃𝑇𝒙 + 𝑎

Thus, the LDA discriminant function is linear in 𝒙, and hence the resulting
decision boundaries are linear as well (i.e. straight lines in two-dimensional
settings)

Figure 5.2 shows an comparison of the linear decision boundaries of LDA
compared with the nonlinear boundaries for QDA.

Note that logistic regression (cf. GLM module) takes on exactly the above linear
form and is indeed closely linked with the LDA classifier.

Diagonal discriminant analysis (DDA)

For DDA we start with the same setting as for LDA, but now we simplify the
model even further by additionally requiring a diagonal covariance containing
only the variances (thus we assume that all correlations among the predictors
𝑥1 , . . . , 𝑥𝑑 are zero):

𝚺 = 𝑽 =
©­­«
𝜎2

1 . . . 0
...

. . .
...

0 . . . 𝜎2
𝑑

ª®®¬

111

5 Supervised learning and classification

This simplifies the inversion of 𝚺 as

𝚺−1 = 𝑽−1 =
©­­«
𝜎−2

1 . . . 0
...

. . .
...

0 . . . 𝜎−2
𝑑

ª®®¬
and leads to the discriminant function

𝑑𝐷𝐷𝐴
𝑘
(𝒙) = 𝝁𝑇

𝑘
𝑽−1𝒙 − 1

2𝝁
𝑇
𝑘
𝑽−1𝝁𝑘 + log(𝜋𝑘)

=

𝑑∑
𝑗=𝑖

𝜇𝑘,𝑗𝑥 𝑗 − 𝜇2
𝑘,𝑗
/2

𝜎2
𝑑

+ log(𝜋𝑘)

As special case of LDA, the DDA classifier is a linear classifier and thus has
linear decision boundaries.

The Bayes classifier (using any distribution) assuming uncorrelated predictors
is also known as the naive Bayes classifier.

Hence, DDA is a naive Bayes classifier assuming that the underlying densities
are normal.

However, don’t let the label “naive” mislead you as DDA and other “naive”
Bayes classifiers are often very effective methods for classification and prediction,
especially in high-dimensional settings!

5.4 The training step — learning QDA, LDA and DDA
classifiers from data

Number of model parameters

In order to predict the class for new data using any of the above discriminant
functions we need to first learn the underlying parameters from the training data
𝒙train
𝑖

and 𝑦train
𝑖

:

• For QDA, LDA and DDA we need to learn 𝜋1 , . . . ,𝜋𝐾 with
∑𝐾
𝑘=1 𝜋𝑘 = 1

and the mean vectors 𝝁1 , . . . , 𝝁𝐾
• For QDA we additionally require 𝚺1 , . . . ,𝚺𝐾
• For LDA we need 𝚺
• For DDA we estimate 𝜎2

1 , . . . , 𝜎
2
𝑑
.

Overall, the total number of parameters to be estimated when learning the
discriminant functions from training data is as follows (see also Figure 5.3):

• QDA: 𝐾 − 1 + 𝐾𝑑 + 𝐾 𝑑(𝑑+1)
2

112

5 Supervised learning and classification

0 20 40 60 80 100

0
50

00
15

00
0

Model complexity QDA vs LDA vs DDA (K=3)

d

N
um

be
r

of
 p

ar
am

et
er

s

QDA

LDA
DDA

Figure 5.3: Comparison of model complexity of QDA, LDA and DDA.

• LDA: 𝐾 − 1 + 𝐾𝑑 + 𝑑(𝑑+1)
2

• DDA: 𝐾 − 1 + 𝐾𝑑 + 𝑑

Estimating the discriminant / predictor function

For QDA, LDA and DDA we learn the predictor by estimating the parameters of
the discriminant function from the training data.

Large sample size

If the sample size of the training data set is sufficiently large compared to the
model dimensions we can use maximum likelihood (ML) to estimate the model
parameters. To be able to use ML we need a larger sample size for QDA and LDA
(because full covariances need to be estimated) but for DDA a comparatively
small sample size can be sufficient (which is one aspect why “naive” Bayes
methods are very popular in practise).

To obtain the parameters estimates we use the known labels 𝑦train
𝑖

to sort the
samples 𝒙train

𝑖
into the corresponding classes, and then apply the standard ML

estimators. Let 𝑔𝑘 = {𝑖 : 𝑦train
𝑖

= 𝑘} be the set of all indices of training sample
belonging to group 𝑘, 𝑛𝑘 the sample size in group 𝑘

113

5 Supervised learning and classification

The ML estimates of the class probabilities are the frequencies

𝜋̂𝑘 =
𝑛𝑘
𝑛

and the ML estimate of the group means 𝑘 = 1, . . . , 𝐾 are

𝝁̂𝑘 =
1
𝑛𝑘

∑
𝑖∈𝑔𝑘

𝒙train
𝑖 .

The ML estimate of the global mean 𝝁0 (i.e. if we assume there is only a single
class and ignore the group labels) is

𝝁̂0 =
1
𝑛

𝑛∑
𝑖=1

𝒙train
𝑖 =

𝐾∑
𝑘=1

𝜋̂𝑘𝝁̂𝑘

Note the global mean is identical to the pooled mean (i.e. weighted average of
the individual group means).

The ML estimates for the covariances 𝚺𝑘 for QDA are

𝚺̂𝑘 =
1
𝑛𝑘

∑
𝑖∈𝑔𝑘

(𝒙train
𝑖 − 𝝁̂𝑘)(𝒙

train
𝑖 − 𝝁̂𝑘)

𝑇

In order to get the ML estimate of the pooled variance 𝚺 for use with LDA we
compute

𝚺̂ =
1
𝑛

𝐾∑
𝑘=1

∑
𝑖∈𝑔𝑘

(𝒙train
𝑖 − 𝝁̂𝑘)(𝒙

train
𝑖 − 𝝁̂𝑘)

𝑇 =

𝐾∑
𝑘=1

𝜋̂𝑘𝚺̂𝑘

Note that the pooled variance 𝚺 differs (substantially!) from the global variance
Σ0 that results from simply ignoring class labels and that is computed as

𝚺̂
𝑀𝐿

0 =
1
𝑛

𝑛∑
𝑖=1
(𝒙train
𝑖 − 𝝁̂0)(𝒙

train
𝑖 − 𝝁̂0)

𝑇

You will recognise the above from the variance decomposition in mixture models,
with 𝚺0 being the total variance and the pooled 𝚺 the unexplained/with-in
group variance.

Small sample size

If the dimension 𝑑 is large compared to the sample size then the number of
parameters in the predictor function grows fast. Especially QDA but also LDA is
data hungry and ML estimation becomes an ill-posed problem.

114

5 Supervised learning and classification

Figure 5.4: Decision boundaries for LDA and QDA in the non-nested case.

Figure 5.5: Decision boundaries for LDA and QDA in the nested case.

As discussed in Section 1.3 in this instance we need to use a regularised estimator
for the covariance(s) such as estimators derived in the framework of penalised ML,
Bayesian learning, shrinkage estimation etc. This also ensures that the estimated
covariance matrices are positive definite (which is automatically guaranteed only
for DDA if all variances are positive).

Furthermore, in small sample setting it is advised to reduce the number of
parameters of the model. Thus using LDA or DDA is preferred over QDA. This
can also prevent overfitting and lead to a predictor that generalises better.

To analyse high-dimensional data in the worksheets we will employ a regularised
version of LDA and DDA using Stein-type shrinkage estimation as discussed in
Section 1.3 and implemented in the R package “sda”.

Comparison of estimated decision boundaries: LDA vs. QDA

We compare two simple scenarios using simulated data.

115

5 Supervised learning and classification

Non-nested case (𝐾 = 4): See Figure 5.4. Both LDA and QDA clearly separate the
4 classes. Note the curved decision boundaries for QDA and the linear decision
boundaries for LDA.

Nested case (𝐾 = 2): See Figure 5.5. In the nested case LDA fails to separate the
two classes because there is no way to separate two nested classes with a simple
linear boundary.

Later we will investigate the decision boundaries for further methods (see
Figure 7.1 and Figure 7.2).

5.5 Quantifying prediction error

Once a classifier has been trained we are naturally interested in its performance
to correctly classify previously unseen data points. This is useful for comparing
different types of classifiers and also for comparing the same type of classifier
using different sets of predictor variables.

Quantification of prediction error based on validation data

A measure of predictor error compares the predicted label 𝑦̂ with the true label 𝑦
for validation data. A validation data set contains both the 𝒙 𝑖 and the associated
label 𝑦𝑖 but unlike the training data it has not been used for learning the predictor
function.

For continuous response often the squared loss is used:

err(𝑦̂ , 𝑦) = (𝑦̂ − 𝑦)2

For binary outcomes one often employs the 0/1 loss:

err(𝑦̂ , 𝑦) =
{

0, if 𝑦̂ = 𝑦

1, otherwise

Alternatively, any other quantity derived from the confusion matrix (containing
TP, TN, FP, FN) can be used.

The mean prediction error is the expectation

𝑃𝐸 = E(err(𝑦̂ , 𝑦))

and thus the empirical mean prediction error is

𝑃𝐸 =
1
𝑚

𝑚∑
𝑖=1

err(𝑦̂𝑖 , 𝑦𝑖)

116

5 Supervised learning and classification

where 𝑚 is the sample size of the validation data set.

More generally, we can also quantify prediction error in the framework of
so-called proper scoring rules, where the whole probabilistic forecast is taken
into account (e.g. the individual probabilities for each class, rather than just the
selected most probable class). A commonly used scoring rule is the negative
log-probability (“surprise”), and the expected surprise is the cross-entropy. So
this leads back to entropy and likelihood (see MATH27720 Statistics 2).

Once we have an estimate of the prediction error of a model we can use it to
compare and choose among a set of candidate models, selecting those with a
sufficiently low prediction error.

Estimation of prediction error using cross-validation

Unfortunately, quite often we do not have separate validation data available to
evaluate a classifier.

In this case we need to rely on a simple algorithmic procedure called cross-
validation.

Outline of cross-validation:

1) split the samples in the training data into a number (say 𝐾) parts (“folds”).
2) use each of the 𝐾 folds as validation data and the other 𝐾 − 1 folds as

training data.
3) average over the resulting 𝐾 individual estimates of prediction error, to get

an overall aggregated predictor error, along with an error.

Note that in each case one part of the data is reserved for validation and not used
for training the predictor.

We choose𝐾 such that the folds are not too small (to allow estimation of prediction
error) but also not too large (to make sure that we actually are able to train a
reliable classifier from the remaining data). A typical value for 𝐾 is 5 or 10, so
that 80% respectively 90% of the samples are used for training and the other 20
% or 10% for validation.

If 𝐾 = 𝑛 there are as many folds as there are samples and the validation data set
consists only of a single data point. This is called “leave one out” cross-validation
(LOOCV). There are analytic approximations for the prediction error obtained by
LOOCV so that this approach is computationally inexpensive for some standard
models (including regression).

Further reading:

To study the technical details of cross-validation: read Section 5.1 Cross-
Validation in James et al. (2021) (R version) or James et al. (2023) (Python
version).

117

https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/

5 Supervised learning and classification

5.6 Goodness of fit and variable ranking

As in linear regression we are interested in finding out whether the fitted mixture
model is an appropriate model, and which particular predictor(s) 𝑥 𝑗 from
𝒙 = (𝑥1 , . . . , 𝑥𝑑)𝑇 are responsible prediction the outcome, i.e. for categorising a
sample into group 𝑘.

In order to study these problem it is helpful to rewrite the discriminant function
to highlight the influence (or importance) of each predictor.

We focus on linear methods (LDA and DDA) and first look at the simple case
𝐾 = 2 and then generalise to more than two groups.

LDA with 𝐾 = 2 classes

For two classes using the LDA discriminant rule will choose group 𝑘 = 1 if
𝑑𝐿𝐷𝐴1 (𝒙) > 𝑑𝐿𝐷𝐴2 (𝒙), or equivalently, if

Δ𝐿𝐷𝐴12 = 𝑑𝐿𝐷𝐴1 (𝒙) − 𝑑𝐿𝐷𝐴2 (𝒙) > 0

Since 𝑑𝑘(𝒙) is the log-posterior (plus/minus identical constants) Δ𝐿𝐷𝐴 is in fact
the log-posterior odds of class 1 versus class 2.

The difference Δ𝐿𝐷𝐴12 is

Δ𝐿𝐷𝐴12︸︷︷︸
log posterior odds

= (𝝁1 − 𝝁2)
𝑇𝚺−1

(
𝒙 −

𝝁1 + 𝝁2
2

)
︸ ︷︷ ︸

log Bayes factor log 𝐵12

+ log
(
𝜋1
𝜋2

)
︸ ︷︷ ︸

log prior odds

Note that since we only consider simple non-composite models here the log-Bayes
factor is identical with the log-likelihood ratio!

The log Bayes factor log 𝐵12 is known as the weight of evidence in favour of 𝐹1
given 𝒙. The expected weight of evidence assuming 𝒙 is indeed from 𝐹1 is the
Kullback-Leibler discrimination information in favour of group 1, i.e. the KL
divergence of from distribution 𝐹2 to 𝐹1:

E𝐹1(log 𝐵12) = 𝐷KL(𝐹1 , 𝐹2) =
1
2 (𝝁1 − 𝝁2)

𝑇𝚺−1(𝝁1 − 𝝁2) =
1
2Ω

2

This yields, apart of a scale factor, a population version of the Hotelling 𝑇2

statistic defined as
𝑇2 = 𝑐2(𝝁̂1 − 𝝁̂2)

𝑇𝚺̂
−1(𝝁̂1 − 𝝁̂2)

where 𝑐 = (1
𝑛1
+ 1

𝑛2
)−1/2 =

√
𝑛𝜋1𝜋2 is a sample size dependent factor (for

SD(𝝁̂1 − 𝝁̂2)). 𝑇2 is a measure of fit of the underlying two-component mixture.

118

5 Supervised learning and classification

Using the whitening transformation with 𝒛 = 𝑾𝒙 and 𝑾𝑇𝑾 = 𝚺−1 we can
rewrite the log Bayes factor as

log 𝐵12 =

(
(𝝁1 − 𝝁2)

𝑇𝑾𝑇
) (

𝑾

(
𝒙 −

𝝁1 + 𝝁2
2

))
= 𝝎𝑇𝜹(𝒙)

i.e. as the product of two vectors:

• 𝜹(𝒙) is the whitened 𝒙 (centered around average means) and
• 𝝎 = (𝜔1 , . . . , 𝜔𝑑)𝑇 = 𝑾 (𝝁1 − 𝝁2) gives the weight of each whitened

component 𝜹(𝒙) in the log Bayes factor.

A large positive or negative value of 𝜔 𝑗 indicates that the corresponding whitened
predictor is relevant for choosing a class, whereas small values of 𝜔 𝑗 close to
zero indicate that the corresponding ZCA whitened predictor is unimportant.
Furthermore, 𝝎𝑇𝝎 =

∑𝑑
𝑗=1 𝜔

2
𝑗
= (𝝁1 −𝝁2)𝑇𝚺

−1(𝝁1 −𝝁2) = Ω2, i.e. the squared 𝜔2
𝑗

provide a component-wise decomposition of the overall fit Ω2.

Choosing ZCA-cor as whitening transformation with 𝑾 = 𝑷−1/2𝑽−1/2 we get

𝝎𝑍𝐶𝐴−𝑐𝑜𝑟 = 𝑷−1/2𝑽−1/2(𝝁1 − 𝝁2)

A better understanding of 𝝎𝑍𝐶𝐴−𝑐𝑜𝑟 is provided by comparing with the two-
sample 𝑡-statistic

𝝉̂ = 𝑐𝑽̂
−1/2(𝝁̂1 − 𝝁̂2)

With 𝝉 the population version of 𝝉̂ we can define

𝝉𝑎𝑑𝑗 = 𝑷−1/2𝝉 = 𝑐𝝎𝑍𝐶𝐴−𝑐𝑜𝑟

as correlation-adjusted 𝑡-scores (cat scores). With (𝝉̂𝑎𝑑𝑗)𝑇 𝝉̂𝑎𝑑𝑗 = 𝑇2 we can see
that the cat scores offer a component-wise decomposition of Hotelling’s 𝑇2.

Note the choice of ZCA-cor whitening is to ensure that the whitened components
are interpretable and stay maximally correlated to the original variables. However,
you may also choose for example PCA whitening in which case the 𝝎𝑇𝝎 provide
the variable importance for the PCA whitened variables.

For DDA, which assumes that correlations among predictors vanish, i.e. 𝑷 = 𝑰𝑑,
we get

Δ𝐷𝐷𝐴12 =

(
(𝝁1 − 𝝁2)

𝑇𝑽−1/2
)

︸ ︷︷ ︸
𝑐−1𝝉𝑇

(
𝑽−1/2

(
𝒙 −

𝝁1 + 𝝁2
2

))
︸ ︷︷ ︸

centered standardised predictor

+ log
(
𝜋1
𝜋2

)

Similarly as above, the 𝑡-score 𝝉 determines the impact of the standardised
predictor in Δ𝐷𝐷𝐴.

119

5 Supervised learning and classification

Consequently, in DDA we can rank predictors by the squared 𝑡-score. Recall that
in standard linear regression with uncorrelated predictors we can find the most
important predictors by ranking the squared marginal correlations – ranking by
(squared) 𝑡-scores in DDA is the exact analogy but for discrete response.

Multiple classes

For more than two classes we need to refer to the so-called pooled centroids
formulation of DDA and LDA (introduced by Tibshirani 2002).

The pooled centroid is given by 𝝁0 =
∑𝐾
𝑘=1 𝜋𝑘𝝁𝑘 — this is the centroid if there

would be only a single class. The corresponding probability (for a single class) is
𝜋0 = 1 and the distribution is called 𝐹0.

The LDA discriminant function for this “group 0” is

𝑑𝐿𝐷𝐴0 (𝒙) = 𝝁𝑇0𝚺
−1𝒙 − 1

2𝝁
𝑇
0𝚺
−1𝝁0

and the log posterior odds for comparison of group 𝑘 with the pooled group 0
is

Δ𝐿𝐷𝐴
𝑘

= 𝑑𝐿𝐷𝐴
𝑘
(𝒙) − 𝑑𝐿𝐷𝐴0 (𝒙)

= log 𝐵𝑘0 + log(𝜋𝑘)
= 𝝎𝑇

𝑘
𝜹𝑘(𝒙) + log(𝜋𝑘)

with
𝝎𝑘 = 𝑾 (𝝁𝑘 − 𝝁0)

and
𝜹𝑘(𝒙) = 𝑾 (𝒙 −

𝝁𝑘 + 𝝁0
2)

The expected log Bayes factor is

E𝐹𝑘 (log 𝐵𝑘0) = 𝐾𝐿(𝐹𝑘 | |𝐹0) =
1
2 (𝝁𝑘 − 𝝁0)

𝑇𝚺−1(𝝁𝑘 − 𝝁0) =
1
2Ω

2
𝑘

With scale factor 𝑐𝑘 = (1
𝑛𝑘
− 1

𝑛)−1/2 =

√
𝑛 𝜋𝑘

1−𝜋𝑘 (for SD(𝝁̂𝑘 − 𝝁̂0), with the minus
sign before 1

𝑛 due to correlation between 𝝁̂𝑘 and pooled mean 𝝁̂0) we get as
correlation-adjusted 𝑡-score for comparing mean of group 𝑘 with the pooled
mean

𝝉
𝑎𝑑𝑗

𝑘
= 𝑐𝑘𝝎

𝑍𝐶𝐴−𝑐𝑜𝑟
𝑘

.

For the two class case (𝐾 = 2) we get with 𝝁0 = 𝜋1𝝁1 + 𝜋2𝝁2 for the mean
difference (𝝁1 − 𝝁0) = 𝜋2(𝝁1 − 𝝁2) and with 𝑐1 =

√
𝑛 𝜋1
𝜋2

this yields

𝝉
𝑎𝑑𝑗

1 =
√
𝑛𝜋1𝜋2𝑷−1/2𝑽−1/2(𝝁1 − 𝝁2),

i.e. the exact same score as in the two-class setting.

120

5 Supervised learning and classification

5.7 Variable selection

In the previous we saw that in DDA the natural score for ranking features with
regard to their relevance in separating the classes is the (squared) 𝑡-score, and for
LDA a whitened version such as the squared correlation-adjusted 𝑡-score (based
on ZCA-cor whitening) may be used. Once such a ranking has been established
the question of a suitable cutoff arises, i.e. how many features need (or should)
be retained in a model.

For large and high-dimensional models feature selection can also be viewed
as a form of regularisation and also dimension reduction. Specifically, there
may be many variables/ features that do no contribute to the class prediction.
Despite having in principle no effect on the outcome the presence of these “null
variables” can nonetheless deterioriate (sometimes dramatically!) the overall
predictive accuracy of a trained predictor, because they add noise and increase
the model dimension. Therefore, variables that do not contribute to prediction
should be filtered out in order to be able to construct good prediction models
and classifiers.

Choosing a threshold by multiple testing using false discovery
rates

The most simple way to determine a cutoff threshold is to use a standard
technique for multiple testing.

For each predictor variable 𝑥1 , . . . , 𝑥𝑑 we have a corresponding test statistic
measuring the influence of this variable on the response, for example the the
𝑡-scores and related statistics discussed in the previous section. In addition to
providing an overall ranking the set of all these statistics can be used to determine
a suitable cutoff by trying to separate two populations of predictor variables:

• “Null” variables that do not contribute to prediction
• “Alternative” variables that are linked to prediction

This can be done as follows:

• The distribution of the observed test statistics 𝑧𝑖 is assumed to follow
a two-component mixture where 𝐹0(𝑧) and 𝐹𝐴(𝑧) are the distributions
corresponding to the null and the alternative, 𝑓0(𝑧) and 𝑓𝑎(𝑧) the densities,
and 𝜋0 and 𝜋𝐴 = 1 − 𝜋0 are the weights:

𝑓 (𝑧) = 𝜋0 𝑓0(𝑧) + (1 − 𝜋0) 𝑓𝑎(𝑧)

• The null model is typically from a parametric family (e.g. normal around
zero and with a free variance parameter) whereas the alternative is often
modelled nonparametrically.

121

5 Supervised learning and classification

• After fitting the mixture model, often assuming some additional constraints
to make the mixture identifiable, one can compute false discovery rates
(FDR) as follows:

Local FDR:

f̂dr(𝑧𝑖) = P̂r(null|𝑧𝑖) =
𝜋̂0 𝑓0(𝑧𝑖)
𝑓 (𝑧𝑖)

Tail-area-based FDR (=𝑞-value):

F̂dr(𝑧𝑖) = P̂r(null|𝑍 > 𝑧𝑖) =
𝜋̂0𝐹̂0(𝑧𝑖)
𝐹̂(𝑧𝑖)

Note these are essentially 𝑝-values adjusted for multiple testing (by a
variant of the Benjamini-Hochberg method).

By thresholding false discovery rates it is possible to identify those variables
that clearly belong to each of the two groups but also those features that cannot
easily be discriminated to fall into either group:

• “alternative” variables have low local FDR, e.g., f̂dr(𝑧𝑖) ≤ 0.2
• “null” variables have high local FDR, e.g. f̂dr(𝑧𝑖) ≥ 0.8
• features that cannot easily classified as null or alternative, e.g. 0.2 <

f̂dr(𝑧𝑖) < 0.8

For feature selection in prediction settings we generally aim to remove only those
variable that clearly belong to the null group, leaving all others in the model.

Variable selection using cross-validation

A conceptually simple but computationally more expensive approach to variable
selection is to estimate the predicion error of the same type of predictor but with
different sets of predictors using cross-validation, and then choosing a predictor
that achieves good prediction accuracy while using only a small number of
featurs.

This is a method that works very well in practise as is demonstrated in a number
of problems in the worksheets.

122

6 Multivariate dependencies

6.1 Measuring the linear association between two sets
of random variables

Aim

The linear association between two scalar random variables 𝑥 and 𝑦 is measured
by the correlation Cor(𝑥, 𝑦) = 𝜌.

In this chapter we now would like to explore how to generalise correlation to the
case of two random vectors. Specifically, we would like to find a scalar measure
of association between two random vectors (or equivalently two sets of random
variables) 𝒙 = (𝑥1 , . . . , 𝑥𝑝)𝑇 and 𝒚 = (𝑦1 , . . . , 𝑦𝑞)𝑇 that contains correlation and
also multiple correlation as special case.

We assume a joint correlation matrix

𝑷 =

(
𝑷𝒙 𝑷𝒙𝒚

𝑷𝒚𝒙 𝑷𝒚

)
with cross-correlation matrix 𝑷𝒙𝒚 = 𝑷𝑇𝒚𝒙 and the within-group group correlations
𝑷𝒙 and 𝑷𝒚. If the cross-correlations vanish, 𝑷𝒙𝒚 = 0, then the two random vectors
are uncorrelated, and the joint correlation matrix becomes a diagonal block
matrix

𝑷indep =

(
𝑷𝒙 0
0 𝑷𝒚

)
.

To characterise the total association between 𝒙 and 𝒚 we are looking for a scalar
quantity measuring the divergence of a distribution assuming the general joint
correlation matrix 𝑷 from a distribution assuming the joint correlation matrix
𝑷indep for uncorrelated 𝒙 and 𝒚.

Known special cases

Ideally, in case of an univariate 𝑦 but multivariate 𝒙 this measure should reduce
to the squared multiple correlation or coefficient of determination

MCor(𝒙 , 𝑦)2 = 𝑷𝑦𝒙𝑷−1
𝒙 𝑷𝒙𝑦

123

6 Multivariate dependencies

This is well-known in linear regression to describe the strength of the total linear
association between the predictors 𝒙 = (𝑥1 , . . . , 𝑥𝑝)𝑇 and the response 𝑦.

To derive the squared multiple correlation we may proceed as follows. First we
whiten the random vector 𝒙 resulting in 𝒛𝒙 = 𝑾 𝒙𝒙 = 𝑸𝒙𝑷

−1/2
𝒙 𝑽−1/2

𝒙 𝒙 where 𝑸𝒙
is an orthogonal matrix. The correlations between each component in 𝒛𝒙 and
the response 𝑦 are then

𝝎 = Cor(𝒛𝒙 , 𝑦) = 𝑸𝒙𝑷
−1/2
𝒙 𝑷𝒙𝑦

As Var(𝒛𝒙) = 𝑰 and thus the components in 𝒛𝒙 are uncorrelated we can simply
add up the squared individual correlations to get as total association measure

𝝎𝑇𝝎 =
∑
𝑖

𝜔2
𝑖 = 𝑷𝑦𝒙𝑷−1

𝒙 𝑷𝒙𝑦

Note that the particular choice of the orthogonal matrix 𝑸𝒙 for whitening 𝒙 is
not relevant for the squared multiple correlation.

Note that if the cross-correlations vanish (𝑷𝒙𝑦 = 0) then MCor(𝒙 , 𝑦)2 = 0. If the
correlation between the predictors vanishes (𝑷𝒙 = 𝑰) then MCor(𝒙 , 𝑦)2 =

∑
𝑖 𝜌

2
𝑦𝑥𝑖

,
i.e. it is the sum of the squared cross-correlations.

If there is only a single predictor 𝑥 then 𝑷𝑥𝑦 = 𝜌 and 𝑷𝑥 = 1 and the squared
multiple correlation reduces to the squared Pearson correlation

Cor(𝑥, 𝑦)2 = 𝜌2 .

6.2 Canonical Correlation Analysis (CCA) aka CCA
whitening

Canonical correlation analysis was invented by Harald Hotelling in 1936 1. CCA
aims to characterise the linear dependence between to random vectors 𝒙 and 𝒚
by a set of canonical correlations 𝜆𝑖 .

CCA works by simultaneously whitening the two random vectors 𝒙 and 𝒚 where
the whitening matrices are chosen in such a way that the cross-correlation matrix
between the resulting whitened variables becomes diagonal, and the elements
on the diagonal correspond to the canonical correlations.

𝒙 =
©­­«
𝑥1
...
𝑥𝑝

ª®®¬
Dimension 𝑝

𝒚 =
©­­«
𝑦1
...
𝑦𝑞

ª®®¬
Dimension 𝑞

Var(𝒙) = 𝚺𝒙 = 𝑽 1/2
𝒙 𝑷𝒙𝑽

1/2
𝒙

Var(𝒚) = 𝚺𝒚 = 𝑽 1/2
𝒚 𝑷𝒚𝑽

1/2
𝒚

1Hotelling, H. 1936. Relations between two sets of variates. Biometrika 28:321–377. https:
//doi.org/10.1093/biomet/28.3-4.321

124

https://doi.org/10.1093/biomet/28.3-4.321
https://doi.org/10.1093/biomet/28.3-4.321

6 Multivariate dependencies

Whitening of 𝒙:
Whitening of 𝒚:

𝒛𝒙 = 𝑾 𝒙𝒙 = 𝑸𝒙𝑷
−1/2
𝒙 𝑽−1/2

𝒙 𝒙

𝒛𝒚 = 𝑾 𝒚𝒚 = 𝑸𝒚𝑷
−1/2
𝒚 𝑽−1/2

𝒚 𝒚

(note we use the correlation-based form of 𝑾)

Cross-correlation between 𝒛𝒚 and 𝒛𝒚:

Cor(𝒛𝒙 , 𝒛𝒚) = 𝑸𝒙𝑲𝑸𝑇
𝒚

with 𝑲 = 𝑷−1/2
𝒙 𝑷𝒙𝒚𝑷

−1/2
𝒚 .

Idea: we can choose suitable orthogonal matrices 𝑸𝒙 and 𝑸𝒚 by putting a
structural constraint on the cross-correlation matrix.

CCA: we aim for a diagonal Cor(𝒛𝒙 , 𝒛𝒚) so that each component in 𝒛𝒙 only
influences one (the corresponding) component in 𝒛𝒚.

Motivation: pairs of “modules” represented by components of 𝒛𝒙 and 𝒛𝒚
influencing each other (and not any other module).

𝒛𝒙 =

©­­­­«
𝑧𝑥1
𝑧𝑥2
...
𝑧𝑥𝑝

ª®®®®¬
𝒛𝒚 =

©­­­­«
𝑧
𝑦

1
𝑧
𝑦

2
...

𝑧
𝑦
𝑞

ª®®®®¬
Cor(𝒛𝒙 , 𝒛𝒚) =

©­­«
𝜆1 . . . 0
...

...
0 . . . 𝜆𝑚

ª®®¬
where 𝜆𝑖 are the canonical correlations and 𝑚 = min(𝑝, 𝑞).

How to make cross-correlation matrix Cor(𝒛𝒙 , 𝒛𝒚) diagonal?

• Use Singular Value Decomposition (SVD) of matrix 𝑲:

𝑲 = (𝑸CCA
𝒙)𝑇𝚲𝑸CCA

𝒚

where 𝚲 is the diagonal matrix containing the singular values of 𝑲
• This yields orthogonal matrices 𝑸CCA

𝒙 and 𝑸CCA
𝒚 and thus the desired

whitening matrices 𝑾CCA
𝒙 and 𝑾CCA

𝒚

• As a result Cor(𝒛𝒙 , 𝒛𝒚) = 𝚲 i.e. singular values 𝜆𝑖 of 𝑲 are the desired
canonical correlations!

125

6 Multivariate dependencies

−→ 𝑸CCA
𝒙 and 𝑸CCA

𝒚 are determined by the diagonality constraint (and note
these are different to the other previously discussed whitening methods).

Note that the signs of corresponding in columns in 𝑸CCA
𝒙 and 𝑸CCA

𝒚 are not
identified. Traditionally, in an SVD the signs are chosen such that the singular
values are positive. However, if we impose positive-diagonality on 𝑸CCA

𝒙 and
𝑸CCA

𝒚 , and thus positive-diagonality on the cross-correlations 𝚿𝒙 and 𝚿𝒚, then
the canonical correlations may take on both positive and negative values.

Related methods

• O2PLS: similar to CCA but using orthogonal projections rather than
whitening.

• Vector correlation: aggregates the squared canonical correlations into a
single overall measure (see below).

6.3 Vector correlation and RV coefficient

Vector alienation coefficient

In his 1936 paper introducing canonical correlation analysis Hotelling also
proposed the vector alienation coefficient defined as

𝑎(𝒙 , 𝒚) = det(𝑷)
det(𝑷indep)

=
det(𝑷)

det(𝑷𝒙) det(𝑷𝒚)

With𝑲 = 𝑷−1/2
𝒙 𝑷𝒙𝒚𝑷

−1/2
𝒚 the vector alienation coefficient can be written (using the

Weinstein-Aronszajn determinant identity and the formula for the determinant
of block-structured matrices) as

𝑎(𝒙 , 𝒚) = det
(
𝑰𝑝 − 𝑲𝑲𝑇

)
= det

(
𝑰𝑞 − 𝑲𝑇𝑲

)
=

𝑚∏
𝑖=1
(1 − 𝜆2

𝑖)

where the 𝜆𝑖 are the singular values of 𝑲, i.e. the canonical correlations for
the pair 𝒙 and 𝒚. Therefore, the vector alienation coefficient is computed as a
summary statistic of the canonical correlations.

126

6 Multivariate dependencies

If 𝑷𝒙𝒚 = 0 und thus 𝒙 and 𝒚 are uncorrelated then 𝑷 = 𝑷indep and thus by con-
struction the vector alienation coefficient 𝑎(𝒙 , 𝒚) = 1. Hence, the vector alienation
coefficient is itself not a generalisation of the squared multiple correlation to the
case of two random vectors as such a quantity should vanish in this case.

Rozeboom vector correlation

Instead, Rozeboom (1965) 2 proposed to use as squared vector correlation the
complement of the vector alienation coefficient

VCor(𝒙 , 𝒚)2 = 𝜌2
𝒙𝒚 = 1 − 𝑎(𝒙 , 𝒚)

= 1 − det
(
𝑰𝑝 − 𝑲𝑲𝑇

)
= 1 − det

(
𝑰𝑞 − 𝑲𝑇𝑲

)
= 1 −

𝑚∏
𝑖=1
(1 − 𝜆2

𝑖)

If 𝑷𝒙𝒚 = 0 then 𝑲 = 0 and hence VCor(𝒙 , 𝒚)2 = 0.

Moreover, if either 𝑝 = 1 or 𝑞 = 1 the squared vector correlation reduces to the
corresponding squared multiple correlation, which in turn for both 𝑝 = 1 and
𝑞 = 1 becomes the squared Pearson correlation.

You can find the derivation in Example Sheet 10.

Thus, Rozeboom’s vector correlation indeed generalises both Pearson correlation
and the multiple correlation coefficient.

RV coefficient

Another common approach to measure association between two random vectors
is the RV coefficient introduced by Robert and Escoufier in 1976 as

𝑅𝑉(𝒙 , 𝒚) =
Tr(𝚺𝒙𝒚𝚺𝒚𝒙)√
Tr(𝚺2

𝒙)Tr(𝚺2
𝒚)

The main advantage of the RV coefficient is that it is easier to compute than the
Rozeboom vector correlation as it uses the matrix trace rather than the matrix
determinant.

2Rozeboom, W. W. 1965. Linear correlations between sets of variables. Psychometrika 30:57–71.
https://doi.org/10.1007/BF02289747

127

https://en.wikipedia.org/wiki/RV_coefficient
https://doi.org/10.1007/BF02289747

6 Multivariate dependencies

For 𝑞 = 𝑝 = 1 the RV coefficient reduces to the squared correlation. However,
the RV coefficient does not reduce to the multiple correlation coefficient for 𝑞 = 1
and 𝑝 > 1, and therefore the RV coefficient cannot be considered a coherent
generalisation of Pearson and multiple correlation to the case when 𝒙 and 𝒚 are
random vectors.

See also Worksheet 10.

6.4 Limits of linear models and correlation

Correlation measures only linear dependence

Linear models and measures of linear association (correlation) are very effective
tools. However, it is important to recognise their limits especially when modelling
nonlinear relationships.

A very simple demonstration of this is given by the following example. Assume
𝑥 is a normally distributed random variable with 𝑥 ∼ 𝑁(0, 𝜎2)with mean zero
and some variance 𝜎2. From 𝑥 we construct a second random variable 𝑦 = 𝑥2.
Despite that 𝑦 is a function of 𝑥 with no extra added noise it is easy to show that
Cov(𝑥, 𝑦) = Cov(𝑥, 𝑥2) = 0. Hence, the correlation Cor(𝑥, 𝑦) = Cor(𝑥, 𝑥2) = 0
also vanishes.

This can be empirically verified by simulating data from a normal distribution
(here with 𝜎2 = 4) and estimating the correlation:

x=rnorm(1000000, mean=0, sd=2)
y = xˆ2
cor(x,y)

[1] 0.002112311

Thus, correlation is zero even though 𝑥 and 𝑦 are fully dependent variables.
This is because correlation only measures linear association, and the relationship
between 𝑥 and 𝑦 is nonlinear.

Anscombe datasets

Using correlation (and more generally linear models) blindly can easily hide the
underlying complexity of the analysed data. This is demonstrated by the classic
“Anscombe quartet” of datasets presented in his 1973 paper 3.

3Anscombe, F. J. 1973. Graphs in statistical analysis. The American Statistician 27:17–21. http:
//doi.org/10.1080/00031305.1973.10478966

128

http://doi.org/10.1080/00031305.1973.10478966
http://doi.org/10.1080/00031305.1973.10478966

6 Multivariate dependencies

0 5 10 15 20

0
5

10
15

a

x

y

0 5 10 15 20
0

5
10

15

b

x

y

0 5 10 15 20

0
5

10
15

c

x

y

0 5 10 15 20

0
5

10
15

d

x

y

Figure 6.1: The Anscombe (1973) quartet of datasets.

129

6 Multivariate dependencies

As evident from the scatter plots (Figure 6.1) the relationship between the two
variables 𝑥 and 𝑦 is very different in the four cases. However, intriguingly all four
data sets share exactly the same linear characteristics and summary statistics:

• Means 𝑚𝑥 = 9 and 𝑚𝑦 = 7.5
• Variances 𝑠2

𝑥 = 11 and 𝑠2
𝑦 = 4.13

• Correlation 𝑟 = 0.8162
• Linear model fit with intercept 𝑎 = 3.0 and slope 𝑏 = 0.5

Thus, in actual data analysis it is always a good idea to inspect the data visually
to get a first impression whether using a linear model makes sense.

In the above only data set “a” follows a linear model. Data set “b” represents a
quadratic relationship. Data set “c” is linear but with an outlier that disturbs
the linear relationship. Finally data set “d” also contains an outlier but also
represent a case where 𝑦 is (apart from the outlier) is not dependent on 𝑥.

In the Worksheet 10 a more recent version of the Anscombe quartet will be
analysed in the form of the “datasauRus” dozen - 13 highly nonlinear datasets
that all share the same linear characteristics.

6.5 Mutual information as generalisation of correlation

Overview

A more general way than the vector correlation to measure multivariate associa-
tion is mutual information (MI) which not only covers linear but also non-linear
associations.

As we will see below the Rozeboom vector correlation arises naturally when
computing the MI for the multivariate normal distribution, hence MI also
recovers well-known measures of linear association (including multiple correla-
tion and simple correlation), thus truly generalising correlation as measure of
association.

Definition of mutual information

Recall the definition of Kullback-Leibler (KL) divergence between two distribu-
tions:

𝐷KL(𝐹, 𝐺) := E𝐹 log
(
𝑓 (𝒙)
𝑔(𝒙)

)
Here 𝐹 plays the role of the reference distribution and 𝐺 is an approximating
distribution, with 𝑓 and 𝑔 being the corresponding density functions (see

130

6 Multivariate dependencies

MATH27720 Statistics 2 for more details about the KL divergence and its
properties).

The Mutual Information (MI) between two random variables 𝒙 and 𝒚 is defined as
the KL divergence between the corresponding joint distribution and the product
distribution:

MI(𝒙 , 𝒚) = 𝐷KL(𝐹𝒙 ,𝒚 , 𝐹𝒙𝐹𝒚) = E𝐹𝒙 ,𝒚 log
(
𝑓 (𝒙 , 𝒚)
𝑓 (𝒙) 𝑓 (𝒚)

)
.

Thus, MI measures how well the joint distribution can be approximated by the
product distribution (which would be the appropriate joint distribution if 𝒙 and
𝒚 are independent). Since MI is an application of KL divergence is shares all
its properties. In particular, MI(𝒙 , 𝒚) = 0 implies that the joint distribution and
product distributions are the same. Hence the two random variables 𝒙 and 𝒚 are
independent if the mutual information vanishes.

Mutual information between two normal scalar variables

The KL divergence between two multivariate normal distributions 𝐹ref and 𝐹
is

𝐷KL(𝐹ref , 𝐹) =
1
2

{
(𝝁 − 𝝁ref)

𝑇𝚺−1(𝝁 − 𝝁ref) + Tr
(
𝚺−1𝚺ref

)
− log det

(
𝚺−1𝚺ref

)
− 𝑑

}
This allows compute the mutual information MInorm(𝑥, 𝑦) between two univariate
random variables 𝑥 and 𝑦 that are correlated and assumed to be jointly bivariate
normal. Let 𝒛 = (𝑥, 𝑦)𝑇 . The joint bivariate normal distribution is characterised
by the mean E(𝒛) = 𝝁 = (𝜇𝑥 , 𝜇𝑦)𝑇 and the covariance matrix

𝚺 =

(
𝜎2
𝑥 𝜌 𝜎𝑥𝜎𝑦

𝜌 𝜎𝑥𝜎𝑦 𝜎2
𝑦

)
where Cor(𝑥, 𝑦) = 𝜌. If 𝑥 and 𝑦 are independent then 𝜌 = 0 and

𝚺indep =

(
𝜎2
𝑥 0

0 𝜎2
𝑦

)
.

The product

𝑨 = 𝚺−1
indep𝚺 =

(
1 𝜌

𝜎𝑦
𝜎𝑥

𝜌 𝜎𝑥
𝜎𝑦

1

)
has trace Tr(𝑨) = 2 and determinant det(𝑨) = 1 − 𝜌2.

131

https://strimmerlab.github.io/publications/lecture-notes/MATH27720-stats2/

6 Multivariate dependencies

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

ρ

M
I

Figure 6.2: Relationship between correlation and mutual information.

With this the mutual information between 𝑥 and 𝑦 can be computed as

MInorm(𝑥, 𝑦) = 𝐷KL(𝑁(𝝁,𝚺), 𝑁(𝝁,𝚺indep))

=
1
2

{
Tr

(
𝚺−1

indep𝚺
)
− log det

(
𝚺−1

indep𝚺
)
− 2

}
=

1
2

{
Tr(𝑨) − log det(𝑨) − 2

}
= −1

2 log(1 − 𝜌2)

≈ 𝜌2

2

Thus MInorm(𝑥, 𝑦) is a one-to-one function of the squared correlation 𝜌2 between
𝑥 and 𝑦 (see Figure 6.2).

132

6 Multivariate dependencies

For small values of |𝜌| < 0.5 around zero the relationship between mutual
information and correlation is quadratic, 2 MInorm(𝑥, 𝑦) ≈ 𝜌2 (dotted line in
Figure 6.2).

Mutual information between two normally distributed random
vectors

The mutual information MInorm(𝒙 , 𝒚) between two multivariate normal random
vector 𝒙 and 𝒚 can be computed in a similar fashion as in the bivariate case.

Let 𝒛 = (𝒙 , 𝒚)𝑇 with dimension 𝑑 = 𝑝 + 𝑞. The joint multivariate normal
distribution is characterised by the mean E(𝒛) = 𝝁 = (𝝁𝑇𝑥 , 𝝁𝑇𝑦)𝑇 and the covariance
matrix

𝚺 =

(
𝚺𝒙 𝚺𝒙𝒚

𝚺𝑇𝒙𝒚 𝚺𝒚

)
.

If 𝒙 and 𝒚 are independent then 𝚺𝒙𝒚 = 0 and

𝚺indep =

(
𝚺𝒙 0
0 𝚺𝒚

)
.

The product

𝑨 = 𝚺−1
indep𝚺 =

(
𝑰𝑝 𝚺−1

𝒙 𝚺𝒙𝒚

𝚺−1
𝒚 𝚺𝒚𝒙 𝑰𝑞

)
=

(
𝑰𝑝 𝑽−1/2

𝒙 𝑷−1
𝒙 𝑷𝒙𝒚𝑽

1/2
𝒚

𝑽−1/2
𝒚 𝑷−1

𝒚 𝑷𝒚𝒙𝑽
1/2
𝒙 𝑰𝑞

)
has trace Tr(𝑨) = 𝑑 and determinant

det(𝑨) = det(𝑰𝑝 − 𝑲𝑲𝑇)
= det(𝑰𝑞 − 𝑲𝑇𝑲)

with 𝑲 = 𝑷−1/2
𝒙 𝑷𝒙𝒚𝑷

−1/2
𝒚 . With 𝜆1 , . . . ,𝜆𝑚 the singular values of 𝑲 (i.e. the

canonical correlations between 𝒙 and 𝒚) we get

det(𝑨) =
𝑚∏
𝑖=1
(1 − 𝜆2

𝑖)

133

6 Multivariate dependencies

The mutual information between 𝒙 and 𝒚 is then

MInorm(𝒙 , 𝒚) = 𝐷KL(𝑁(𝝁,𝚺), 𝑁(𝝁,𝚺indep))

=
1
2

{
Tr

(
𝚺−1

indep𝚺
)
− log det

(
𝚺−1

indep𝚺
)
− 𝑑

}
=

1
2

{
Tr(𝑨) − log det(𝑨) − 𝑑

}
= −1

2

𝑚∑
𝑖=1

log(1 − 𝜆2
𝑖)

= −1
2 log

(
𝑚∏
𝑖=1
(1 − 𝜆2

𝑖)
)

= −1
2 log

(
1 − VCor(𝒙 , 𝒚)2

)
From the above we see that MInorm(𝒙 , 𝒚) is simply the sum of the MIs resulting
from the individual canonical correlations 𝜆𝑖 with the same functional link
between the MI and the squared correlation as in the bivariate normal case.

Furthermore we obtain that

MInorm(𝒙 , 𝒚) = −
1
2 log(1 − VCor(𝒙 , 𝒚)2) ≈ 1

2VCor(𝒙 , 𝒚)2

Thus, in the multivariate case MInorm(𝒙𝒚) has again exactly the same functional
relationship with the squared vector correlation VCor(𝒙 , 𝒚)2 as the MInorm(𝑥, 𝑦)
for two univariate variables with squared Pearson correlation 𝜌2.

Thus, Rozeboom’s vector correlation emerges as a special case of mutual infor-
mation computed for jointly multivariate normally distributed variables.

Using MI for variable selection

A very general way to write down a model predicting 𝒚 by 𝒙 is as follows:

• 𝐹𝒚 |𝒙 is a conditional distribution of 𝒚 given predictors 𝒙 and
• 𝐹𝒚 is the marginal distribution of 𝒚 without predictors.

Typically 𝐹𝒚 |𝒙 is a complex model and 𝐹𝒚 a simple model (no predictors). Note
that the predictive model can assume any form (incl. nonlinear).

Intriguingly the expected KL divergence between the conditional and the
marginal distribution

E𝐹𝒙 𝐷KL(𝐹𝒚 |𝒙 , 𝐹𝒚) = MI(𝒙 , 𝒚)

134

6 Multivariate dependencies

is equal to mutual information between 𝒙 and 𝒚! Thus MI(𝒙 , 𝒚) measures the
impact of conditioning. If the MI is small (i.e. close to zero) then 𝒙 is not useful
in predicting 𝒚.

The above identity can be verified as follows. The KL divergence between 𝐹𝒚 |𝒙
and 𝐹𝒚 is given by

𝐷KL(𝐹𝒚 |𝒙 , 𝐹𝒚) = E𝐹𝒚 |𝒙 log
(
𝑓 (𝒚 |𝒙)
𝑓 (𝒚)

)
,

which is a random variable since it depends on 𝒙. Taking the expectation with
regard to 𝐹𝒙 (the distribution of 𝒙) we get

E𝐹𝒙𝐷KL(𝐹𝒚 |𝒙 , 𝐹𝒚) = E𝐹𝒙E𝐹𝒚 |𝒙 log
(
𝑓 (𝒚 |𝒙) 𝑓 (𝒙)
𝑓 (𝒚) 𝑓 (𝒙)

)
= E𝐹𝒙 ,𝒚 log

(
𝑓 (𝒙 , 𝒚)
𝑓 (𝒚) 𝑓 (𝒙)

)
= MI(𝒙 , 𝒚) .

Because of this link of MI with conditioning the MI between response and
predictor variables is often used for variable and feature selection in general
models.

Other measures of general dependence

In principle, MI can be computed for any distribution and model and thus
applies to both normal and non-normal models, and to both linear and nonlinear
relationships.

Besides mutual information there are others measures of general dependence
between multivariate random variables.

Two important measures to capture nonlinear association that have been proposed
in recent literature are

i) distance correlation and
ii) the maximal information coefficient (MIC and MIC𝑒).

6.6 Graphical models

Purpose

Graphical models combine features from

• graph theory

135

https://en.wikipedia.org/wiki/Distance_correlation
https://en.wikipedia.org/wiki/Maximal_information_coefficient

6 Multivariate dependencies

• probability
• statistical inference

The literature on graphical models is huge, we focus here only on two commonly
used models:

• DAGs (directed acyclic graphs), all edges are directed, no directed loops
(i.e. no cycles, hence “acyclic”)

• GGM (Gaussian graphical models), all edges are undirected

Graphical models provide probabilistic models for trees and for networks, with
random variables represented by nodes in the graphs, and branches representing
conditional dependencies. In this regard they generalise both the tree-based
clustering approaches as well as the probabilistic non-hierarchical methods
(GMMs).

However, the class of graphical models goes much beyond simple unsupervised
learning models. It also includes regression, classification, time series models
etc. For an overview see, e.g., the reference book by Murphy (2023).

Basic notions from graph theory

• Mathematically, a graph 𝐺 = (𝑉, 𝐸) consists of a a set of vertices or nodes
𝑉 = {𝑣1 , 𝑣2 , . . .} and a set of branches or edges 𝐸 = {𝑒1 , 𝑒2 , . . .}.

• Edges can be undirected or directed.
• Graphs containing only directed edges are directed graphs, and likewise

graphs containing only undirected edges are called undirected graphs.
Graphs containing both directed and undirected edges are called partially
directed graphs.

• A path is a sequence of of vertices such that from each of its vertices there
is an edge to the next vertex in the sequence.

• A graph is connected when there is a path between every pair of vertices.
• A cycle is a path in a graph that connects a node with itself.
• A connected graph with no cycles is a called a tree.
• The degree of a node is the number of edges it connects with. If edges are

all directed the degree of a node is the sum of the in-degree and out-degree,
which counts the incoming and outgoing edges, respectively.

• External nodes are nodes with degree 1. In a tree-structured graph these
are also called leaves.

Some notions are only relevant for graphs with directed edges:

• In a directed graph the parent node(s) of vertex 𝑣 is the set of nodes pa(𝑣)
directly connected to 𝑣 via edges directed from the parent node(s) towards
𝑣.

• Conversely, 𝑣 is called a child node of pa(𝑣). Note that a parent node can
have several child nodes, so 𝑣 may not be the only child of pa(𝑣).

136

6 Multivariate dependencies

• In a directed tree graph, each node has only a single parent, except for one
particular node that has no parent at all (this node is called the root node).

• A DAG, or directed acyclic graph, is a directed graph with no directed
cycles. A (directed) tree is a special version of a DAG.

Probabilistic graphical models

A graphical model uses a graph to describe the relationship between random
variables 𝑥1 , . . . , 𝑥𝑑. The variables are assumed to have a joint distribution with
density/mass function 𝑝(𝑥1 , 𝑥2 , . . . , 𝑥𝑑). Each random variable is placed in a
node of the graph.

The structure of the graph and the type of the edges connecting (or not connecting)
any pair of nodes/variables is used to describe the conditional dependencies,
and to simplify the joint distribution.

Thus, a graphical model is in essence a visualisation of the joint distribution
using structural information from the graph helping to understand the mutual
relationship among the variables.

Directed graphical models

In a directed graphical model the graph structure is assumed to be a DAG (or a
directed tree, which is also a DAG).

Then the joint probability distribution can be factorised into a product of conditional
probabilities as follows:

𝑝(𝑥1 , 𝑥2 , . . . , 𝑥𝑑) =
∏
𝑖

𝑝(𝑥𝑖 |pa(𝑥𝑖))

Thus, the overall joint probability distribution is specified by local conditional
distributions and the graph structure, with the directions of the edges providing
the information about parent-child node relationships.

Probabilistic DAGs are also known as “Bayesian networks”.

Idea: by trying out all possible trees/graphs and fitting them to the data using
maximum likelihood (or Bayesian inference) we hope to be able identify the
graph structure of the data-generating process.

Challenges

1) in the tree/network the internal nodes are usually not known, and thus
have to be treated as latent variables.

Answer: To impute the states at these nodes we may use the EM algorithm as in
GMMs (which in fact can be viewed as graphical models, too!).

137

6 Multivariate dependencies

2) If we treat the internal nodes as unknowns we need to marginalise over
the internal nodes, i.e. we need to sum / integrate over all possible set of
states of the internal nodes!

Answer: This can be handled very effectively using the Viterbi algorithm which
is essentially an application of the generalised distributive law. In particular
for tree graphs this means that the summations occurs locally at each node and
propagates recursively across the tree.

3) In order to infer the tree or network structure the space of all trees or
networks need to be explored. This is not possible in an exhaustive fashion
unless the number of variables in the tree is very small.

Answer: Solution: use heuristic approaches for tree and network search!

4) Furthermore, there exist so-called “equivalence classes” of graphical mod-
els, i.e. sets of graphical models that share the same joint probability
distribution. Thus, all graphical models within the same equivalence class
cannot be distinguished from observational data, even with infinite sample
size!

Answer: this is a fundamental mathematical problem of identifiability so there
is now way around this issue. However, on the positive side, this also implies
that the search through all graphical models can be restricted to finding the
so-called “essential graph” (e.g. Anderson et al. 1997. https://projecteuclid.or
g/euclid.aos/1031833662).

Conclusion: using directed graphical models for structure discovery is very
time consuming and computationally demanding for anything but small toy
data sets.

This also explains why heuristic and non-model based approaches (such as
hierarchical clustering) are so popular even though full statistical modelling is in
principle possible.

Undirected graphical models

Another class of graphical models are models that contain only undirected
edges. These undirected graphical models are used to represent the pairwise
conditional (in)dependencies among the variables in the graph, and the resulting
model is therefore also called conditional independence graph.

Suppose 𝑥𝑖 and 𝑥 𝑗 are two random variables/nodes from {𝑥1 , . . . , 𝑥𝑑}, and the
set {𝑥𝑘} represents all other variables/nodes with 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗. Then the
variables 𝑥𝑖 and 𝑥 𝑗 are conditionally independent given all the other variables
{𝑥𝑘}

𝑥𝑖 ⊥⊥ 𝑥 𝑗 |{𝑥𝑘}

138

https://projecteuclid.org/euclid.aos/1031833662
https://projecteuclid.org/euclid.aos/1031833662

6 Multivariate dependencies

if the joint probability density for all variables {𝑥1 , . . . , 𝑥𝑑} factorises as

𝑝(𝑥1 , 𝑥2 , . . . , 𝑥𝑑) = 𝑝(𝑥𝑖 |{𝑥𝑘}) 𝑝(𝑥 𝑗 |{𝑥𝑘}) 𝑝({𝑥𝑘}) .

or equivalently

𝑝(𝑥𝑖 , 𝑥 𝑗 , . . . , 𝑥𝑑)
𝑝({𝑥𝑘})

= 𝑝(𝑥𝑖 , 𝑥 𝑗 |{𝑥𝑘}) = 𝑝(𝑥𝑖 |{𝑥𝑘}) 𝑝(𝑥 𝑗 |{𝑥𝑘}) .

In the corresponding conditional independence graph note there is no edge
between 𝑥𝑖 and 𝑥 𝑗 , as in such a graph missing edges correspond to conditional
independence between the respective non-connected nodes.

Gaussian graphical model

Assuming that 𝑥1 , . . . , 𝑥𝑑 are jointly normally distributed, i.e. 𝒙 ∼ 𝑁(𝝁,𝚺), it turns
out that it is straightforward to identify the pairwise conditional independencies.
From 𝚺 we first obtain the precision matrix

𝛀 = (𝜔𝑖 𝑗) = 𝚺−1 .

Crucially, it can be shown that 𝜔𝑖 𝑗 = 0 implies 𝑥𝑖 ⊥⊥ 𝑥 𝑗 | {𝑥𝑘}. Hence, from
the precision matrix 𝛀 we can directly read off all the pairwise conditional
independencies among the variables 𝑥1 , 𝑥2 , . . . , 𝑥𝑑.

Often, the covariance matrix 𝚺 is dense (few zeros) but the corresponding
precision matrix 𝛀 is sparse (many zeros).

The conditional independence graph computed for normally distributed variables
is called a Gaussian graphical model, or short GGM. A further alternative name
commonly used is covariance selection model.

Related quantity: partial correlation

From the precision matrix 𝛀 we can also compute the matrix of pairwise full
conditional partial correlations:

𝜌𝑖 𝑗 |rest = −
𝜔𝑖 𝑗

√
𝜔𝑖𝑖𝜔 𝑗 𝑗

which is essentially the standardised precision matrix (similar to correlation but
with an extra minus sign!)

The partial correlations lie in the range between -1 and +1, 𝜌𝑖 𝑗 |rest ∈ [−1, 1], just
like standard correlations.

139

6 Multivariate dependencies

If 𝒙 is multivariate normal then 𝜌𝑖 𝑗 |rest = 0 indicates conditional independence
between 𝑥𝑖 and 𝑥 𝑗 .

Regression interpretation: partial correlation is the correlation that remains between
the two variables if the effect of the other variables is “regressed away”. In other
words, the partial correlation is exactly equivalent to the correlation between the
residuals that remain after regressing 𝑥𝑖 on the variables {𝑥𝑘} and 𝑥 𝑗 on {𝑥𝑘}.

Null distribution of the empirical correlation coefficient

Suppose we have two uncorrelated random variables 𝑥 and 𝑦 with 𝜌 =

Cor(𝑥, 𝑦) = 0. After observing data 𝑥1 , . . . , 𝑥𝑛 and 𝑦1 , . . . , 𝑦𝑛 we compute
the the empirical covariance matrix 𝚺̂𝑥𝑦 and from it the empirical correlation
coefficient 𝑟 = Ĉor(𝑥, 𝑦).
The distribution of the empirical correlation assuming 𝜌 = 0 is useful as null-
model for testing whether the underlying correlation is in fact zero having
observed empirical correlation 𝑟. If 𝑥 and 𝑦 are normally distributed with 𝜌 = 0
the distribution of the empirical correlation 𝑟 has mean E(𝑟) = 0 and variance
Var(𝑟) = 1

𝜅 . Here 𝜅 is the degree of freedom of the null distribution which for
standard correlation is 𝜅 = 𝑛− 1. Furthermore, the squared empirical correlation
is distributed according to a Beta distribution

𝑟2 ∼ Beta
(
1
2 ,

𝜅 − 1
2

)
For partial correlation the null distribution of 𝑟2 has the same form but with a
different degree of freedom. Specifically, 𝜅 is reduced by the number of variables
being conditioned on. If for 𝑑 dimensions we condition on 𝑑 − 2 variables the
resulting degree of freedom is 𝜅 = 𝑛 − 1 − (𝑑 − 2) = 𝑛 − 𝑑 + 1. For 𝑑 = 2 we get
back the degree of freedom for standard empirical correlation.

Algorithm for learning GGMs

From the above we can devise a simple algorithm to learn Gaussian graphical
model (GGM) from data:

1. Estimate covariance 𝚺̂ (in such a way that it is invertible!)
2. Compute corresponding partial correlations
3. If 𝜌̂𝑖 𝑗 |rest ≈ 0 then there is (approx.) conditional independence between 𝑥𝑖

and 𝑥 𝑗 .

140

6 Multivariate dependencies

The test for conditional independence is done by statistical testing for vanishing
partial correlation. Specifically, we compute the 𝑝-value assuming that the true
underlying partial correlation is zero and then decide whether to reject the null
assumption of zero partial correlation.

If there are many edges tested simultaneously we may need to adjust (i.e reduce)
the test threshold, for example applying Bonferroni or FDR methods.

Example: exam score data

This is a data set from Mardia et al. (1979) and features 𝑑 = 5 variables measured
on 𝑛 = 88 subjects.

Correlations (rounded to 2 digits):

mechanics vectors algebra analysis statistics
mechanics 1.00 0.55 0.55 0.41 0.39
vectors 0.55 1.00 0.61 0.49 0.44
algebra 0.55 0.61 1.00 0.71 0.66
analysis 0.41 0.49 0.71 1.00 0.61
statistics 0.39 0.44 0.66 0.61 1.00

Partial correlations (rounded to 2 digits):

mechanics vectors algebra analysis statistics
mechanics 1.00 0.33 0.23 0.00 0.02
vectors 0.33 1.00 0.28 0.08 0.02
algebra 0.23 0.28 1.00 0.43 0.36
analysis 0.00 0.08 0.43 1.00 0.25
statistics 0.02 0.02 0.36 0.25 1.00

Note that there are no zero correlations but there are four partial correlations
close to 0, indicating conditional independence between:

• analysis and mechanics,
• statistics and mechanics,
• analysis and vectors, and
• statistics and vectors.

The can be verified by computing the normal 𝑝-values for the partial correlations
(with 𝜅 = 84 as degree of freedom):

141

6 Multivariate dependencies

mechanics vectors algebra analysis statistics
mechanics NA 0.002 0.034 0.988 0.823
vectors NA NA 0.009 0.477 0.854
algebra NA NA NA 0.000 0.001
analysis NA NA NA NA 0.020
statistics NA NA NA NA NA

There are six edges with small 𝑝-value (smaller than say 0.05) and these corre-
spond to the edges for which the null assumption of zero partial correlation can
be rejected so that out of ten possible edges four are not statistically significant.
Therefore the conditional independence graph looks as follows:

Mechanics Analysis
| \ / |
| Algebra |
| / \ |

Vectors Statistics

142

7 Nonlinear and nonparametric
models

In the last part of the module we discuss methods that go beyond the linear
parametric methods prevalent in classical multivariate statistics.

Relevant textbooks:

The lectures for much of this part of the module follow selected chapters from
the following text books:

• James et al. (2021) An introduction to statistical learning with applications in R
(2nd edition). Springer.

• Rogers and Girolami (2017) A first course in machine learning (2nd edition).
CRC Press.

Please study the relevant section and chapters as indicated below in each
subsection!

The first book is also available in a version whith examples in Python:

• James et al. (2023) An introduction to statistical learning with applications in
Python. Springer.

143

https://www.statlearning.com
https://www.statlearning.com
https://www.crcpress.com/A-First-Course-in-Machine-Learning-Second-Edition/Rogers-Girolami/p/book/9781498738484
https://www.statlearning.com
https://www.statlearning.com

7 Nonlinear and nonparametric models

7.1 Random forests

Another widely used approach for prediction in nonlinear settings is the method
of random forests.

Relevant reading:

Please read: James et al. (2021) or James et al. (2023) Chapter 8 “Tree-Based
Methods”

Specifically:

• Section 8.1 The Basics of Decision Trees
• Section 8.2.1 Bagging
• Section 8.2.2 Random Forests

Stochastic vs. algorithmic models

Two cultures in statistical modelling: stochastic vs. algorithmic models

Classic discussion paper by Leo Breiman (2001): Statistical modeling: the two
cultures. Statistical Science 16:199–231. https://doi.org/10.1214/ss/100921372
6

This paper has recently be revisited in the following discussion paper by Efron
(2020) and discussants: Prediction, estimation, and attribution. JASA 115:636–677.
https://doi.org/10.1080/01621459.2020.1762613

Random forests

Proposed by Leo Breimann in 2001 as application of “bagging” (Breiman 1996)
to decision trees.

Basic idea:

• A single decision tree is unreliable and unstable (weak predictor/classifier).
• Use boostrap to generate multiple decision trees (=“forest”)
• Average over predictions from all tree (=“bagging”, bootstrap aggregation)

The averaging procedure has the effect of variance stabilisation. Intringuingly,
averaging across all decision trees dramatically improves the overall prediction
accuracy!

The Random Forests approach is an example of an ensemble method (since it is
based on using an “ensemble” of trees).

Variations: boosting, XGBoost (https://xgboost.ai)

Random forests will be applied in Worksheet 11.

144

https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1080/01621459.2020.1762613
https://xgboost.ai

7 Nonlinear and nonparametric models

Figure 7.1: Decision boundaries for decision trees and random forests in the
non-nested case.

Figure 7.2: Decision boundaries for decision trees and random forests in the
nested case.

They are computationally expensive but typically perform very well!

Comparison of decision boundaries: decision tree vs. random
forest

Compare the non-nested case (Figure 7.1) and the nested case (Figure 7.2).

Compare also with the decision boundaries for LDA and QDA in Figure 5.4 and
Figure 5.5.

145

7 Nonlinear and nonparametric models

7.2 Gaussian processes

Gaussian processes offer a nonparametric probabilistic approach to model
nonlinear dependencies.

Relevant reading:

Please read: Rogers and Girolami (2017) Chapter 8: Gaussian processes.

Main concepts

• Gaussian processes (GPs) belong the the family of Bayesian nonparametric
models

• Idea:

– start with prior over a function (!),
– then condition on observed data to get posterior distribution (again

over a function)

• GPs use an infinitely dimensional multivariate normal distribution as prior

Conditional multivariate normal distribution

GPs make use of the fact that marginal and conditional distributions of a
multivariate normal distribution are also multivariate normal.

Multivariate normal distribution:

𝒛 ∼ 𝑁𝑑(𝝁,𝚺)

Assume:
𝒛 =

(
𝒛1
𝒛2

)
with

𝝁 =

(
𝝁1
𝝁2

)
and

𝚺 =

(
𝚺1 𝚺12
𝚺𝑇12 𝚺2

)
with corresponding dimensions 𝑑1 and 𝑑2 and 𝑑1 + 𝑑2 = 𝑑.

Marginal distributions:

Any subset of 𝒛 is also multivariate normally distributed. Specifically,

𝒛1 ∼ 𝑁𝑑1(𝝁1 ,𝚺1)

146

7 Nonlinear and nonparametric models

and
𝒛2 ∼ 𝑁𝑑2(𝝁2 ,𝚺2)

Conditional multivariate normal:

The conditional distribution is also multivariate normal:

𝒛1 |𝒛2 = 𝒛1|2 ∼ 𝑁𝑑1(𝝁1|2 ,𝚺1|2)

with
𝝁1|2 = 𝝁1 + 𝚺12𝚺−1

2 (𝒛2 − 𝝁2)

and
𝚺1|2 = 𝚺1 − 𝚺12𝚺−1

2 𝚺𝑇12

𝒛1|2 and 𝝁1|2 have dimension 𝑑1 × 1 and 𝚺1|2 has dimension 𝑑1 × 𝑑1, i.e. the same
dimension as the unconditioned variables.

You may recall the above formula in the context of linear regression, with 𝑦 = 𝑧1
and 𝒙 = 𝒛2 so that the conditional mean becomes

E(𝑦 |𝒙) = 𝝁𝑦 + 𝚺𝑦𝒙𝚺
−1
𝒙 (𝒙 − 𝝁𝒙)

= 𝛽0 + 𝜷𝑇𝒙

with 𝜷 = 𝚺−1
𝒙 𝚺𝒙𝑦 and 𝛽0 = 𝝁𝑦−𝜷

𝑇𝝁𝒙 , and the corresponding conditional variance
is

Var(𝑦 |𝒙) = 𝜎2
𝑦 − 𝚺𝑦𝒙𝚺−1

𝒙 𝚺𝒙𝑦 .

Covariance functions and kernels

The GP prior is an infinitely dimensional multivariate normal distribution with
mean zero and the covariance specified by a function 𝑘(𝑥, 𝑥′):
A widely used covariance function is

𝑘(𝑥, 𝑥′) = Cov(𝑥, 𝑥′) = 𝜎2𝑒
− (𝑥−𝑥

′)2
2𝑙2

This is known as the squared-exponential kernel or Radial-basis function
(RBF) kernel.

Note that this kernel implies

• 𝑘(𝑥, 𝑥) = Var(𝑥) = 𝜎2 and

• Cor(𝑥, 𝑥′) = 𝑒
− (𝑥−𝑥

′)2
2𝑙2 .

147

7 Nonlinear and nonparametric models

The parameter 𝑙 in the RBF kernel is the length scale parameter and describes the
“wigglyness” or “stiffness” of the resulting function. Small values of 𝑙 correspond
to more complex, more wiggly functions, and to low spatial correlation, as the
correlation decreases quicker with distance, and large values correspond to more
rigid, stiffer functions, with longer range spatial correlation (note that in a time
series context this would be called autocorrelation).

There are many other kernel functions, including linear, polynomial or periodic
kernels.

GP model

Nonlinear regression in the GP approach is conceptually very simple:

• start with multivariate prior
• then condition on the observed data
• the resulting conditional multivariate normal can used to predict the

function values at any unobserved values
• the conditional variance can be used to compute credible intervals for

predictions.

GP regression also provides a direct link with classical Bayesian linear regression
(when using a linear kernel). Furthermore, GPs are also linked with neural
networks as their limit in the case of an infinitely wide network (see section on
neural networks).

Drawbacks of GPs: computationally expensive, typically 𝑂(𝑛3) because of the
matrix inversion. However, there are now variations of GPs that help to overcome
this issue (e.g. sparse GPs).

Gaussian process example

We now show how to apply Gaussian processes in R justing using standard
matrix calculations.

Our aim is to estimate the following nonlinear function from a number of
observations. Note that initially we assume that there is no additional noise (so
the observations lie directly on the curve):

truefunc = function(x) sin(x)
XLIM = c(0, 2*pi)
YLIM = c(-2, 2)

n2 = 10
x2 = runif(n2, min=XLIM[1], max=XLIM[2])

148

7 Nonlinear and nonparametric models

y2 = truefunc(x2) # no noise

curve(truefunc(x), xlim=XLIM, ylim=YLIM, xlab="x", ylab="y",
main="True Function")

points(x2, y2)

0 1 2 3 4 5 6

−
2

−
1

0
1

2

True Function

x

y

Use the RFB kernel as the prior covariance and assume that the prior has mean
zero:

RBF kernel
rbfkernel = function(xa, xb, s2=1, l=1/2) s2*exp(-1/2*(xa-xb)ˆ2/lˆ2)
kfun.mat = function(xavec, xbvec, FUN=rbfkernel)
outer(X=as.vector(xavec), Y=as.vector(xbvec), FUN=FUN)

prior mean
mu.vec = function(x) rep(0, length(x))

Visualise the functions sampled from the multivariate normal prior:

grid of x-values
n1 = 100
x1 = seq(XLIM[1], XLIM[2], length.out=n1)

unconditioned covariance and mean (unobserved samples x1)
K1 = kfun.mat(x1, x1)

149

7 Nonlinear and nonparametric models

m1 = mu.vec(x1)

sample functions from GP prior
B = 5
library("MASS") # for mvrnorm
y1r = t(mvrnorm(B, mu = m1, Sigma=K1))
plot(x1, y1r[,1], type="l", lwd=2, ylab="y", xlab="x", ylim=YLIM,
main="Prior Functions (RBF Kernel with l=1/2)")

for(i in 2:B)
lines(x1, y1r[,i], col=i, lwd=2)

0 1 2 3 4 5 6

−
2

−
1

0
1

2

Prior Functions (RBF Kernel with l=1/2)

x

y

Compute the posterior mean and variance by conditioning on the observations:

unconditioned covariance and mean (observed samples x2)
K2 = kfun.mat(x2, x2)
m2 = mu.vec(x2)
iK2 = solve(K2) # inverse

cross-covariance
K12 = kfun.mat(x1, x2)

Conditioning: x1 conditioned on x2
conditional mean
m1.2 = m1 + K12 %*% iK2 %*% (y2 - m2)
conditional variance
K1.2 = K1 - K12 %*% iK2 %*% t(K12)

150

7 Nonlinear and nonparametric models

Plot the posterior mean and upper and lower bounds of a 95% credible interval:

upper and lower CI
upper.bound = m1.2 + 1.96*sqrt(diag(K1.2))
lower.bound = m1.2 - 1.96*sqrt(diag(K1.2))

plot(x1, m1.2, type="l", xlim=XLIM, ylim=YLIM, col="red", lwd=3,
ylab="y", xlab = "x", main = "Posterior")

points(x2,y2,pch=4,lwd=4,col="blue")
lines(x1,upper.bound,lty=2,lwd=3)
lines(x1,lower.bound,lty=2,lwd=3)
curve(truefunc(x), xlim=XLIM, add=TRUE, col="gray")

legend(x="topright",
legend=c("posterior mean", "posterior quantiles", "true function"),
lty=c(1, 2, 1),lwd=c(4, 4, 1), col=c("red","black", "gray"), cex=1.0)

0 1 2 3 4 5 6

−
2

−
1

0
1

2

Posterior

x

y

posterior mean
posterior quantiles
true function

Finally, we can take into acount noise at the measured data points by adding an
error term:

add some noise
sdeps = 0.1
K2 = K2 + sdepsˆ2*diag(1,length(x2))

update

151

7 Nonlinear and nonparametric models

iK2 = solve(K2) # inverse
m1.2 = m1 + K12 %*% iK2 %*% (y2 - m2)
K1.2 = K1 - K12 %*% iK2 %*% t(K12)
upper.bound = m1.2 + 1.96*sqrt(diag(K1.2))
lower.bound = m1.2 - 1.96*sqrt(diag(K1.2))

plot(x1, m1.2, type="l", xlim=XLIM, ylim=YLIM, col="red", lwd=3,
ylab="y", xlab = "x", main = "Posterior (with noise)")

points(x2,y2,pch=4,lwd=4,col="blue")
lines(x1,upper.bound,lty=2,lwd=3)
lines(x1,lower.bound,lty=2,lwd=3)
curve(truefunc(x), xlim=XLIM, add=TRUE, col="gray")

legend(x="topright",
legend=c("posterior mean", "posterior quantiles", "true function"),
lty=c(1, 2, 1),lwd=c(4, 4, 1), col=c("red","black", "gray"), cex=1.0)

0 1 2 3 4 5 6

−
2

−
1

0
1

2

Posterior (with noise)

x

y

posterior mean
posterior quantiles
true function

Note that in the vicinity of data points the CIs are small and the further away
from data the more uncertain the estimate of the underlying function becomes.

152

7 Nonlinear and nonparametric models

7.3 Neural networks

Another highly important class of models for nonlinear prediction (and nonlinear
function approximation) are neural networks.

Relevant reading:

Please read: James et al. (2021) or James et al. (2023) Chapter 10 “Deep
Learning”

History

Neural networks are actually relatively old models, going back to the 1950s.

Three phases of neural networks (NN)

• 1950/60: replicating functions of neurons in the brain (e.g. perceptron)
• 1980/90: neural networks as universal function approximators
• 2010—today: deep learning

The first phase was biologically inspired, the second phase focused on math-
ematical properties, and the current phase is pushed forward by advances in
computer science and numerical optimisation:

• backpropagation algorithm
• efficient automatic symbolic differentiation (e.g. autograd)
• stochastic gradient descent algorithms (e.g. Adam)
• use of GPUs and TPUs (e.g. for linear algebra)
• availability of packages for symbolic tensor computations and deep learn-

ing.

Currently the most popular frameworks are:

• PyTorch (PyTorch Foundation, formerly Meta/Facebook)
• TensorFlow (Google Research)
• Flax / JAX (Google Research)

and high-level wrappers:

• skorch (scikit-learn wrapper for PyTorch)
• Keras 3 (for TensorFlow, JAX, and PyTorch)

153

https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://pytorch.org
https://www.tensorflow.org
https://flax.readthedocs.io/en/latest/
https://jax.readthedocs.io/en/latest/
https://skorch.readthedocs.io/en/latest/
https://keras.io/keras_3/

7 Nonlinear and nonparametric models

Neural networks

Neural networks are essentially stacked systems of linear regressions, with
nonlinear mappings between each layer, mapping the input to output via one or
more layers of internal hidden nodes corresponding to internal latent variables:

• Each internal node is a nonlinear function of all or some of nodes in the
previous layer

• Typically, the output of a node is computed using a non-linear activation
function, such as the sigmoid function or a piecewise linear function
(ReLU), from a linear combination of the input variables of that node.

A simple architecture is a feedforward network with a single hidden layer.
More complex models are multilayer perceptrons and convolutional neural
networks.

It can be shown that even simple network architectures can (with sufficient
number of nodes) approximate any arbitrary non-linear function. This is called
the universal function approximation property.

“Deep” neural networks have many layers, and the optimisation of their pa-
rameters requires advanced techniques (see above), with the objective function
typically an empirical risk based on, e.g., squared error loss or cross-entropy
loss. Neural networks are very highly parametrised models and therefore re-
quire lots of data for training, and typically also some form of regularisation
(e.g. dropout).

As an extreme example, the neural network behind the ChatGPT 4 language
model that is trained on essentially the whole freely accessible text available on
the internet has an estimated 1.76 trillion (!) parameters (1.76 × 1012).

In the limit of an infinite width a single layer fully connected neural network
becomes equivalent to a Gaussian process. This was first shown by R. M. Neal
(1996)1. More recently, this equivalence has also been demonstrated for other
types of neural networks (with the kernel function of the GP being determined
by the neural network architecture). This is formalised in the “neural tangent
kernel” (NTK) framework.

Some of the statistical aspects of neural networks are not well understood.
For example, there is the paradox that neural networks typically overfit the
training data but still generalise well - this clearly violates the traditional
understanding of bias-variance tradeoff for classical modelling in statistics and
machine learning — see for example Belkin et al. (2019)2. Some researchers argue
that this contradiction can be resolved by better understanding the effective
dimension of complex models. There is a lot of current research to explain

1Neal, R. M. 1996. Bayesian Learning for Neural Networks. Springer. https://doi.org/10.1007/978-
1-4612-0745-0

2Belkin, M. et al. 2019. Reconciling modern machine-learning practice and the classical bias–variance
trade-off. PNAS 116: 15849–15854. https://doi.org/10.1073/pnas.1903070116

154

https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/GPT-4
https://doi.org/10.1007/978-1-4612-0745-0
https://doi.org/10.1007/978-1-4612-0745-0
https://doi.org/10.1073/pnas.1903070116

7 Nonlinear and nonparametric models

this phenomenon of “multiple descent”, i.e. the decrease of prediction error
for models with very many parameters. A further topic is robustness of the
predictions, which is also caused by overfitting. It is well known that neural
networks can sometimes be “fooled” by so-called adversarial examples, e.g., the
classification of a sample may change if a small amount of noise is added to the
test data.

Learning more about deep learning

A good place to learn more about the concepts of deep learning is the book
“Understanding Deep Learning” by Prince (2023) available online at https:
//udlbook.github.io/udlbook/. For actual application in computer code using
various software frameworks the book “Dive Into Deep Learning” by Zhang et
al. (2023) available online at https://d2l.ai is recommended.

155

https://udlbook.github.io/udlbook/
https://udlbook.github.io/udlbook/
https://d2l.ai

Bibliography

Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer. https:
//www.microsoft.com/en-us/research/people/cmbishop/prml-book/.

Izenman, A. J. 2008. Modern Multivariate Statistical Techniques. New York: Springer.
https://doi.org/10.1007/978-0-387-78189-1.

James, G., D. Witten, T. Hastie, and R. Tibshirani. 2021. An Introduction to
Statistical Learning with Applications in R. 2nd ed. Springer. https://doi.org/
10.1007/978-1-0716-1418-1.

James, G., D. Witten, T. Hastie, R. Tibshirani, and J. Taylor. 2023. An Introduction
to Statistical Learning with Applications in Python. Springer. https://doi.org/
10.1007/978-3-031-38747-0.

Mardia, K. V., J. T. Kent, and J. M. Bibby. 1979. Multivariate Analysis. Academic
Press.

Murphy, K. P. 2022. Probabilistic Machine Learning: An Introduction. MIT Press.
https://probml.github.io/pml-book/book1.html.

———. 2023. Probabilistic Machine Learning: Advanced Topic. MIT Press. https:
//probml.github.io/pml-book/book2.html.

Prince, S. J. D. 2023. Understanding Deep Learning. MIT Press. https://mitpress
.mit.edu/9780262048644/understanding-deep-learning/.

Rogers, S., and M. Girolami. 2017. A First Course in Machine Learning. 2nd ed.
Chapman; Hall / CRC. https://doi.org/10.1201/9781315382159.

Zhang, A., Z. C. Lipton, M. Li, and A. J. Smola. 2023. Dive into Deep Learning.
https://d2l.ai.

156

https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/
https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/
https://doi.org/10.1007/978-0-387-78189-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-3-031-38747-0
https://doi.org/10.1007/978-3-031-38747-0
https://probml.github.io/pml-book/book1.html
https://probml.github.io/pml-book/book2.html
https://probml.github.io/pml-book/book2.html
https://mitpress.mit.edu/9780262048644/understanding-deep-learning/
https://mitpress.mit.edu/9780262048644/understanding-deep-learning/
https://doi.org/10.1201/9781315382159
https://d2l.ai

A Further study

In this module we can only touch the surface of the field of multivariate statistics
and machine learning. If you would like to study further I recommend the
following books below as a starting point.

A.1 Recommended reading

For multivariate statistics and machine learning:

• Izenman (2008) Modern Multivariate Statistical Techniques. Springer.
• Rogers and Girolami (2017) A first course in machine learning (2nd Edition).

Chapman and Hall / CRC.
• James et al. (2021) An introduction to statistical learning with applications in R

(2nd edition). Springer.
• James et al. (2023) An introduction to statistical learning with applications in

Python. Springer.

A.2 Advanced reading

Additional (advanced) reference books for probabilistic machine learning are:

• Bishop (2006) Pattern recognition and machine learning. Springer.
• Murphy (2022) Probabilistic Machine Learning: An Introduction. MIT Press.
• Murphy (2023) Probabilistic Machine Learning: Advanced Topics. MIT Press.
• Prince (2023) Understanding Deep learning. MIT Press.

You can find further suggestions on my list of online textbooks in statistics and
machine learning.

157

https://doi.org/10.1007/978-0-387-78189-1
https://doi.org/10.1201/9781315382159
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-3-031-38747-0
https://doi.org/10.1007/978-3-031-38747-0
https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/
https://probml.github.io/pml-book/book1.html
https://probml.github.io/pml-book/book2.html
https://udlbook.github.io/udlbook/
https://strimmerlab.github.io/notes/textbooks.html
https://strimmerlab.github.io/notes/textbooks.html

	Welcome
	Updates
	License

	Preface
	About the author
	About the module
	Prerequisites
	Acknowledgements

	Multivariate random variables
	Essentials in multivariate statistics
	Multivariate distributions
	Multivariate normal distribution

	Multivariate estimation
	Overview
	Empirical estimates
	Maximum likelihood estimation
	Sampling distribution of the empirical / maximum likelihood estimates
	Small sample estimation
	Full Bayesian multivariate modelling
	Conclusion

	Transformations and dimension reduction
	Linear Transformations
	Nonlinear transformations
	General whitening transformations
	Natural whitening procedures
	Principal Component Analysis (PCA)

	Unsupervised learning and clustering
	Challenges in unsupervised learning
	Hierarchical clustering
	K-means clustering
	Mixture models
	Fitting mixture models to data and inferring the latent states
	Application of Gaussian mixture models
	The EM algorithm

	Supervised learning and classification
	Aims of supervised learning
	Bayesian discriminant rule or Bayes classifier
	Normal Bayes classifier
	The training step — learning QDA, LDA and DDA classifiers from data
	Quantifying prediction error
	Goodness of fit and variable ranking
	Variable selection

	Multivariate dependencies
	Measuring the linear association between two sets of random variables
	Canonical Correlation Analysis (CCA) aka CCA whitening
	Vector correlation and RV coefficient
	Limits of linear models and correlation
	Mutual information as generalisation of correlation
	Graphical models

	Nonlinear and nonparametric models
	Random forests
	Gaussian processes
	Neural networks

	Bibliography
	Appendices
	Further study
	Recommended reading
	Advanced reading

