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License
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Preface

About the author
Hello! My name is Korbinian Strimmer and I am a Professor in Statistics. I
am a member of the Statistics group at the Department of Mathematics of the
University of Manchester. You can find more information about me on my home
page.

The notes are for the version of MATH20802 taught in spring 2023 at the
University of Manchester.

I hope that you enjoy the course and that you will find the notes useful! If you
have any questions, comments, or corrections please email me at korbinian.stri
mmer@manchester.ac.uk.

About the module

Topics covered
The MATH20802 module is designed to run over the course of 11 weeks. It has
three main parts:

1. Likelihood estimation and inference (W1–W4)
2. Bayesian learning and inference (W5–W8)
3. Linear regression (W9–W11)

This module focuses on conceptual understanding and methods, not on theory.
Specifically, you will learn about the foundations of statistical learning using
likelihood and Bayesian approaches and also how these are underpinned by
entropy.

As such, the presentation in this course is non-technical. The aim is to offer
insights how diverse statistical approaches are linked and to demonstrate that
statistics offers a concise and coherent theory of information rather than being an
adhoc collection of “recipes” for data analysis (a common but wrong perception
of statistics).
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Prerequisites
For this module it is important that you refresh your knowledge in:

• Introduction to statistics
• Probability
• R data analysis and programming

In addition you will need to some elements of matrix algebra and how to compute
the gradient and the curvature of a function of several variables.

Check the Appendix of these notes for a brief refresher of the essential material.

Additional support material
If you are a University of Manchester student and enrolled in this module you
will find on Blackboard:

• a weekly learning plan for an 11 week study period (plus one additional
week for revision),

• weekly worksheets with examples and solutions and R code, and
• exam papers of previous years.

Furthermore, there is also a MATH20802 online reading list hosted by the
University of Manchester library.

The future
The year 2 MATH20802 “Statistical Methods” module (10 credits) is last run in
the academic year 2022/23.

From 2023/24 onwards the likelihood and Bayes parts of this module will be
delivered as part 2 of the new year 2 module MATH27720 “Probability and
Statistics 2” (20 credits). Linear regression will be taught in the new year 2
module MATH27711 “Linear regression models” (10 credits).
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of the lecture notes when I was teaching this module for the first time and to
Kristĳonas Raudys for his extensive feedback on the 2020 version.
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Chapter 1

Overview of statistical
learning

1.1 How to learn from data?
A fundamental question is how to extract information from data in an optimal
way, and to make predictions based on this information.

For this purpose, a number of competing theories of information have been
developed. Statistics is the oldest science of information and is concerned with
offering principled ways to learn from data and to extract and process information
using probabilistic models. However, there are other theories of information
(e.g. Vapnik-Chernov theory of learning, computational learning) that are more
algorithmic than analytic and sometimes not even based on probability theory.

Furthermore, there are other disciplines, such computer science and machine
learning that are closely linked with and also have substantial overlap with
statistics. The field of “data science” today comprises of both statistics and
machine learning and brings together mathematics, statistics and computer
science. Also the growing field of so-called “artificial intelligence” makes
substantial use of statistical and machine learning techniques.

The recent popular science book “The Master Algorithm” by Domingos (2015)
provides an accessible informal overview over the various schools of science of
information. It discusses the main algorithms used in machine learning and
statistics:

• Starting as early as 1763, the Bayesian school of learning was started which
later turned out to be closely linked with likelihood inference established
in 1922 by R.A. Fisher (1890–1962) and generalised in 1951 to entropy
learning by Kullback and Leibler.
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14 CHAPTER 1. OVERVIEW OF STATISTICAL LEARNING

• It was also in the 1950s that the concept of artificial neural network arises,
essentially a nonlinear input-output map that works in a non-probabilistic
way. This field saw another leap in the 1980s and further progressed from
2010 onwards with the development of deep dearning. It is now one of the
most popular (and most effective) methods for analysing imaging data.
Even your mobile phone most likely has a dedicated computer chip with
special neural network hardware, for example.

• Further advanced theories of information were developed in the 1960 under
the term of computational learning, most notably the Vapnik-Chernov
theory, with the most prominent example of the “support vector machine”
(another non-probabilistic model).

• With the advent of large-scale genomic and other high-dimensional data
there has been a surge of new and exciting developments in the field of
high-dimensional (large dimension) and also big data (large dimension
and large sample size), both in statistics and in machine learning.

The connections between various fields of information is still not perfectly
understood, but it is clear that an overarching theory will need to be based on
probabilistic learning.

1.2 Probability theory versus statistical learning
When you study statistics (or any other information theory) you need to be aware
that there is a fundamental difference between probability theory and statistics,
and that relates to the distinction between “randomness” and “uncertainty”.

Probability theory studies randomness, by developing mathematical models
for randomness (such as probability distributions), and studying corresponding
mathematical properties (including asymptotics etc). Probability theory may in
fact be viewed as a branch of measure theory, and thus it belongs to the domain
of pure mathematics.

Probability theory provides probabilistic generative models for data, for simula-
tion of data or for use in learning from data, i.e. inference about the model from
observations. Methods and theory how to best learn from data is the domain
of applied mathematics, specifically statistics and the related areas of machine
learning and data science.

Note that statistics, in contrast to probability, is in fact not at all concerned
with randomness. Instead, the focus is about measuring and elucidating the
uncertainty of events, predictions, outcomes, parameters and this uncertainty
measures the state of knowledge. Note that if new data or information becomes
available, the state of knowledge and thus the uncertainty changes! Thus,
uncertainty is an epistemological property.

The uncertainty most often is due to our ignorance of the true underlying
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processes (on purpose or not), but not because the underlying process is actually
random. The success of statistics is based on the fact that we can mathematically
model the uncertainty without knowing any specifics of the underlying processes,
and we still have procedures for optimal inference despite the uncertainty.

In short, statistics is about describing the state of knowledge of the world, which
may be uncertain and incomplete, and to make decisions and predictions in the
face of uncertainty, and this uncertaintly sometimes derives from randomness
but most often from our ignorance (and sometimes this ignorance even helps to
create a simple yet effective model)!

1.3 Cartoon of statistical learning
We observe data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} assumed to have been generated by an
underlying true model 𝑀true with true parameters 𝜽true

To explain the data, and make predictions, we make hypotheses in the form of
candidate models 𝑀1 , 𝑀2 , . . . and corresponding parameters 𝜽1 , 𝜽2 , . . .. The
true model itself is unknown and cannot be observed. However, what we can
observe is data𝐷 from the true model by measuring properties of objects interest
(our observations from experiments). Sometimes we can also perturb the model
and see what the effect is (interventional study).

The various candidate models 𝑀1 , 𝑀2 , . . . in the model world will never be
perfect or correct as the true model 𝑀true will only be among the candidate
models in an idealised situation. However, even an imperfect candidate model
will often provide a useful mathematical approximation and capture some
important characteristics of the true model and thus will help to interpret
observed data.

Hypothesis
How the world works −→

Model world
𝑀1 , 𝜽1
𝑀2 , 𝜽2
...

−→
Real world,

unknown true model
𝑀true , 𝜽true

−→ Data 𝑥1 , . . . , 𝑥𝑛

The aim of statistical learning is to identify the model(s) that explain the
current data and also predict future data (i.e. predict outcome of experiments
that have not been conducted yet).

Thus a good model provides a good fit to the current data (i.e. it explains current
observations well) and also to the future data (i.e. it generalises well).
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A large proportion of statistical theory is devoted to finding these “good” models
that avoid both overfitting (models being too complex and don’t generalise well)
or underfitting (models being too simplistic and hence also don’t predict well).

Typically the aim is to find a model whose model complexity matches the
complexity of the unknown true model and also the complexity of the data
observed from the unknown true model.

1.4 Likelihood
In statistics and machine learning most models that are being used are prob-
abilistic to take account of both randomness and uncertainty. A core task in
statistical learning is to identify those models that explain the existing data well
and that also generalise well to unseen data.

For this we need, among other things, a measure of how well a candidate
model approximates the (typically unknown) true data generating model and
an approach to choose the best model(s). One such approach is provided by
the method of maximum likelihood that enables us to estimate parameters of
models and to find the particular model that is the best fit to the data.

Given a probability distribution 𝑃𝜽 with density or mass function 𝑝(𝑥 |𝜽) where
𝜽 is a parameter vector, and 𝐷 = {𝑥1 , . . . , 𝑥𝑛} are the observed iid data (i.e. in-
dependent and identically distributed), the likelihood function is defined
as

𝐿𝑛(𝜽 |𝐷) =
𝑛∏
𝑖=1

𝑝(𝑥𝑖 |𝜽)

Typically, instead of the likelihood one uses the log-likelihood function:

𝑙𝑛(𝜽 |𝐷) = log 𝐿𝑛(𝜽 |𝐷) =
𝑛∑
𝑖=1

log 𝑝(𝑥𝑖 |𝜽)

Reasons for preferring the log-likelihood (rather than likelihood) include that

• the log-density is in fact the more “natural” and relevant quantity (this
will become clear in the upcoming chapters) and that

• addition is numerically more stable than multiplication on a computer.

For discrete random variables for which 𝑝(𝑥 |𝜽) is a probability mass function
the likelihood is often interpreted as the probability to observe the data given
the model with specified parameters 𝜽. In fact, this was indeed the way how
the likelihood was historically introduced. However, this view is not strictly
correct. First, given that the samples are iid and thus the ordering of the 𝑥𝑖 is
not important, an additional factor accounting for the possible permutations is
needed in the likelihood to obtain the actual probability of the data. Moreover,
for continuous random variables this interpretation breaks down due to the use
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of densities rather than probability mass functions in the likelihood. Thus, the
view that the likelihood is the probability of the data is in fact too simplistic.

In the next chapter we will see that the justification for using likelihood rather
stems from its close link to the Kullback-Leibler information and cross-entropy.
This also helps to understand why using likelihood for estimation is only optimal
in the limit of large sample size.

In the first part of the MATH28082 “Statistical Methods” module we will study
likelihood estimation and inference in much detail. We will provide links to
related methods of inference and discuss its information-theoretic foundations.
We will also discuss the optimality properties as well as the limitations of
likelihood inference. Extensions of likelihood analysis, in particular Bayesian
learning, which will be discussed in the second part of the module. In the third
part of the module we will apply statistical learning to linear regression.
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Chapter 2

From entropy to maximum
likelihood

2.1 Entropy

2.1.1 Overview

In this chapter we discuss various information criteria and their connection to
maximum likelihood.

The modern definition of (relative) entropy, or “disorder”, was first discovered in
the 1870s by physicist L. Boltzmann (1844–1906) in the context of thermodynamics.
The probabilistic interpretation of statistical mechanics and entropy was further
developed by J. W. Gibbs (1839–1903).

In the 1940–1950’s the notion of entropy turned out to be central in information
theory, a field pioneered by mathematicians such as R. Hartley (1888–1970), S.
Kullback (1907–1994), A. Turing (1912–1954), R. Leibler (1914–2003), I. J. Good
(1916–2009), C. Shannon (1916–2001), and E. T. Jaynes (1922–1998), and later
further explored by S. Amari (1936–), I. Ciszár (1938–), B. Efron (1938–), A. P.
Dawid (1946–) and many others.

Entropy ↗
↘

Shannon Entropy

Relative Entropy

(Shannon 1948)

(Kullback-Leibler 1951)
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Fisher information

Mutual Information

→ Likelihood theory

→ Information theory

(Fisher 1922)

(Shannon 1948, Lindley 1953)

2.1.2 Surprise, surprisal or Shannon information
The surprise to observe an event of probability 𝑝 is defined as − log(𝑝). This is
also called surprisal or Shannon information.

Thus, the surprise to observe a certain event (with 𝑝 = 1) is zero, and conversely
the surprise to observe an event that is certain not to happen (with 𝑝 = 0) is
infinite.

The log-odds ratio can be viewed as the difference of the surprise of an event
and the surprise of the complementary event:

log
(

𝑝

1 − 𝑝

)
= − log(1 − 𝑝) − (− log(𝑝))

In this module we always use the natural logarithm by default, and will explicitly
write log2 and log10 for logarithms with respect to base 2 and 10, respectively.

Surprise and entropy computed with the natural logarithm (log) is given in
“nats” (=natural information units ). Using log2 leads to “bits” and using log10
to “ban” or “Hartley”.

2.1.3 Shannon entropy
Assume we have a categorical distribution 𝑃 with 𝐾 classes/categories. The
corresponding class probabilities are 𝑝1 , . . . , 𝑝𝐾 with Pr("class k") = 𝑝𝑘 and∑𝐾
𝑘=1 𝑝𝑘 = 1. The probability mass function (PMF) is 𝑝(𝑥 = "class k") = 𝑝𝑘 .

As the random variable 𝑥 is discrete the categorical distribution 𝑃 is a discrete
distribution but 𝑃 is generally also known as the discrete distribution.

The Shannon entropy (1948) 1 of the distribution 𝑃 is defined as the expected
surprise, i.e. the negative expected log-probability

𝐻(𝑃) = −E𝑃
(
log 𝑝(𝑥)

)
= −

𝐾∑
𝑘=1

𝑝𝑘 log(𝑝𝑘)

As all 𝑝𝑘 ∈ [0, 1] by construction Shannon entropy must be larger or equal to 0.

1Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal
27:379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

https://en.wikipedia.org/wiki/Nat_(unit)
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https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
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Furthermore, it is bounded above by log𝐾. This can be seen by maximising
Shannon entropy as a function with regard to the 𝑝𝑘 under the constraint∑𝐾
𝑘=1 𝑝𝑘 = 1, e.g., by constrained optimisation using Langrange multipliers. The

maximum is achieved for 𝑃 being the discrete uniform - see Example 2.1.

Hence for any categorical distribution 𝑃 with 𝐾 categories we have

log𝐾 ≥ 𝐻(𝑃) ≥ 0

In statistical physics, the Shannon entropy is known as Gibbs entropy (1878).

Example 2.1. Discrete uniform distribution 𝑈𝐾 : let 𝑝1 = 𝑝2 = . . . = 𝑝𝐾 = 1
𝐾 .

Then

𝐻(𝑈𝐾) = −
𝐾∑
𝑘=1

1
𝐾

log
(

1
𝐾

)
= log𝐾

Note this is the largest value the Shannon entropy can assume with 𝐾 classes.

Example 2.2. Concentrated probability mass: let 𝑝1 = 1 and 𝑝2 = 𝑝3 = . . . =
𝑝𝐾 = 0. Using 0 × log(0) = 0 we obtain for the Shannon entropy

𝐻(𝑃) = 1 × log(1) + 0 × log(0) + · · · = 0

Note that 0 is the smallest value that Shannon entropy can assume, and corre-
sponds to maximum concentration.

Thus, large entropy implies that the distribution is spread out whereas small
entropy means the distribution is concentrated.

Correspondingly, maximum entropy distributions can be considered minimally
informative about a random variable.

This interpretation is also supported by the close link of Shannon entropy with
multinomial coefficients counting the permutations of 𝑛 items (samples) of 𝐾
distinct types (classes).

Example 2.3. Large sample asymptotics of the log-multinomial coefficient and
link to Shannon entropy:

The number of possible permutation of 𝑛 items of 𝐾 distinct types, with 𝑛1 of
type 1, 𝑛2 of type 2 and so on, is given by the multinomial coefficient

𝑊 =

(
𝑛

𝑛1 , . . . , 𝑛𝐾

)
=

𝑛!
𝑛1! × 𝑛2! × . . . × 𝑛𝐾 !

with
∑𝐾
𝑘=1 𝑛𝑘 = 𝑛 and 𝐾 ≤ 𝑛.

Now recall the Moivre-Sterling formula which for large 𝑛 allow to approximate
the factorial by

log 𝑛! ≈ 𝑛 log 𝑛 − 𝑛

https://en.wikipedia.org/wiki/Entropy_(statistical_thermodynamics)#Gibbs_entropy_formula
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With this

log𝑊 = log
(

𝑛

𝑛1 , . . . , 𝑛𝐾

)
= log 𝑛! −

𝐾∑
𝑘=1

log 𝑛𝑘 !

≈ 𝑛 log 𝑛 − 𝑛 −
𝐾∑
𝑘=1

(𝑛𝑘 log 𝑛𝑘 − 𝑛𝑘)

= 𝑛 log 𝑛 −
𝐾∑
𝑘=1

𝑛𝑘 log 𝑛𝑘

=

𝐾∑
𝑘=1

𝑛𝑘 log 𝑛 −
𝐾∑
𝑘=1

𝑛𝑘 log 𝑛𝑘

= −𝑛
𝐾∑
𝑘=1

𝑛𝑘
𝑛

log
(𝑛𝑘
𝑛

)
and thus

1
𝑛

log
(

𝑛

𝑛1 , . . . , 𝑛𝐾

)
≈ −

𝐾∑
𝑘=1

�̂�𝑘 log �̂�𝑘

= 𝐻(�̂�)

where �̂� is the empirical categorical distribution with �̂�𝑘 = 𝑛𝑘
𝑛 .

The combinatorical derivation of Shannon entropy is now credited to Wallis
(1962) but has already been used a century earlier by Boltzmann (1877) who
discovered it in his work in statistical mechanics (recall 𝑆 = 𝑘𝑏 log𝑊 is the
Boltzmann entropy ).

2.1.4 Differential entropy
Shannon entropy is only defined for discrete random variables.

Differential Entropy results from applying the definition of Shannon entropy to a
continuous random variable 𝑥 with density 𝑝(𝑥):

𝐻(𝑃) = −E𝑃(log 𝑝(𝑥)) = −
∫
𝑥

𝑝(𝑥) log 𝑝(𝑥) 𝑑𝑥

Despite having essentially the same formula the different name is justified
because differential entropy exhibits different properties compared to Shannon
entropy, because the logarithm is taken of a density which in contrast to a
probability can assume values larger than one. As a consequence, differential
entropy is not bounded below by zero and can be negative.

https://en.wikipedia.org/wiki/Boltzmann%27s_entropy_formula
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Example 2.4. Consider the uniform distribution𝑈(0, 𝑎) with 𝑎 > 0, support from
0 to 𝑎 and density 𝑝(𝑥) = 1/𝑎. As −

∫ 𝑎

0 𝑝(𝑥) log 𝑝(𝑥)𝑑𝑥 = −
∫ 𝑎

0
1
𝑎 log( 1

𝑎 )𝑑𝑥 = log 𝑎
the differential entropy is

𝐻(𝑈(0, 𝑎)) = log 𝑎 .

Note that for 𝑎 < 1 the differential entropy is negative.

Example 2.5. The log density of the univariate normal 𝑁(𝜇, 𝜎2) distribution
is log 𝑝(𝑥 |𝜇, 𝜎2) = − 1

2

(
log(2𝜋𝜎2) + (𝑥−𝜇)2

𝜎2

)
with 𝜎2 > 0. The corresponding

differential entropy is with E((𝑥 − 𝜇)2) = 𝜎2

𝐻(𝑃) = −E
(
log 𝑝(𝑥 |𝜇, 𝜎2)

)
=

1
2

(
log(2𝜋𝜎2) + 1

)
.

Interestingly, 𝐻(𝑃) only depends on the variance and not on the mean, and
the entropy grows with the variance. Note that for 𝜎2 < 1/(2𝜋𝑒) ≈ 0.0585 the
differential entropy is negative.

2.1.5 Maximum entropy principle to characterise distributions
Both maximum Shannon entropy and differential entropy are useful to charac-
terise distributions:

1) The discrete uniform distribution is the maximum entropy distribution
among all discrete distributions.

2) the maximum entropy distribution of a continuous random variable with
support [−∞,∞] with a specific mean and variance is the normal distribu-
tion

3) the maximum entropy distribution among all continuous distributions
supported in [0,∞] with a specified mean is the exponential distribution.

The higher the entropy the more spread out (and more uninformative) is a
distribution.

Using maximum entropy to characterise maximally uniformative distributions
was advocated by E.T. Jaynes (who also proposed to use maximum entropy
in the context of finding Bayesian priors). The maximum entropy principle in
statistical physics goes back to Boltzmann.

A list of maximum entropy distribution is given here: https://en.wikipedia.org
/wiki/Maximum_entropy_probability_distribution .

Many distributions commonly used in statistical modelling are exponential
families. Intriguingly, these distribution are all maximum entropy distributions,
so there is a very close link between the principle of maximum entropy and
common model choices in statistics and machine learning.

https://en.wikipedia.org/wiki/Maximum_entropy_probability_distribution
https://en.wikipedia.org/wiki/Maximum_entropy_probability_distribution
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2.1.6 Cross-entropy
If in the definition of Shannon entropy (and differential entropy) the expectation
over the log-density (say 𝑔(𝑥) of distribution 𝐺) is taken with regard to a different
distribution 𝐹 over the same state space we arrive at the cross-entropy

𝐻(𝐹, 𝐺) = −E𝐹
(
log 𝑔(𝑥)

)
For discrete distributions 𝐹 and 𝐺 with class probabilities 𝑓1 , . . . , 𝑓𝐾
and 𝑔1 , . . . , 𝑔𝐾 the cross-entropy is computed as the weighted sum
𝐻(𝐹, 𝐺) = −∑𝐾

𝑘=1 𝑓𝑘 log 𝑔𝑘 . For continuous distributions 𝐹 and 𝐺 with
densities 𝑓 (𝑥) and 𝑔(𝑥) we compute the integral 𝐻(𝐹, 𝐺) = −

∫
𝑥
𝑓 (𝑥) log 𝑔(𝑥) 𝑑𝑥.

Therefore, cross-entropy is a measure linking two distributions 𝐹 and 𝐺.

Note that

• cross-entropy is not symmetric with regard to 𝐹 and 𝐺, because the
expectation is taken with reference to 𝐹.

• By construction 𝐻(𝐹, 𝐹) = 𝐻(𝐹). Thus if both distributions are identical
cross-entropy reduces to Shannon and differential entropy, respectively.

A crucial property of the cross-entropy 𝐻(𝐹, 𝐺) is that it is bounded below by
the entropy of 𝐹, therefore

𝐻(𝐹, 𝐺) ≥ 𝐻(𝐹)
with equality for 𝐹 = 𝐺. This is known as Gibbs’ inequality.

Equivalently we can write

𝐻(𝐹, 𝐺) − 𝐻(𝐹)︸             ︷︷             ︸
relative entropy

≥ 0

In fact, this recalibrated cross-entropy (known as KL divergence or relative
entropy) turns out to be more fundamental than both cross-entropy and entropy.
It will be studied in detail in the next section.

Example 2.6. Cross-entropy between two normals:

Assume 𝐹ref = 𝑁(𝜇ref , 𝜎2
ref) and 𝐹 = 𝑁(𝜇, 𝜎2). The cross-entropy 𝐻(𝐹ref , 𝐹) is

𝐻(𝐹ref , 𝐹) = −E𝐹ref

(
log 𝑝(𝑥 |𝜇, 𝜎2)

)
=

1
2E𝐹ref

(
log(2𝜋𝜎2) + (𝑥 − 𝜇)2

𝜎2

)
=

1
2

(
(𝜇 − 𝜇ref)2

𝜎2 +
𝜎2

ref
𝜎2 + log(2𝜋𝜎2)

)
using E𝐹ref((𝑥 − 𝜇)2) = (𝜇ref − 𝜇)2 + 𝜎2

ref.

https://en.wikipedia.org/wiki/Gibbs%27_inequality
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Example 2.7. If 𝜇ref = 𝜇 and 𝜎2
ref = 𝜎2 then the cross-entropy 𝐻(𝐹ref , 𝐹) in

Example 2.6 degenerates to the differential entropy 𝐻(𝐹ref) = 1
2

(
log(2𝜋𝜎2

ref) + 1
)
.

2.2 Kullback-Leibler divergence

2.2.1 Definition
Also known as relative entropy and discrimination information.

The relative entropy measures the divergence of a distribution 𝐺 from the
distribution 𝐹 and is defined as

𝐷KL(𝐹, 𝐺) = E𝐹 log
(
𝑑𝐹

𝑑𝐺

)
= E𝐹 log

(
𝑓 (𝑥)
𝑔(𝑥)

)
= −E𝐹(log 𝑔(𝑥))︸           ︷︷           ︸

cross-entropy

−( −E𝐹(log 𝑓 (𝑥))︸           ︷︷           ︸
(differential) entropy

)

= 𝐻(𝐹, 𝐺) − 𝐻(𝐹)

• 𝐷KL(𝐹, 𝐺) measures the amount of information lost if 𝐺 is used to approxi-
mate 𝐹.

• If 𝐹 and 𝐺 are identical (and no information is lost) then 𝐷KL(𝐹, 𝐺) = 0.

(Note: here “divergence” measures the dissimilarity between probability distri-
butions. This type of divergence is not related and should not be confused with
divergence (div) as used in vector analysis.)

The use of the term “divergence” rather than “distance” serves to emphasise
that the distributions 𝐹 and 𝐺 are not interchangeable in 𝐷KL(𝐹, 𝐺).
There exist various notations for KL divergence in the literature. Here we use
𝐷KL(𝐹, 𝐺) but you often find as well KL(𝐹 | |𝐺) and 𝐼𝐾𝐿(𝐹;𝐺).
Some authors (e.g. Efron) call twice the KL divergence 2𝐷KL(𝐹, 𝐺) = 𝐷(𝐹, 𝐺) the
deviance of 𝐺 from 𝐹.

2.2.2 Properties of KL divergence
1. 𝐷KL(𝐹, 𝐺) ≠ 𝐷KL(𝐺, 𝐹), i.e. the KL divergence is not symmetric, 𝐹 and 𝐺

cannot be interchanged.
2. 𝐷KL(𝐹, 𝐺) = 0 if and only if 𝐹 = 𝐺, i.e., the KL divergence is zero if and

only if 𝐹 and 𝐺 are identical.
3. 𝐷KL(𝐹, 𝐺) ≥ 0, proof via Jensen’s inequality.
4. 𝐷KL(𝐹, 𝐺) remains invariant under coordinate transformations, i.e. it is an

invariant geometric quantity.

https://en.wikipedia.org/wiki/Jensen%27s_inequality
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Note that in the KL divergence the expectation is taken over a ratio of densities
(or ratio of probabilities for discrete random variables). This is what creates the
transformation invariance.

For more details and proofs of properties 3 and 4 see Worksheet E1.

2.2.3 Origin of KL divergence and application in statistics
Historically, in physics (negative) relative entropy was discovered by Boltzmann
(1878). 2 In statistics and information theory it was introduced by Kullback and
Leibler (1951). 3

In statistics the typical roles of the distribution 𝐹 and 𝐺 in 𝐷KL(𝐹, 𝐺) are:

• 𝐹 is the (unknown) underlying true model for the data generating process
• 𝐺 is the approximating model (typically a distribution family indexed by

parameters)

Optimising (i.e. minimising) the KL divergence with regard to 𝐺 amounts to
approximation and optimising with regard to 𝐹 to imputation. Later we will see
how this leads to the method of maximum likelihood and to Bayesian learning,
respectively.

2.2.4 KL divergence examples
Example 2.8. KL divergence between two Bernoulli distributions Ber(𝜃1) and
Ber(𝜃2):

The “success” probabilities for the two distributions are 𝜃1 and 𝜃2, respectively,
and the complementary “failure” probabilities are 1 − 𝜃1 and 1 − 𝜃2. With this
we get for the KL divergence

𝐷KL(Ber(𝜃1), Ber(𝜃2)) = 𝜃1 log
(
𝜃1
𝜃2

)
+ (1 − 𝜃1) log

(
1 − 𝜃1
1 − 𝜃2

)
Example 2.9. KL divergence between two univariate normals with different
means and variances:

Assume 𝐹ref = 𝑁(𝜇ref , 𝜎2
ref) and 𝐹 = 𝑁(𝜇, 𝜎2). Then

𝐷KL(𝐹ref , 𝐹) = 𝐻(𝐹ref , 𝐹) − 𝐻(𝐹ref)

=
1
2

(
(𝜇 − 𝜇ref)2

𝜎2 +
𝜎2

ref
𝜎2 − log

(
𝜎2

ref
𝜎2

)
− 1

)
2Boltzmann, L. 1878. Weitere Bemerkungen über einige Probleme der mechanischen Wärmetheo-

rie. Wien Ber. 78:7–46. https://doi.org/10.1017/CBO9781139381437.013
3Kullback, S., and R. A. Leibler. 1951. On information and sufficiency. Ann. Math. Statist. 22

79–86. https://doi.org/10.1214/aoms/1177729694

https://doi.org/10.1017/CBO9781139381437.013
https://doi.org/10.1214/aoms/1177729694
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Example 2.10. KL divergence between two univariate normals with different
means and common variance:

An important special case of the previous Example 2.9 occurs if the variances
are equal. Then we get

𝐷KL(𝑁(𝜇ref , 𝜎
2), 𝑁(𝜇, 𝜎2)) = 1

2

( (𝜇 − 𝜇ref)2
𝜎2

)
2.3 Local quadratic approximation and expected

Fisher information

2.3.1 Definition of expected Fisher information
KL information measures the divergence of two distributions. We may thus
use relative entropy to measure the divergence between two distributions in the
same family, separated in parameter space only by some small 𝜺.

First, we consider 𝐷KL(𝐹𝜽 , 𝐹𝜽+𝜺) = E𝐹𝜽
(
log 𝑓 (𝒙 |𝜽) − log 𝑓 (𝒙 |𝜽 + 𝜺)

)
= ℎ(𝜺)

where 𝜽 is kept constant and 𝜺 is varying. From the properties of the KL
divergence we know that 𝐷KL(𝐹𝜽 , 𝐹𝜽+𝜺) ≥ 0 and that it becomes zero only if
𝜺 = 0. Thus, by construction the function ℎ(𝜺) achieves a true minimum of
ℎ(0) = 0 at 𝜺 = 0, with a vanishing gradient ∇ℎ(0) = 0 and a positive definite
Hessian matrix ∇∇𝑇 ℎ(0). Therfore we can approximate it by a quadratic function
around 𝜺 = 0:

ℎ(𝜺) ≈ 1
2 𝜺

𝑇 ∇∇𝑇 ℎ(0) 𝜺

The Hessian matrix ∇∇𝑇 ℎ(0) is computed as 𝑰Fisher(𝜽) = −E𝐹𝜽∇∇𝑇 log 𝑓 (𝒙 |𝜽)
and is the negative expected Hessian matrix of the log-density at 𝜽. It is called
the expected Fisher information at 𝜽. The KL divergence can thus be locally be
approximated by

𝐷KL(𝐹𝜽 , 𝐹𝜽+𝜺) ≈
1
2 𝜺

𝑇 𝑰Fisher(𝜽)𝜺

As second possibility we may also vary the first argument in the KL divergence.
It is straightforward to show that this leads to the same approximation to second
order in 𝜺:

𝐷KL(𝐹𝜽+𝜺 , 𝐹𝜽) ≈
1
2 𝜺

𝑇𝑰Fisher(𝜽) 𝜺

Computing the expected Fisher information involves no observed data, it is
purely a property of the model, or more precisely of the model family indexed
by 𝜽. In the next Chapter we will study a related quantity, the observed Fisher
information that in contrast is a function of the observed data.
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2.3.2 Examples
Example 2.11. Expected Fisher information for the Bernoulli distribution:

The log-probability mass function of the Bernoulli Ber(𝜃) distribution is

log 𝑝(𝑥 |𝜃) = 𝑥 log(𝜃) + (1 − 𝑥) log(1 − 𝜃)

where 𝜃 is the probability of “success”. The second derivative with regard to
the parameter 𝜃 is

𝑑2

𝑑𝜃2 log 𝑝(𝑥 |𝜃) = − 𝑥

𝜃2 − 1 − 𝑥
(1 − 𝜃)2

Since E(𝑥) = 𝜃 we get as Fisher information

𝐼Fisher(𝜃) = −E
(
𝑑2

𝑑𝜃2 log 𝑝(𝑥 |𝜃)
)

=
𝜃

𝜃2 + 1 − 𝜃

(1 − 𝜃)2

=
1

𝜃(1 − 𝜃)

Example 2.12. Quadratic approximations of the KL divergence between two
Bernoulli distributions:

From Example 2.8 we have as KL divergence

𝐷KL (Ber(𝜃1), Ber(𝜃2)) = 𝜃1 log
(
𝜃1
𝜃2

)
+ (1 − 𝜃1) log

(
1 − 𝜃1
1 − 𝜃2

)
and from Example 2.11 the corresponding expected Fisher information.

The quadratic approximation implies that

𝐷KL (Ber(𝜃), Ber(𝜃 + 𝜀)) ≈ 𝜀2

2 𝐼
Fisher(𝜃) = 𝜀2

2𝜃(1 − 𝜃)

and also that

𝐷KL (Ber(𝜃 + 𝜀), Ber(𝜃)) ≈ 𝜀2

2 𝐼
Fisher(𝜃) = 𝜀2

2𝜃(1 − 𝜃)

In Worksheet E1 this is verified by using a second order Taylor series applied to
the KL divergence.

Example 2.13. Expected Fisher information for the normal distribution 𝑁(𝜇, 𝜎2).
The log-density is

log 𝑓 (𝑥 |𝜇, 𝜎2) = −1
2 log(𝜎2) − 1

2𝜎2 (𝑥 − 𝜇)2 − 1
2 log(2𝜋)
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The gradient with respect to 𝜇 and 𝜎2 (!) is the vector

∇ log 𝑓 (𝑥 |𝜇, 𝜎2) =
( 1

𝜎2 (𝑥 − 𝜇)
− 1

2𝜎2 + 1
2𝜎4 (𝑥 − 𝜇)2

)
Hint for calculating the gradient: replace 𝜎2 by 𝑣 and then take the partial
derivative with regard to 𝑣, then substitute back.

The corresponding Hessian matrix is

∇∇𝑇 log 𝑓 (𝑥 |𝜇, 𝜎2) =
(

− 1
𝜎2 − 1

𝜎4 (𝑥 − 𝜇)
− 1

𝜎4 (𝑥 − 𝜇) 1
2𝜎4 − 1

𝜎6 (𝑥 − 𝜇)2
)

As E(𝑥) = 𝜇 we have E(𝑥 − 𝜇) = 0. Furthermore, with E((𝑥 − 𝜇)2) = 𝜎2 we see
that E

(
1
𝜎6 (𝑥 − 𝜇)2

)
= 1

𝜎4 . Therefore the expected Fisher information matrix as
the negative expected Hessian matrix is

𝑰Fisher
(
𝜇, 𝜎2

)
=

( 1
𝜎2 0
0 1

2𝜎4

)
Example 2.14. Expected Fisher information for a set of independent and identi-
cally distributed random variables.

Assume that a random variable 𝑥 ∼ 𝐹𝜽 has log-density log 𝑓 (𝑥 |𝜽) and
expected Fisher information 𝑰Fisher(𝜽). The expected Fisher information
𝑰Fisher
𝑥1 ,...,𝑥𝑛 (𝜽) for a set of iid random variables 𝑥1 , . . . , 𝑥𝑛 ∼ 𝐹𝜽 is computed

from the joint log-density log 𝑓 (𝑥1 , . . . , 𝑥𝑛) =
∑𝑛
𝑖 log 𝑓 (𝑥𝑖 |𝜽). This yields

𝑰Fisher
𝑥1 ,...,𝑥𝑛 (𝜽) = −E𝐹𝜽∇∇𝑇

∑𝑛
𝑖 log 𝑓 (𝑥𝑖 |𝜽) =

∑𝑛
𝑖 𝑰

Fisher(𝜽) = 𝑛𝑰Fisher(𝜽).

2.4 Entropy learning and maximum likelihood

2.4.1 The relative entropy between true model and approximat-
ing model

Assume we have observations 𝐷 = {𝑥1 , . . . , 𝑥𝑛}. The data is sampled from 𝐹,
the true but unknown data generating distribution. We also specify a family of
distributions 𝐺𝜽 indexed by 𝜽 to approximate 𝐹.

The relative entropy 𝐷KL(𝐹, 𝐺𝜽) then measures the divergence of the approxima-
tion 𝐺𝜽 from the unknown true model 𝐹. It can be written as:

𝐷KL(𝐹, 𝐺𝜽) = 𝐻(𝐹, 𝐺𝜽) − 𝐻(𝐹)
= −E𝐹 log 𝑔𝜽(𝑥)︸           ︷︷           ︸

cross-entropy

−( −E𝐹 log 𝑓 (𝑥)︸         ︷︷         ︸
entropy of 𝐹, does not depend on 𝜽

)
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However, since we do not know 𝐹 we cannot actually compute this divergence.
Nonetheless, we may use the empirical distribution �̂�𝑛 — a function of the
observed data — as approximation for 𝐹, and in this way we arrive at an
approximation for 𝐷KL(𝐹, 𝐺𝜽) that becomes more and more accurate with
growing sample size.

Recall the “Law of Large Numbers” :

• By the strong law of large numbers the empirical distribution �̂�𝑛 based
on observed data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} converges to the true underlying
distribution 𝐹 as 𝑛 → ∞ almost surely:

�̂�𝑛
𝑎.𝑠.→ 𝐹

• For 𝑛 → ∞ the average E�̂�𝑛 (ℎ(𝑥)) =
1
𝑛

∑𝑛
𝑖=1 ℎ(𝑥𝑖) converges to the expecta-

tion E𝐹(ℎ(𝑥)).

Hence, for large sample size 𝑛 we can approximate cross-entropy and as a result
the KL divergence. The cross-entropy 𝐻(𝐹, 𝐺𝜽) is approximated by the empirical
cross-entropy where the expectation is taken with regard to �̂�𝑛 rather than 𝐹:

𝐻(𝐹, 𝐺𝜽) ≈ 𝐻(�̂�𝑛 , 𝐺𝜽)
= −E�̂�𝑛 (log 𝑔(𝑥 |𝜽))

= − 1
𝑛

𝑛∑
𝑖=1

log 𝑔(𝑥𝑖 |𝜽)

= − 1
𝑛
𝑙𝑛(𝜽 |𝐷)

This turns out to be equal to the negative log-likelihood standardised by the
sample size 𝑛! Or in other words, the log-likelihood is the negative empirical
cross-entropy multiplied by sample size 𝑛.

From the link of the multinomial coefficient with Shannon entropy (Example
2.3) we already know that for large sample size

𝐻(�̂�) ≈ 1
𝑛

log
(

𝑛

𝑛1 , . . . , 𝑛𝐾

)
The KL divergence 𝐷KL(𝐹, 𝐺𝜽) can therefore be approximated by

𝐷KL(𝐹, 𝐺𝜽) ≈ − 1
𝑛

(
log

(
𝑛

𝑛1 , . . . , 𝑛𝐾

)
+ 𝑙𝑛(𝜽 |𝐷)

)
Thus, with the KL divergence we obtain not just the log-likelihood (the cross-
entropy part) but also the multiplicity factor taking account of the possible
orderings of the data (the entropy part).
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2.4.2 Minimum KL divergence and maximum likelihood
If we knew 𝐹 we would simply minimise 𝐷KL(𝐹, 𝐺𝜽) to find the particular model
𝐺𝜽 that is closest to the true model. Equivalently, we would minimise the
cross-entropy 𝐻(𝐹, 𝐺𝜽). However, since we actually don’t know 𝐹 this is not
possible.

However, for large sample size 𝑛 when the empirical distribution �̂�𝑛 is a good ap-
proximation for 𝐹, we can use the results from the previous section. Thus, instead
of minimising the KL divergence 𝐷KL(𝐹, 𝐺𝜽) we simply minimise 𝐻(�̂�𝑛 , 𝐺𝜽)
which is the same as maximising the log-likelihood 𝑙𝑛(𝜽 |𝐷).

Conversely, this implies that maximising the likelihood with regard to the 𝜽 is
equivalent ( asymptotically for large 𝑛) to minimising the KL divergence of the
approximating model and the unknown true model!

�̂�
𝑀𝐿

= arg max
𝜽

𝑙𝑛(𝜽 |𝐷)

= arg min
𝜽

𝐻(�̂�𝑛 , 𝐺𝜽)

≈ arg min
𝜽

𝐷KL(𝐹, 𝐺𝜽)

Therefore, the reasoning behind the method of maximum likelihood is that it
minimises a large sample approximation of the KL divergence of the candidate
model 𝐺𝜽 from the unkown true model 𝐹.

As a consequence of the close link of maximum likelihood and relative entropy
maximum likelihood inherits for large 𝑛 (and only then!) all the optimality
properties from KL divergence. These will be discussed in more detail later in
the course.

2.4.3 Further connections
Since minimising KL divergence contains ML estimation as special case you may
wonder whether there is a broader justification of relative entropy in the context
of statistical data analysis?

Indeed, KL divergence has strong geometrical interpretation that forms the basis
of information geometry. In this field the manifold of distributions is studied
using tools from differential geometry. The expected Fisher information plays
an important role as metric tensor in the space of distributions.

Furthermore, it is also linked to probabilistic forecasting. In the framework
of so-called scoring rules. the only local proper scoring rule is the negative
log-probability (“surprise”). The expected “surprise” is the cross-entropy and

https://en.wikipedia.org/wiki/Fisher_information_metric
https://en.wikipedia.org/wiki/Scoring_rule
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relative entropy is the corresponding natural divergence connected with the log
scoring rule.

Furthermore, another intriguing property of KL divergence is that the relative
entropy 𝐷KL(𝐹, 𝐺) is the only divergence measure that is both a Bregman and
an 𝑓 -divergence. Note that 𝑓 -divergences and Bregman-divergences (in turn
related to proper scoring rules) are two large classes of measures of similarity
and divergence between two probability distributions.

Finally, not only the likelihood estimation but also the Bayesian update rule (as
discussed later in this module) is another special case of entropy learning.

https://en.wikipedia.org/wiki/F-divergence
https://en.wikipedia.org/wiki/Bregman_divergence


Chapter 3

Maximum likelihood
estimation

3.1 Principle of maximum likelihood estimation

3.1.1 Outline
The starting points in an ML analysis are

• the observed data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} with 𝑛 independent and identically
distributed (iid) samples, with the ordering irrelevant, and a

• model 𝐹𝜽 with corresponding probability density or probability mass
function 𝑓 (𝑥 |𝜽) with parameters 𝜽

From this we construct the likelihood function:

• 𝐿𝑛(𝜽 |𝐷) = ∏𝑛
𝑖=1 𝑓 (𝑥𝑖 |𝜽)

Historically, the likelihood is also often interpreted as the probability of the data
given the model. However, this is not strictly correct. First, this interpretation
only applies to discrete random variables. Second, since the samples are iid even
in this case one would still need to add a factor accounting for the multiplicity
of possible orderings of the samples to obtain the correct probability of the
data. Third, the interpretation of likelihood as probability of the data completely
breaks down for continuous random variables because then 𝑓 (𝑥 |𝜽) is a density,
not a probability.

As we have seen in the previous chapter the origin of the likelihood function lies
in its connection to relative entropy. Specifically, the log-likelihood function

• 𝑙𝑛(𝜽 |𝐷) = ∑𝑛
𝑖=1 log 𝑓 (𝑥𝑖 |𝜽)

33
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divided by sample size 𝑛 is a large sample approximation of the cross-entropy
between the unknown true data generating model and the approximating model
𝐹𝜽. Note that the log-likelihood is additive over the samples 𝑥𝑖 .

The maximum likelihood point estimate �̂�
𝑀𝐿 is then given by maximising the

(log)-likelihood

�̂�
𝑀𝐿

= arg max 𝑙𝑛(𝜽 |𝐷)

Thus, finding the MLE is an optimisation problem that in practise is most often
solved numerically on the computer, using approaches such as gradient ascent (or
for negative log-likelihood gradient descent) and related algorithms. Depending
on the complexity of the likelihood function finding the maximum can be very
difficult.

3.1.2 Obtaining MLEs for a regular model

In regular situations, i.e. when

• the log-likelihood function is twice differentiable with regard to the pa-
rameters,

• the maximum (peak) of the likelihood function lies inside the parameter
space and not at a boundary,

• the parameters of the model are all identifiable (in particular the model is
not overparameterised), and

• the second derivative of the log-likelihood at the maximum is negative
and not zero (for more than one parameter: the Hessian matrix at the
maximum is negative definite and not singular)

then in order to maximise 𝑙𝑛(𝜽 |𝐷) one may use the score function 𝑺(𝜽) which is
the first derivative of the log-likelihood function:
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𝑆𝑛(𝜃) = 𝑑𝑙𝑛 (𝜃 |𝐷)
𝑑𝜃

𝑺𝑛(𝜽) = ∇𝑙𝑛(𝜽 |𝐷)

scalar parameter 𝜃: first derivative
of log-likelihood function

gradient if 𝜽 is a vector
(i.e. if there’s more than one parameter)

A necessary (but not sufficient) condition for the MLE is that

𝑺𝑛(�̂�𝑀𝐿) = 0

To demonstrate that the log-likelihood function actually achieves a maximum at
�̂�𝑀𝐿 the curvature at the MLE must negative, i.e. that the log-likelihood must be
locally concave at the MLE.

In the case of a single parameter (scalar 𝜃) this requires to check that the second
derivative of the log-likelihood function is negative:

𝑑2𝑙𝑛(�̂�𝑀𝐿 |𝐷)
𝑑𝜃2 < 0

In the case of a parameter vector (multivariate 𝜽) you need to compute the
Hessian matrix (matrix of second order derivatives) at the MLE:

∇∇𝑇 𝑙𝑛(�̂�𝑀𝐿 |𝐷)

and then verify that this matrix is negative definite (i.e. all its eigenvalues must
be negative).

As we will see later the second order derivatives of the log-likelihood function
also play an important role for assessing the uncertainty of the MLE.

3.1.3 Invariance property of the maximum likelihood
The invariance principle states that the maximum likelihood is invariant against
reparameterisation.

Assume we transform a parameter 𝜃 into another parameter 𝜔 using some
invertible function 𝑔() so that 𝜔 = 𝑔(𝜃). Then the maximum likelihood estimate
�̂�𝑀𝐿 of the new parameter 𝜔 is simply the transformation of the maximum
likelihood estimate �̂�𝑀𝐿 of the original parameter 𝜃 with �̂�𝑀𝐿 = 𝑔(�̂�𝑀𝐿). The
achieved maximum likelihood is the same in both cases.

The reason why this works is that maximisation is a procedure that is invariant
against transformations of the argument of the function that is maximised.
Consider a function ℎ(𝑥) with a maximum at 𝑥max = arg max ℎ(𝑥). Now we
relabel the argument using 𝑦 = 𝑔(𝑥) where 𝑔 is an invertible function. Then the
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function in terms of 𝑦 is ℎ(𝑔−1(𝑦)). and clearly this function has a maximum at
𝑦max = 𝑔(𝑥max) since ℎ(𝑔−1(𝑦max)) = ℎ(𝑥max).
The invariance property can be very useful in practise because it is often easier
(and sometimes numerically more stable) to maximise the likelihood for a
different set of parameters.

See Worksheet L1 for an example application of the invariance principle.

3.1.4 Consistency of maximum likelihood estimates
One important property of maximum likelihood is that it produces consistent
estimates.

Specifically, if the true underlying model 𝐹true with parameter 𝜽true is contained
in the set of specified candidates models 𝐹𝜽

𝐹true︸︷︷︸
true model

⊂ 𝐹𝜽︸︷︷︸
specified models

then
�̂�𝑀𝐿

large 𝑛
−→ 𝜽true

This is a consequence of𝐷KL(𝐹true , 𝐹𝜽) → 0 for 𝐹𝜽 → 𝐹true, and that maximisation
of the likelihood function is for large 𝑛 equivalent to minimising the relative
entropy.

Thus given sufficient data the MLE will converge to the true value. As a
consequence, MLEs are asympotically unbiased. As we will see in the examples
they can still be biased in finite samples.

Note that even if the candidate model 𝐹𝜽 is misspecified (i.e. it does not contain
the actual true model) the MLE is still optimal in the sense in that it will find the
closest possible model.

It is possible to find inconsistent MLEs, but this occurs only in situations where
the dimension of the model / number of parameters increases with sample
size, or when the MLE is at a boundary or when there are singularities in the
likelihood function.

3.2 Maximum likelihood estimation in practise

3.2.1 Likelihood estimation for a single parameter
In the following we illustrate likelihood estimation for models with a single
parameter. In this case the score function and the second derivative of the
log-likelihood are all scalar-valued like the log-likelihood function itself.
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Example 3.1. Estimation of a proportion – maximum likelihood for the Bernoulli
model:

We aim to estimate the true proportion 𝜃 in a Bernoulli experiment with binary
outcomes, say the proportion of “successes” vs. “failures” or of “heads” vs. “tails”
in a coin tossing experiment.

• Bernoulli model Ber(𝜃): Pr("success") = 𝜃 and Pr("failure") = 1 − 𝜃.
• The “success” is indicated by outcome 𝑥 = 1 and the “failure” by 𝑥 = 0.
• We conduct 𝑛 trials and record 𝑛1 successes and 𝑛 − 𝑛1 failures.
• Parameter: 𝜃 probability of “success”.

What is the MLE of 𝜃?

• the observations 𝐷 = {𝑥1 , . . . , 𝑥𝑛} take on values 0 or 1.

• the average of the data points is �̄� = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 =

𝑛1
𝑛 .

• the probability mass function (PMF) of the Bernoulli distribution Ber(𝜃) is:

𝑝(𝑥 |𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥 =
{
𝜃 if 𝑥 = 1
1 − 𝜃 if 𝑥 = 0

• log-PMF:
log 𝑝(𝑥 |𝜃) = 𝑥 log(𝜃) + (1 − 𝑥) log(1 − 𝜃)

• log-likelihood function:

𝑙𝑛(𝜃 |𝐷) =
𝑛∑
𝑖=1

log 𝑓 (𝑥𝑖 |𝜃)

= 𝑛1 log𝜃 + (𝑛 − 𝑛1) log(1 − 𝜃)
= 𝑛

(
�̄� log𝜃 + (1 − �̄�) log(1 − 𝜃)

)
Note how the log-likelihood depends on the data only through �̄�! This is
an example of a sufficient statistic for the parameter 𝜃 (in fact it is also a
minimally sufficient statistic). This will be discussed in more detail later.

• Score function:

𝑆𝑛(𝜃) =
𝑑𝑙𝑛(𝜃 |𝐷)
𝑑𝜃

= 𝑛

(
�̄�

𝜃
− 1 − �̄�

1 − 𝜃

)
• Maximum likelihood estimate: Setting 𝑆𝑛(�̂�𝑀𝐿) = 0 yields as solution

�̂�𝑀𝐿 = �̄� =
𝑛1
𝑛
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With 𝑑𝑆𝑛 (𝜃)
𝑑𝜃 = −𝑛

(
�̄�
𝜃2 + 1−�̄�

(1−𝜃)2

)
< 0 the optimum corresponds indeed to the

maximum of the (log-)likelihood function as this is negative for �̂�𝑀𝐿 (and
indeed for any 𝜃).

The maximum likelihood estimator of 𝜃 is therefore identical to the
frequency of the successes among all observations.

Note that to analyse the coin tossing experiment and to estimate 𝜃 we may
equally well use the binomial distribution Bin(𝑛, 𝜃) as model for the number
of successes. This results in the same MLE for 𝜃 but the likelihood function
based on the binomial PMF includes the binomial coefficient. However, as it
does not depend on 𝜃 it disappears in the score function and has no influence in
the derivation of the MLE.

Example 3.2. Normal distribution with unknown mean and known variance:

• 𝑥 ∼ 𝑁(𝜇, 𝜎2) with E(𝑥) = 𝜇 and Var(𝑥) = 𝜎2

• the parameter to be estimated is 𝜇 whereas 𝜎2 is known.

What’s the MLE of the parameter 𝜇?

• the data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} are all real in the range 𝑥𝑖 ∈ [−∞,∞].
• the average �̄� = 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖 is real as well.

• Density:

𝑓 (𝑥 |𝜇) = 1√
2𝜋𝜎2

exp
(
−(𝑥 − 𝜇)2

2𝜎2

)
• Log-Density:

log 𝑓 (𝑥 |𝜇) = −1
2 log(2𝜋𝜎2) − (𝑥 − 𝜇)2

2𝜎2

• Log-likelihood function:

𝑙𝑛(𝜇|𝐷) =
𝑛∑
𝑖=1

log 𝑓 (𝑥𝑖 |𝜇)

= − 1
2𝜎2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇)2 −𝑛2 log(2𝜋𝜎2)︸           ︷︷           ︸
constant term, does not depend on 𝜇, can be removed

= − 1
2𝜎2

𝑛∑
𝑖=1

(𝑥2
𝑖 − 2𝑥𝑖𝜇 + 𝜇2) + 𝐶

=
𝑛

𝜎2 (�̄�𝜇 − 1
2𝜇

2) − 1
2𝜎2

𝑛∑
𝑖=1

𝑥2
𝑖︸        ︷︷        ︸

another constant term

+𝐶
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Note how the non-constant terms of the log-likelihood depend on the data
only through �̄�!

• Score function:
𝑆𝑛(𝜇) =

𝑛

𝜎2 (�̄� − 𝜇)

• Maximum likelihood estimate:

𝑆𝑛(�̂�𝑀𝐿) = 0 ⇒ �̂�𝑀𝐿 = �̄�

• With 𝑑𝑆𝑛 (𝜇)
𝑑𝜇 = − 𝑛

𝜎2 < 0 the optimum is indeed the maximum

The constant term 𝐶 in the log-likelihood function collects all terms that do not
depend on the parameter. After taking the first derivative with regard to the
parameter this term disappears thus 𝐶 is not relevant for finding the MLE of
the parameter. In the future we will often omit such constant terms from the
log-likelihood function without further mention.

Example 3.3. Normal distribution with known mean and unknown variance:

• 𝑥 ∼ 𝑁(𝜇, 𝜎2) with E(𝑥) = 𝜇 and Var(𝑥) = 𝜎2

• 𝜎2 needs to be estimated whereas the mean 𝜇 is known

What’s the MLE of 𝜎2?

• the data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} are all real in the range 𝑥𝑖 ∈ [−∞,∞].

• the average of the squared centred data (𝑥 − 𝜇)2 = 1
𝑛

∑𝑛
𝑖=1(𝑥𝑖 − 𝜇)2 ≥ 0 is

non-negative.

• Density:

𝑓 (𝑥 |𝜎2) = (2𝜋𝜎2)− 1
2 exp

(
−(𝑥 − 𝜇)2

2𝜎2

)
• Log-Density:

log 𝑓 (𝑥 |𝜎2) = −1
2 log(2𝜋𝜎2) − (𝑥 − 𝜇)2

2𝜎2

• Log-likelihood function:

𝑙𝑛(𝜎 |𝐷) = 𝑙𝑛(𝜇, 𝜎2 |𝐷) =
𝑛∑
𝑖=1

log 𝑓 (𝑥𝑖 |𝜎2)

= −𝑛2 log(𝜎2) − 1
2𝜎2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇)2 −𝑛2 log(2𝜋)︸        ︷︷        ︸
constant not depending on 𝜎2

= −𝑛2 log(𝜎2) − 𝑛

2𝜎2 (𝑥 − 𝜇)2 + 𝐶
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Note how the log-likelihood function depends on the data only through
(𝑥 − 𝜇)2!

• Score function:
𝑆𝑛(𝜎2) = − 𝑛

2𝜎2 + 𝑛

2𝜎4 (𝑥 − 𝜇)2

Note that to obtain the score function the derivative needs to be taken with
regard to the variance parameter 𝜎2 — not with regard to 𝜎! As a trick,
relabel 𝜎2 = 𝑣 in the log-likelihood function, then take the derivative with
regard to 𝑣, then backsubstitute 𝑣 = 𝜎2 in the final result.

• Maximum likelihood estimate:

𝑆𝑛(𝜎2
𝑀𝐿) = 0 ⇒

𝜎2
𝑀𝐿 = (𝑥 − 𝜇)2 =

1
𝑛

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇)2

• To confirm that we actually have maximum we need to verify that the
second derivative of log-likelihood at the optimum is negative. With
𝑑𝑆𝑛 (𝜎2)
𝑑𝜎2 = − 𝑛

2𝜎4

(
2
𝜎2 (𝑥 − 𝜇)2 − 1

)
and hence 𝑑𝑆𝑛 (�̂�2

𝑀𝐿)
𝑑𝜎2 = − 𝑛

2

(
𝜎2

𝑀𝐿

)−2
< 0 the

optimum is indeed the maximum.

3.2.2 Likelihood estimation for multiple parameters
If there are several parameters likelihood estimation is conceptually no different
from the case of a single parameter. However, the score function is now
vector-valued and the second derivative of the log-likelihood is a matrix-valued
function.

Example 3.4. Normal distribution with mean and variance both unknown:

• 𝑥 ∼ 𝑁(𝜇, 𝜎2) with E(𝑥) = 𝜇 and Var(𝑥) = 𝜎2

• both 𝜇 and 𝜎2 need to be estimated.

What’s the MLE of the parameter vector 𝜽 = (𝜇, 𝜎2)𝑇?

• the data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} are all real in the range 𝑥𝑖 ∈ [−∞,∞].

• the average �̄� = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 is real as well.

• the average of the squared data 𝑥2 = 1
𝑛

∑𝑛
𝑖=1 𝑥

2
𝑖
≥ 0 is non-negative.

• Density:

𝑓 (𝑥 |𝜇, 𝜎2) = (2𝜋𝜎2)− 1
2 exp

(
−
(𝑥 − 𝜇)2

2𝜎2

)
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• Log-Density:

log 𝑓 (𝑥 |𝜇, 𝜎2) = −1
2 log(2𝜋𝜎2) − (𝑥 − 𝜇)2

2𝜎2

• Log-likelihood function:

𝑙𝑛(𝜽 |𝐷) = 𝑙𝑛(𝜇, 𝜎2 |𝐷) =
𝑛∑
𝑖=1

log 𝑓 (𝑥𝑖 |𝜇, 𝜎2)

= −𝑛2 log(𝜎2) − 1
2𝜎2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇)2 −𝑛2 log(2𝜋)︸        ︷︷        ︸
constant not depending on 𝜇 or 𝜎2

= −𝑛2 log(𝜎2) − 𝑛

2𝜎2 (𝑥2 − 2�̄�𝜇 + 𝜇2) + 𝐶

Note how the log-likelihood function depends on the data only through �̄�
and 𝑥2!

• Score function 𝑺𝑛 , gradient of 𝑙𝑛(𝜽 |𝐷):

𝑺𝑛(𝜽) = ∇𝑙𝑛(𝜽 |𝐷)

=

(
𝑛
𝜎2 (�̄� − 𝜇)

− 𝑛
2𝜎2 + 𝑛

2𝜎4

(
𝑥2 − 2�̄�𝜇 + 𝜇2

))
• Maximum likelihood estimate:

𝑺𝑛(�̂�𝑀𝐿) = 0 ⇒

�̂�𝑀𝐿 =

(
�̂�𝑀𝐿

𝜎2
𝑀𝐿

)
=

(
�̄�

𝑥2 − �̄�2

)
The ML estimate of the variance can also be written 𝜎2

𝑀𝐿 = 𝑥2 − �̄�2 =

(𝑥 − �̄�)2 = 1
𝑛

∑𝑛
𝑖=1(𝑥𝑖 − �̄�)2.

• To confirm that we actually have maximum we need to verify that the
eigenvalues of the Hessian matrix at the optimum are all negative. This is
indeed the case, for details see Example 3.7.

3.2.3 Relationship of maximum likelihood with least squares
estimation

In Example 3.2 the form of the log-likelihood function is a function of the sum
of squared differences. Maximising 𝑙𝑛(𝜇|𝐷) = − 1

2𝜎2
∑𝑛
𝑖=1(𝑥𝑖 − 𝜇)2 is equivalent

to minimising
∑𝑛
𝑖=1(𝑥𝑖 − 𝜇)2. Hence, finding the mean by maximum likelihood

assuming a normal model is equivalent to least-squares estimation!
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Note that least-squares estimation has been in use at least since the early 1800s
1 and thus predates maximum likelihood (1922). Due to its simplicity it is still
very popular in particular in regression and the link with maximum likelihood
and normality allows to understand why it usually works well!

3.2.4 Bias and maximum likelihood estimates
Example 3.4 is interesting because it shows that maximum likelihood can result
in both biased and as well as unbiased estimators.

Recall that 𝑥 ∼ 𝑁(𝜇, 𝜎2). As a result

�̂�𝑀𝐿 = �̄� ∼ 𝑁

(
𝜇,

𝜎2

𝑛

)
with E(�̂�𝑀𝐿) = 𝜇 and

𝜎2ML ∼𝑊1

(
𝑠2 =

𝜎2

𝑛
, 𝑘 = 𝑛 − 1

)
(see Appendix) with mean E(𝜎2

𝑀𝐿) = 𝑛−1
𝑛 𝜎2.

Therefore, the MLE of 𝜇 is unbiased as

Bias(�̂�𝑀𝐿) = E(�̂�𝑀𝐿) − 𝜇 = 0

In contrast, however, the MLE of 𝜎2 is negatively biased because

Bias(𝜎2
𝑀𝐿) = E(𝜎2

𝑀𝐿) − 𝜎2 = − 1
𝑛
𝜎2

Thus, in the case of the variance parameter of the normal distribution the MLE
is not recovering the well-known unbiased estimator of the variance

𝜎2
𝑈𝐵 =

1
𝑛 − 1

𝑛∑
𝑖=1

(𝑥𝑖 − �̄�)2 =
𝑛

𝑛 − 1𝜎
2
𝑀𝐿

In other words, the unbiased variance estimate is not a maximum likelihood
estimate!

Therefore it is worth keeping in mind that maximum likelihood can result in
biased estimates for finite 𝑛. For large 𝑛, however, the bias disappears as MLEs
are consistent.

1Stigler, S. M. 1981. Gauss and the invention of least squares. Ann. Statist. 9:465–474. https:
//doi.org/10.1214/aos/1176345451

https://doi.org/10.1214/aos/1176345451
https://doi.org/10.1214/aos/1176345451
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3.3 Observed Fisher information

3.3.1 Motivation and definition
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By inspection of some log-likelihood curves it is apparent that the log-likelihood
function contains more information about the parameter𝜽 than just the maximum
point �̂�𝑀𝐿.

In particular the curvature of the log-likelihood function at the MLE must be
somehow related the accuracy of �̂�𝑀𝐿: if the likelihood surface is flat near the
maximum (low curvature) then if is more difficult to find the optimal parameter
(also numerically!). Conversely, if the likelihood surface is peaked (strong
curvature) then the maximum point is clearly defined.

The curvature is described by the second-order derivatives (Hessian matrix) of
the log-likelihood function.

For univariate 𝜃 the Hessian is a scalar:

𝑑2𝑙𝑛(𝜃 |𝐷)
𝑑𝜃2

For multivariate parameter vector 𝜽 of dimension 𝑑 the Hessian is a matrix of
size 𝑑 × 𝑑:

∇∇𝑇 𝑙𝑛(𝜽 |𝐷)

By construction the Hessian is negative definite at the MLE (i.e. its eigenvalues
are all negative) to ensure the the function is concave at the MLE (i.e. peak
shaped).

The observed Fisher information (matrix) is defined as the negative curvature
at the MLE �̂�𝑀𝐿:

𝑱𝑛(�̂�𝑀𝐿) = −∇∇𝑇 𝑙𝑛(�̂�𝑀𝐿 |𝐷)
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Sometimes this is simply called the “observed information”. To avoid confusion
with the expected Fisher information introduced earlier

𝑰Fisher(𝜽) = −E𝐹𝜽
(
∇∇𝑇 log 𝑓 (𝑥 |𝜽)

)
it is necessary to always use the qualifier “observed” when referring to 𝑱𝑛(�̂�𝑀𝐿).

3.3.2 Examples of observed Fisher information
Example 3.5. Bernoulli model Ber(𝜃):

We continue Example 3.1. Recall that �̂�𝑀𝐿 = �̄� =
𝑛1
𝑛 and the score function

𝑆𝑛(𝜃) = 𝑛
(
�̄�
𝜃 − 1−�̄�

1−𝜃
)
. The negative second derivative of the log-likelihood

function is

−𝑑𝑆𝑛(𝜃)
𝑑𝜃

= 𝑛

(
�̄�

𝜃2 + 1 − �̄�
(1 − 𝜃)2

)
The observed Fisher information is therefore

𝐽𝑛(�̂�𝑀𝐿) = 𝑛

(
�̄�

�̂�2
𝑀𝐿

+ 1 − �̄�
(1 − �̂�𝑀𝐿)2

)
= 𝑛

(
1

�̂�𝑀𝐿

+ 1
1 − �̂�𝑀𝐿

)
=

𝑛

�̂�𝑀𝐿(1 − �̂�𝑀𝐿)

The inverse of the observed Fisher information is:

𝐽𝑛(�̂�𝑀𝐿)−1 =
�̂�𝑀𝐿(1 − �̂�𝑀𝐿)

𝑛

Compare this with Var
(
𝑥
𝑛

)
=

𝜃(1−𝜃)
𝑛 for 𝑥 ∼ Bin(𝑛, 𝜃).

Example 3.6. Normal distribution with unknown mean and known variance:

This is the continuation of Example 3.2. Recall the MLE for the mean �̂�𝑀𝐿 =
1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 = �̄� and the score function 𝑺𝑛(𝜇) = 𝑛

𝜎2 (�̄� − 𝜇). The negative second
derivative of the score function is

−𝑑𝑆𝑛(𝜇)
𝑑𝜇

=
𝑛

𝜎2

The observed Fisher information at the MLE is therefore

𝐽𝑛(�̂�𝑀𝐿) =
𝑛

𝜎2
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and the inverse of the observed Fisher information is

𝐽𝑛(�̂�𝑀𝐿)−1 =
𝜎2

𝑛

For 𝑥𝑖 ∼ 𝑁(𝜇, 𝜎2) we have Var(𝑥𝑖) = 𝜎2 and hence Var(�̄�) = 𝜎2

𝑛 , which is equal to
the inverse observed Fisher information.

Example 3.7. Normal distribution with mean and variance parameter:

This is the continuation of Example 3.4. Recall the MLE for the mean and
variance:

�̂�𝑀𝐿 =
1
𝑛

𝑛∑
𝑖=1

𝑥𝑖 = �̄�

𝜎2
𝑀𝐿 =

1
𝑛

𝑛∑
𝑖=1

(𝑥𝑖 − �̄�)2 = 𝑥2 − �̄�2

with score function

𝑺𝑛(𝜇, 𝜎2) = ∇𝑙𝑛(𝜇, 𝜎2 |𝐷) =
(

𝑛
𝜎2 (�̄� − 𝜇)

− 𝑛
2𝜎2 + 𝑛

2𝜎4

(
𝑥2 − 2𝜇�̄� + 𝜇2

))
The Hessian matrix of the log-likelihood function is

∇∇𝑇 𝑙𝑛(𝜇, 𝜎2 |𝐷) =
(

− 𝑛
𝜎2 − 𝑛

𝜎4 (�̄� − 𝜇)
− 𝑛

𝜎4 (�̄� − 𝜇) 𝑛
2𝜎4 − 𝑛

𝜎6

(
𝑥2 − 2𝜇�̄� + 𝜇2

))
The negative Hessian at the MLE, i.e. at �̂�𝑀𝐿 = �̄� and 𝜎2

𝑀𝐿 = 𝑥2 − �̄�2 yields the
observed Fisher information matrix:

𝑱𝑛(�̂�𝑀𝐿 , 𝜎2
𝑀𝐿) =

( 𝑛

�̂�2
𝑀𝐿

0
0 𝑛

2(�̂�2
𝑀𝐿)2

)
Note that the observed Fisher information matrix is diagonal with positive
entries. Therefore its eigenvalues are all positive as required for a maximum,
because for a diagonal matrix the eigenvalues are simply the the entries on the
diagonal.

The inverse of the observed Fisher information matrix is

𝑱𝑛(�̂�𝑀𝐿 , 𝜎2
𝑀𝐿)−1 =

(
�̂�2

𝑀𝐿

𝑛 0
0 2(�̂�2

𝑀𝐿)2
𝑛

)
Recall that 𝑥 ∼ 𝑁(𝜇, 𝜎2) and therefore

�̂�𝑀𝐿 = �̄� ∼ 𝑁

(
𝜇,

𝜎2

𝑛

)
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Hence Var(�̂�𝑀𝐿) = 𝜎2

𝑛 . If you compare this with the first diagonal entry of the
inverse observed Fisher information matrix you see that this is essentially the
same expression (apart from the “hat”).

The empirical variance 𝜎2
𝑀𝐿 follows a one-dimensional Wishart distribution

𝜎2ML ∼𝑊1

(
𝑠2 =

𝜎2

𝑛
, 𝑘 = 𝑛 − 1

)
(see Appendix) with variance Var(𝜎2

𝑀𝐿) = 𝑛−1
𝑛

2𝜎4

𝑛 . For large 𝑛 this becomes
Var(𝜎2

𝑀𝐿)
𝑎
= 2𝜎4

𝑛 which is essentially (apart from the “hat”) the second diagonal
entry of the inverse observed Fisher information matrix.

3.3.3 Relationship between observed and expected Fisher in-
formation

The observed Fisher information 𝑱𝑛(�̂�𝑀𝐿) and the expected Fisher information
𝑰Fisher(𝜽) are related but also two clearly different entities:

• Both types of Fisher information are based on computing second order
derivatives (Hessian matrix), thus both are based on the curvature of a
function.

• The observed Fisher information is computed from the log-likelihood
function. Therefore it takes the observed data 𝐷 into account and explicitly
depends on the sample size 𝑛. It contains estimates of the parameters but
not the parameters themselves. While the curvature of the log-likelihood
function may be computed for any point of the log-likelihood function the
observed Fisher information specifically refers to curvature at the MLE
�̂�𝑀𝐿. It is linked to the (asymptotic) variance of the MLE as we have seen
in the examples and will discuss in more detail later.

• In contrast, the expected Fisher information is derived directly from the
log-density. It does not depend on the observed data, and thus does not
depend on sample size. It can be computed for any value of the parameters.
It describes the geometry of the space of the models, and is the local
approximation of relative entropy.

• Assume that for large sample size 𝑛 the MLE converges to �̂�𝑀𝐿 → 𝜽0. It
follows from the construction of the observed Fisher information and the
law of large numbers that asymptotically for large sample size 𝑱𝑛(�̂�𝑀𝐿) →
𝑛𝑰Fisher(𝜽0) (i.e. the expected Fisher information for a set of iid random
variables, see Example 2.14).

• In a very important class of models, namely in an exponential family
model, we find that 𝑱𝑛(�̂�𝑀𝐿) = 𝑛𝑰Fisher(�̂�𝑀𝐿) is valid also for finite sample
size 𝑛. This is in fact the case for all the examples discussed above (e.g. see
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Examples 3.5 and 2.11 for the Bernoulli distribution and Examples 3.7 and
2.13 for the normal distribution).

• However, this is an exception. In a general model 𝑱𝑛(�̂�𝑀𝐿) ≠ 𝑛𝑰Fisher(�̂�𝑀𝐿)
for finite sample size 𝑛. An example is provided by the Cauchy distribution
with median parameter 𝜃. It is not an exponential family model and
has expected Fisher information 𝐼Fisher(𝜃) = 1

2 regardless of the choice
the median parameter whereas the observed Fisher information 𝐽𝑛(�̂�𝑀𝐿)
depends on the MLE �̂�𝑀𝐿 of the median parameter and is not simply 𝑛

2 .
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Chapter 4

Quadratic approximation and
normal asymptotics

4.1 Multivariate statistics for random vectors

4.1.1 Covariance and correlation
Assume a scalar random variable 𝑥 with mean E(𝑥) = 𝜇. The corresponding
variance is given by

Var(𝑥) = E
(
(𝑥 − 𝜇)2

)
= E ((𝑥 − 𝜇)(𝑥 − 𝜇))
= E(𝑥2) − 𝜇2

For a random vector 𝒙 = (𝑥1 , 𝑥2 , ..., 𝑥𝑑)𝑇 the mean E(𝒙) = 𝝁 is simply comprised
of the means of its components, i.e. 𝝁 = (𝜇1 , . . . , 𝜇𝑑)𝑇 . Thus, the mean of a
random vector of dimension is a vector of of the same length.

The variance of a random vector of length 𝑑, however, is not a vector but a matrix
of size 𝑑 × 𝑑. This matrix is called the covariance matrix:

Var(𝒙) = 𝚺︸︷︷︸
𝑑×𝑑

= (𝜎𝑖 𝑗) =
©«
𝜎11 . . . 𝜎1𝑑
...

. . .
...

𝜎𝑑1 . . . 𝜎𝑑𝑑

ª®®¬
= E

©«(𝒙 − 𝝁)︸ ︷︷ ︸
𝑑×1

(𝒙 − 𝝁)𝑇︸   ︷︷   ︸
1×𝑑

ª®®®¬
= E(𝒙𝒙𝑇) − 𝝁𝝁𝑇

49
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The entries of the covariance matrix 𝜎𝑖 𝑗 = Cov(𝑥𝑖 , 𝑥 𝑗) describe the covariance
between the random variables 𝑥𝑖 and 𝑥 𝑗 . The covariance matrix is symmetric,
hence 𝜎𝑖 𝑗 = 𝜎𝑗𝑖 . The diagonal entries 𝜎𝑖𝑖 = Cov(𝑥𝑖 , 𝑥𝑖) = Var(𝑥𝑖) = 𝜎2

𝑖
correspond

to the variances of the components of 𝒙. The covariance matrix is positive
semi-definite, i.e. the eigenvalues of 𝚺 are all positive or equal to zero. However,
in practise one aims to use non-singular covariance matrices, with all eigenvalues
positive, so that they are invertible.

A covariance matrix can be factorised into the product

𝚺 = 𝑽
1
2 𝑷𝑽

1
2

where 𝑽 is a diagonal matrix containing the variances

𝑽 =
©«
𝜎11 . . . 0
...

. . .
...

0 . . . 𝜎𝑑𝑑

ª®®¬
and the matrix 𝑷 (“upper case rho”) is the symmetric correlation matrix

𝑷 = (𝜌𝑖 𝑗) =
©«

1 . . . 𝜌1𝑑
...

. . .
...

𝜌𝑑1 . . . 1

ª®®¬ = 𝑽− 1
2𝚺𝑽− 1

2

Thus, the correlation between 𝑥𝑖 and 𝑥 𝑗 is defined as

𝜌𝑖 𝑗 = Cor(𝑥𝑖 , 𝑥 𝑗) =
𝜎𝑖 𝑗

√
𝜎𝑖𝑖𝜎𝑗 𝑗

For univariate 𝑥 and scalar constant 𝑎 the variance of 𝑎𝑥 equals Var(𝑎𝑥) =

𝑎2Var(𝑥). For a random vector 𝒙 of dimension 𝑑 and matrix 𝑨 of dimension
𝑚 × 𝑑 this generalises to Var(𝑨𝑥) = 𝑨Var(𝒙)𝑨𝑇 .

4.1.2 Multivariate normal distribution
The density of a normally distributed scalar variable 𝑥 ∼ 𝑁(𝜇, 𝜎2) with mean
E(𝑥) = 𝜇 and variance Var(𝑥) = 𝜎2 is

𝑓 (𝑥 |𝜇, 𝜎2) = 1√
2𝜋𝜎2

exp
(
−(𝑥 − 𝜇)2

2𝜎2

)
The univariate normal distribution for a scalar 𝑥 generalises to the multivariate
normal distribution for a vector 𝒙 = (𝑥1 , 𝑥2 , ..., 𝑥𝑑)𝑇 ∼ 𝑁𝑑(𝝁,𝚺) with with mean
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E(𝒙) = 𝝁 and covariance matrix Var(𝒙) = 𝚺. The corresponding density is

𝑓 (𝒙 |𝝁,𝚺) = (2𝜋)− 𝑑
2 det(𝚺)− 1

2 exp

©«
−1

2 (𝒙 − 𝝁)𝑇︸   ︷︷   ︸
1×𝑑

𝚺−1︸︷︷︸
𝑑×𝑑

(𝒙 − 𝝁)︸ ︷︷ ︸
𝑑×1︸                      ︷︷                      ︸

1×1=scalar!

ª®®®®®®®®®¬
For 𝑑 = 1 we have 𝒙 = 𝑥, 𝝁 = 𝜇 and 𝚺 = 𝜎2 so that the multivariate normal
density reduces to the univariate normal density.

Example 4.1. Maximum likelihood estimates of the parameters of the multivariate
normal distribution:

Maximising the log-likelihood based on the multivariate normal density yields
the MLEs for 𝝁 and 𝚺. These are generalisations of the MLEs for the mean 𝜇 and
variance 𝜎2 of the univariate normal as encountered in Example 3.4.

The estimates can be written in three different ways:

a) data vector notation

with 𝒙1 , . . . , 𝒙𝑛 the 𝑛 vector-valued observations from the multivariate normal:

MLE for the mean:

�̂�𝑀𝐿 =
1
𝑛

𝑛∑
𝑘=1

𝒙𝑘 = �̄�

MLE for the covariance:

�̂�𝑀𝐿︸︷︷︸
𝑑×𝑑

=
1
𝑛

𝑛∑
𝑘=1

(𝒙𝑘 − �̄�)︸   ︷︷   ︸
𝑑×1

(𝒙𝑘 − �̄�)𝑇︸    ︷︷    ︸
1×𝑑

Note the factor 1
𝑛 in the estimator of the covariance matrix.

With 𝒙𝒙𝑇 = 1
𝑛

∑𝑛
𝑘=1 𝒙𝑘𝒙

𝑇
𝑘

we can also write

�̂�𝑀𝐿 = 𝒙𝒙𝑇 − �̄� �̄�𝑇

b) data component notation

with 𝑥𝑘𝑖 the 𝑖-th component of the 𝑘-th sample 𝒙𝑘 :

�̂�𝑖 =
1
𝑛

𝑛∑
𝑘=1

𝑥𝑘𝑖 with �̂� =
©«
�̂�1
...
�̂�𝑑

ª®®¬
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�̂�𝑖 𝑗 =
1
𝑛

𝑛∑
𝑘=1

(𝑥𝑘𝑖 − �̂�𝑖) ( 𝑥𝑘 𝑗 − �̂�𝑗) with �̂� = (�̂�𝑖 𝑗)

c) data matrix notation

with 𝑿 =
©«
𝒙𝑇1
...

𝒙𝑇𝑛

ª®¬ as a data matrix containing the samples in its rows. Note that this

is the statistics convention — in much of the engineering and computer science
literature the data matrix is often transposed and samples are stored in the
columns. Thus, the formulas below are only correct assuming the statistics
convention.

�̂� =
1
𝑛
𝑿𝑇1𝑛

Here 1𝑛 is a vector of length 𝑛 containing 1 at each component.

�̂� =
1
𝑛
𝑿𝑇𝑿 − �̂��̂�𝑇

To simplify the expression for the estimate of the covariance matrix one often
assumes that the data matrix is centered, i.e. that �̂� = 0.

Because of the ambiguity in convention (machine learning versus statistics
convention) and the often implicit use of centered data matrices the matrix
notation is often a source of confusion. Hence, using the other two notations is
generally preferable.

4.2 Approximate distribution of maximum likeli-
hood estimates

4.2.1 Quadratic log-likelihood resulting from normal model

Assume we observe a single sample 𝒙 ∼ 𝑁(𝝁,𝚺2) with known covariance. The
corresponding log-likelihood for 𝝁 is

𝑙1(𝝁|𝒙) = 𝐶 − 1
2 (𝒙 − 𝝁)𝑇𝚺−1(𝒙 − 𝝁)

where 𝐶 is a constant that does not depend on 𝝁. Note that the log-likelihood is
exactly quadratic and the maximum lies at (𝒙 , 𝐶).
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4.2.2 Quadratic approximation of a log-likelihood function
Now consider the quadratic approximation of the log-likelihood function 𝑙𝑛(𝜽 |𝐷)
for around the MLE �̂�𝑀𝐿.

We assume the underlying model is regular and that ∇𝑙𝑛(�̂�𝑀𝐿 |𝐷) = 0.

The Taylor series approximation of scalar-valued function 𝑓 (𝒙) around 𝒙0 is

𝑓 (𝒙) = 𝑓 (𝒙0) + ∇ 𝑓 (𝒙0)𝑇(𝒙 − 𝒙0) +
1
2 (𝒙 − 𝒙0)𝑇∇∇𝑇 𝑓 (𝒙0)(𝒙 − 𝒙0) + . . .

Applied to the log-likelihood function this yields

𝑙𝑛(𝜽 |𝐷) ≈ 𝑙𝑛(�̂�𝑀𝐿 |𝐷) − 1
2 (�̂�𝑀𝐿 − 𝜽)𝑇 𝐽𝑛(�̂�𝑀𝐿)(�̂�𝑀𝐿 − 𝜽)

This is a quadratic function with maximum at (�̂�𝑀𝐿 , 𝑙𝑛(�̂�𝑀𝐿 |𝐷)). Note the natural
appearance of the observed Fisher information 𝐽𝑛(�̂�𝑀𝐿) in the quadratic term.
There is no linear term because of the vanishing gradient at the MLE.

Crucially, we realise that the approximation has the same form as if �̂�𝑀𝐿 was a
sample from a multivariate normal distribution with mean 𝜽 and with covariance
given by the inverse observed Fisher information! Note that this requires a positive
definite observed Fisher information matrix so that 𝐽𝑛(�̂�𝑀𝐿) is actually invertible!

Example 4.2. Quadratic approximation of the log-likelihood for a proportion:

From Example 3.1 we have the log-likelihood

𝑙𝑛(𝑝 |𝐷) = 𝑛
(
�̄� log 𝑝 + (1 − �̄�) log(1 − 𝑝)

)
and the MLE

�̂�𝑀𝐿 = �̄�

and from Example 3.5 the observed Fisher information

𝐽𝑛(�̂�𝑀𝐿) =
𝑛

�̄�(1 − �̄�)

The log-likelihood at the MLE is

𝑙𝑛(�̂�𝑀𝐿 |𝐷) = 𝑛
(
�̄� log �̄� + (1 − �̄�) log(1 − �̄�)

)
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This allows us to construct the quadratic approximation of the log-likelihood
around the MLE as

𝑙𝑛(𝑝 |𝐷) ≈ 𝑙𝑛(�̂�𝑀𝐿 |𝐷) − 1
2 𝐽𝑛(�̂�𝑀𝐿)(𝑝 − �̂�𝑀𝐿)2

= 𝑛

(
�̄� log �̄� + (1 − �̄�) log(1 − �̄�) − (𝑝 − �̄�)2

2�̄�(1 − �̄�)

)
= 𝐶 +

�̄�𝑝 − 1
2 𝑝

2

�̄�(1 − �̄�)/𝑛

The constant 𝐶 does not depend on 𝑝, its function is to match the approximate
log-likelihood at the MLE with that of the corresponding original log-likelihood.
The approximate log-likelihood takes on the form of a normal log-likelihood
(Example 3.2) for one observation of �̂�𝑀𝐿 = �̄� from 𝑁

(
𝑝,

�̄�(1−�̄�)
𝑛

)
.

The following figure shows the above log-likelihood function and its quadratic
approximation for example data with 𝑛 = 30 and �̄� = 0.7:
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4.2.3 Asymptotic normality of maximum likelihood estimates
Intuitively, it makes sense to associate large amount of curvature of the log-
likelihood at the MLE with low variance of the MLE (and conversely, low amount
of curvature with high variance).

From the above we see that
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• normality implies a quadratic log-likelihood,
• conversely, taking an quadratic approximation of the log-likelihood implies

approximate normality, and
• in the quadratic approximation the inverse observed Fisher information

plays the role of the covariance of the MLE.

This suggests the following theorem: Asymptotically, the MLE is normally
distributed around the true parameter and with covariance equal to the inverse
of the observed Fisher information:

�̂�𝑀𝐿
𝑎∼ 𝑁𝑑︸︷︷︸

multivariate normal

©« 𝜽︸︷︷︸
mean vector

, 𝑱𝑛(�̂�𝑀𝐿)−1︸      ︷︷      ︸
covariance matrix

ª®®¬
This theorem about the distributional properties of MLEs greatly enhances the
usefulness of the method of maximum likelihood. It implies that in regular
settings maximum likelihood is not just a method for obtaining point estimates
but also also provides estimates of their uncertainty.

However, we need to clarify what “asymptotic” actually means in the context of
the above theorem:

1) Primarily, it means to have sufficient sample size so that the log-likelihood
𝑙𝑛(𝜽) is sufficiently well approximated by a quadratic function around
�̂�𝑀𝐿. The better the local quadratic approximation the better the normal
approximation!

2) In a regular model with positive definite observed Fisher information
matrix this is guaranteed for large sample size 𝑛 → ∞ thanks to the central
limit theorem).

3) However, 𝑛 going to infinity is in fact not always required for the normal
approximation to hold! Depending on the particular model a good local fit
to a quadratic log-likelihood may be available also for finite 𝑛. As a trivial
example, for the normal log-likelihood it is valid for any 𝑛.

4) In the other hand, in non-regular models (with nondifferentiable log-
likelihood at the MLE and/or a singular Fisher information matrix) no
amount of data, not even 𝑛 → ∞, will make the quadratic approximation
work.

Remarks:

• The asymptotic normality of MLEs was first discussed in Fisher (1925) 1

1Fisher R. A. 1925. Theory of statistical estimation. Math. Proc. Cambridge Philos. Soc. 22:700–725.
https://doi.org/10.1017/S0305004100009580

https://doi.org/10.1017/S0305004100009580
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• The technical details of the above considerations are worked out in the
theory of locally asymptotically normal (LAN) models pioneered in 1960
by Lucien LeCam (1924–2000).

• There are also methods to obtain higher-order (higher than quadratic and
thus non-normal) asymptotic approximations. These relate to so-called
saddle point approximations.

4.2.4 Asymptotic optimal efficiency

Assume now that �̂� is an arbitrary and unbiased estimator for 𝜽 and the
underlying data generating model is regular with density 𝑓 (𝒙 |𝜽).
H. Cramér (1893–1985), C. R. Rao (1920–) and others demonstrated in 1945 the
so-called information inequality,

Var(�̂�) ≥ 1
𝑛
𝑰Fisher(𝜽)−1

which puts a lower bound on the variance of an estimator for 𝜽. (Note for
𝑑 > 1 this is a matrix inequality, meaning that the difference matrix is positive
semidefinite).

For large sample size with 𝑛 → ∞ and �̂�𝑀𝐿 → 𝜽 the observed Fisher informa-
tion becomes 𝐽𝑛(�̂�) → 𝑛𝑰Fisher(𝜽) and therefore we can write the asymptotic
distribution of �̂�𝑀𝐿 as

�̂�𝑀𝐿
𝑎∼ 𝑁𝑑

(
𝜽,

1
𝑛
𝑰Fisher(𝜽)−1

)
This means that for large 𝑛 in regular models �̂�𝑀𝐿 achieves the lowest variance
possible according to the Cramér-Rao information inequality. In other words,
for large sample size maximum likelihood is optimally efficient and thus the best
available estimator will in fact be the MLE!

However, as we will see later this does not hold for small sample size where it
is indeed possible (and necessary) to improve over the MLE (e.g. via Bayesian
estimation or regularisation).

4.3 Quantifying the uncertainty of maximum likeli-
hood estimates

4.3.1 Estimating the variance of MLEs
In the previous section we saw that MLEs are asymptotically normally distributed,
with the inverse Fisher information (both expected and observed) linked to the
asymptotic variance.

https://en.wikipedia.org/wiki/Local_asymptotic_normality
https://en.wikipedia.org/wiki/Lucien_Le_Cam
https://en.wikipedia.org/wiki/Saddlepoint_approximation_method
https://en.wikipedia.org/wiki/Harald_Cram%C3%A9r
https://en.wikipedia.org/wiki/C._R._Rao
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This leads to the question whether to use the observed Fisher information
𝐽𝑛(�̂�𝑀𝐿) or the expected Fisher information at the MLE 𝑛𝑰Fisher(�̂�𝑀𝐿) to estimate
the variance of the MLE?

• Clearly, for 𝑛 → ∞ both can be used interchangeably.
• However, they can be very different for finite 𝑛 in particular for models

that are not exponential families.
• Also normality may occur well before 𝑛 goes to ∞.

Therefore one needs to choose between the two, considering also that

• the expected Fisher information at the MLE is the average curvature at
the MLE, whereas the observed Fisher information is the actual observed
curvature, and

• the observed Fisher information naturally occurs in the quadratic approxi-
mation of the log-likelihood.

All in all, the observed Fisher information as estimator of the variance is more
appropriate as it is based on the actual observed data and also works for large 𝑛
(in which case it yields the same result as using expected Fisher information):

V̂ar(�̂�𝑀𝐿) = 𝑱𝑛(�̂�𝑀𝐿)−1

and its square-root as the estimate of the standard deviation

ŜD(�̂�𝑀𝐿) = 𝑱𝑛(�̂�𝑀𝐿)−1/2

Note that in the above we use matrix inversion and the (inverse) matrix square root.

The reasons for preferring observed Fisher information are made mathematically
precise in a classic paper by Efron and Hinkley (1978) 2 .

Example 4.3. Estimated variance and distribution of the MLE of a proportion:

From Examples 3.1 and 3.5 we know the MLE

�̂�𝑀𝐿 = �̄� =
𝑘

𝑛

and the corresponding observed Fisher information

𝐽𝑛(�̂�𝑀𝐿) =
𝑛

�̂�𝑀𝐿(1 − �̂�𝑀𝐿)
The estimated variance of the MLE is therefore

V̂ar(�̂�𝑀𝐿) =
�̂�𝑀𝐿(1 − �̂�𝑀𝐿)

𝑛

and the corresponding asymptotic normal distribution is

�̂�𝑀𝐿
𝑎∼ 𝑁

(
𝑝,
�̂�𝑀𝐿(1 − �̂�𝑀𝐿)

𝑛

)
2Efron, B., and D. V. Hinkley. 1978. Assessing the accuracy of the maximum likelihood estimator: observed

versus expected Fisher information. Biometrika 65:457–482. https://doi.org/10.1093/biomet/65.3.457

https://doi.org/10.1093/biomet/65.3.457


58CHAPTER 4. QUADRATIC APPROXIMATION AND NORMAL ASYMPTOTICS

Example 4.4. Estimated variance and distribution of the MLE of the mean
parameter for the normal distribution with known variance:

From Examples 3.2 and 3.6 we know that

�̂�𝑀𝐿 = �̄�

and that the corresponding observed Fisher information at �̂�𝑀𝐿 is

𝐽𝑛(�̂�𝑀𝐿) =
𝑛

𝜎2

The estimated variance of the MLE is therefore

V̂ar(�̂�𝑀𝐿) =
𝜎2

𝑛

and the corresponding asymptotic normal distribution is

�̂�𝑀𝐿 ∼ 𝑁

(
𝜇,

𝜎2

𝑛

)
Note that in this case the distribution is not asymptotic but is exact, i.e. valid also
for small 𝑛 (as long as the data 𝑥𝑖 are actually from 𝑁(𝜇, 𝜎2)!).

4.3.2 Wald statistic
Centering the MLE �̂�𝑀𝐿 with 𝜽0 followed by standardising with ŜD(�̂�𝑀𝐿) yields
the Wald statistic (named after Abraham Wald, 1902–1950):

𝒕(𝜽0) = ŜD(�̂�𝑀𝐿)−1(�̂�𝑀𝐿 − 𝜽0)
= 𝑱𝑛(�̂�𝑀𝐿)1/2(�̂�𝑀𝐿 − 𝜽0)

The squared Wald statistic is a scalar defined as

𝑡(𝜽0)2 = 𝒕(𝜽0)𝑇𝒕(𝜽0)
= (�̂�𝑀𝐿 − 𝜽0)𝑇 𝑱𝑛(�̂�𝑀𝐿)(�̂�𝑀𝐿 − 𝜽0)

Note that in the literature both 𝒕(𝜽0) and 𝑡(𝜽0)2 are commonly referred to as
Wald statistics. In this text we use the qualifier “squared” if we refer to the latter.

We now assume that the true underlying parameter is 𝜽0. Since the MLE is
asymptotically normal the Wald statistic is asymptotically standard normal
distributed:

𝒕(𝜽0) 𝑎∼
𝑡(𝜃0) 𝑎∼

𝑁𝑑(0𝑑 , 𝑰𝑑)
𝑁(0, 1)

for vector 𝜽
for scalar 𝜃

https://en.wikipedia.org/wiki/Abraham_Wald
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Correspondingly, the squared Wald statistic is chi-squared distributed:

𝑡(𝜽0)2
𝑡(𝜃0)2

𝑎∼ 𝜒2
𝑑

𝑎∼ 𝜒2
1

for vector 𝜽
for scalar 𝜃

The degree of freedom of the chi-squared distribution is the dimension 𝑑 of the
parameter vector 𝜽.

Example 4.5. Wald statistic for a proportion:

We continue from Example 4.3. With �̂�𝑀𝐿 = �̄� and V̂ar(�̂�𝑀𝐿) = �̂�𝑀𝐿(1−�̂�𝑀𝐿)
𝑛 and

thus ŜD(�̂�𝑀𝐿) =
√

�̂�𝑀𝐿(1−�̂�𝑀𝐿)
𝑛 we get as Wald statistic:

𝑡(𝑝0) =
�̄� − 𝑝0√
�̄�(1 − �̄�)/𝑛

𝑎∼ 𝑁(0, 1)

The squared Wald statistic is:

𝑡(𝑝0)2 = 𝑛
(�̄� − 𝑝0)2
�̄�(1 − �̄�)

𝑎∼ 𝜒2
1

Example 4.6. Wald statistic for the mean parameter of a normal distribution
with known variance:

We continue from Example 4.4. With �̂�𝑀𝐿 = �̄� and V̂ar(�̂�𝑀𝐿) = 𝜎2

𝑛 and thus
ŜD(�̂�𝑀𝐿) = 𝜎√

𝑛
we get as Wald statistic:

𝑡(𝜇0) =
�̄� − 𝜇0

𝜎/
√
𝑛

∼ 𝑁(0, 1)

Note this is the one sample 𝑡-statistic with given 𝜎. The squared Wald statistic
is:

𝑡(𝜇0)2 =
(�̄� − 𝜇0)2
𝜎2/𝑛 ∼ 𝜒2

1

Again, in this instance this is the exact distribution, not just the asymptotic one.

Using the Wald statistic or the squared Wald statistic we can test whether a
particular 𝜇0 can be rejected as underlying true parameter, and we can also
construct corresponding confidence intervals.

4.3.3 Normal confidence intervals using the Wald statistic
The asymptotic normality of MLEs derived from regular models enables us to
construct a corresponding normal confidence interval (CI):
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For example, to construct the asymptotic normal CI for the MLE of a scalar
parameter 𝜃 we use the MLE �̂�𝑀𝐿 as estimate of the mean and its standard
deviation ŜD(�̂�𝑀𝐿) computed from the observed Fisher information:

CI = [�̂�𝑀𝐿 ± 𝑐normalŜD(�̂�𝑀𝐿)]

𝑐𝑛𝑜𝑟𝑚𝑎𝑙 is a critical value for the standard-normal symmetric confidence interval
chosen to achieve the desired nominal coverage- The critical values are computed
using the inverse standard normal distribution function via 𝑐normal = Φ−1 ( 1+𝜅

2
)

(cf. refresher section in the Appendix).

coverage 𝜅 Critical value 𝑐normal

0.9 1.64
0.95 1.96
0.99 2.58

For example, for a CI with 95% coverage one uses the factor 1.96 so that

CI = [�̂�𝑀𝐿 ± 1.96 ŜD(�̂�𝑀𝐿)]

The normal CI can be expressed using Wald statistic as follows:

CI = {𝜃0 : |𝑡(𝜃0)| < 𝑐normal}

Similary, it can also be expressed using the squared Wald statistic:

CI = {𝜃0 : 𝑡(𝜽0)2 < 𝑐chisq}

Note that this form facilitates the construction of normal confidence intervals for
a parameter vector 𝜽0.

The following lists containst the critical values resulting from the chi-squared
distribution with degree of freedom 𝑚 = 1 for the three most common choices
of coverage 𝜅 for a normal CI for a univariate parameter:
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coverage 𝜅 Critical value 𝑐chisq (𝑚 = 1)
0.9 2.71
0.95 3.84
0.99 6.63

Example 4.7. Asymptotic normal confidence interval for a proportion:

We continue from Examples 4.3 and 4.5. Assume we observe 𝑛 = 30 measure-

ments with average �̄� = 0.7. Then �̂�𝑀𝐿 = �̄� = 0.7 and ŜD(�̂�𝑀𝐿) =
√

�̄�(1−�̄�)
𝑛 ≈ 0.084.

The symmetric asymptotic normal CI for 𝑝 with 95% coverage is given by
�̂�𝑀𝐿±1.96 ŜD(�̂�𝑀𝐿)which for the present data results in the interval [0.536, 0.864].
Example 4.8. Normal confidence interval for the mean:

We continue from Examples 4.4 and 4.6. Assume that we observe 𝑛 = 25
measurements with average �̄� = 10, from a normal with unknown mean and
variance 𝜎2 = 4.

Then �̂�𝑀𝐿 = �̄� = 10 and ŜD(�̂�𝑀𝐿) =
√

𝜎2

𝑛 = 2
5 .

The symmetric asymptotic normal CI for 𝑝 with 95% coverage is given by �̂�𝑀𝐿 ±
1.96 ŜD(�̂�𝑀𝐿) which for the present data results in the interval [9.216, 10.784].

4.3.4 Normal tests using the Wald statistic
Finally, recall the duality between confidence intervals and statistical tests.
Specifically, a confidence interval with coverage 𝜅 can be also used for testing as
follows.

• for every 𝜃0 inside the CI the data do not allow to reject the hypothesis that
𝜃0 is the true parameter with significance level 1 − 𝜅.

• Conversely, all values 𝜃0 outside the CI can be rejected to be the true
parameter with significance level 1 − 𝜅 .

Hence, in order to test whether 𝜽0 is the true underlying parameter value we
can compute the corresponding (squared) Wald statistic, find the desired critical
value and then decide on rejection.

Example 4.9. Asymptotic normal test for a proportion:

We continue from Example 4.7.

We now consider two possible values (𝑝0 = 0.5 and 𝑝0 = 0.8) as potentially true
underlying proportion.

The value 𝑝0 = 0.8 lies inside the 95% confidence interval [0.536, 0.864]. This
implies we cannot reject the hypthesis that this is the true underlying parameter
on 5% significance level. In contrast, 𝑝0 = 0.5 is outside the confidence interval
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so we can indeed reject this value. In other words, data plus model exclude this
value as statistically implausible.

This can be verified more directly by computing the corresponding (squared)
Wald statistics (see Example 4.5) and comparing them with the relevant critical
value (3.84 from chi-squared distribution for 5% significance level):

• 𝑡(0.5)2 =
(0.7−0.5)2

0.0842 = 5.71 > 3.84 hence 𝑝0 = 0.5 can be rejected.
• 𝑡(0.8)2 =

(0.7−0.8)2
0.0842 = 1.43 < 3.84 hence 𝑝0 = 0.8 cannot be rejected.

Note that the squared Wald statistic at the boundaries of the normal confidence
interval is equal to the critical value.

Example 4.10. Normal confidence interval and test for the mean:

We continue from Example 4.8.

We now consider two possible values (𝜇0 = 9.5 and 𝜇0 = 11) as potentially true
underlying mean parameter.

The value 𝜇0 = 9.5 lies inside the 95% confidence interval [9.216, 10.784]. This
implies we cannot reject the hypthesis that this is the true underlying parameter
on 5% significance level. In contrast, 𝜇0 = 11 is outside the confidence interval
so we can indeed reject this value. In other words, data plus model exclude this
value as a statistically implausible.

This can be verified more directly by computing the corresponding (squared)
Wald statistics (see Example 4.6) and comparing them with the relevant critical
values:

• 𝑡(9.5)2 =
(10−9.5)2

4/25 = 1.56 < 3.84 hence 𝜇0 = 9.5 cannot be rejected.

• 𝑡(11)2 =
(10−11)2

4/25 = 6.25 > 3.84 hence 𝜇0 = 11 can be rejected.

The squared Wald statistic at the boundaries of the confidence interval equals
the critical value.

Note that this is the standard one-sample test of the mean, and that it is exact,
not an approximation.

4.4 Example of a non-regular model
Not all models allow a quadratic approximation of the log-likelihood function
around the MLE. This is the case when the log-likelihood function is not
differentiable at the MLE. These models are called non-regular and for those
models the normal approximation is not available.

Example 4.11. Uniform distribution with upper bound 𝜃:

𝑥1 , . . . , 𝑥𝑛 ∼ 𝑈(0, 𝜃)
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With 𝑥[𝑖] we denote the ordered observations with 0 ≤ 𝑥[1] < 𝑥[2] < . . . < 𝑥[𝑛] ≤ 𝜃
and 𝑥[𝑛] = max(𝑥1 , . . . , 𝑥𝑛).

We would like to obtain both the maximum likelihood estimator �̂�𝑀𝐿 and its
distribution.

The probability density function of𝑈(0, 𝜃) is

𝑓 (𝑥 |𝜃) =
{

1
𝜃 if 𝑥 ∈ [0, 𝜃]
0 otherwise.

and on the log-scale

log 𝑓 (𝑥 |𝜃) =
{
− log𝜃 if 𝑥 ∈ [0, 𝜃]
−∞ otherwise.

Since all observed data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} lie in the interval [0, 𝜃] we get as
log-likelihood function

𝑙𝑛(𝜃 |𝐷) =
{
−𝑛 log𝜃 for 𝑥[𝑛] ≤ 𝜃

−∞ otherwise

Obtaining the MLE of 𝜃 is straightforward: −𝑛 log𝜃 is monotonically decreasing
with 𝜃 and 𝜃 ≥ 𝑥[𝑛] hence the log-likelihood function has a maximum at
�̂�𝑀𝐿 = 𝑥[𝑛].

However, there is a discontinuity in 𝑙𝑛(𝜃 |𝐷) at 𝑥[𝑛] and therefore 𝑙𝑛(𝜃 |𝐷) is not
differentiable at �̂�𝑀𝐿. Thus, there is no quadratic approximation around �̂�𝑀𝐿

and the observed Fisher information cannot be computed. Hence, the normal
approximation for the distribution of �̂�𝑀𝐿 is not valid regardless of sample size,
i.e. not even asymptotically for 𝑛 → ∞.

Nonetheless, we can in fact still obtain the sampling distribution of �̂�𝑀𝐿 = 𝑥[𝑛].
However, not via asymptotic arguments but instead by understanding that 𝑥[𝑛]
is an order statistic (see https://en.wikipedia.org/wiki/Order_statistic ) with

https://en.wikipedia.org/wiki/Order_statistic
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the following properties:

𝑥[𝑛] ∼ 𝜃 Beta(𝑛, 1)

E(𝑥[𝑛]) = 𝑛
𝑛+1𝜃

Var(𝑥[𝑛]) = 𝑛
(𝑛+1)2(𝑛+2)𝜃

2

"n-th order statistic"

≈ 𝜃2

𝑛2

Note that the variance decreases with 1
𝑛2 which is much faster than the usual 1

𝑛

of an “efficient” estimator. Correspondingly, �̂�𝑀𝐿 is a so-called “super efficient”
estimator.



Chapter 5

Likelihood-based confidence
interval and likelihood ratio

5.1 Likelihood-based confidence intervals and Wilks
statistic

5.1.1 General idea and definition of Wilks statistic
Instead of relying on normal / quadratic approximation, we can also use the
log-likelihood directly to find the so called likelihood confidence intervals:

Idea: find all 𝜽0 that have a log-likelihood that is almost as good as 𝑙𝑛(�̂�𝑀𝐿 |𝐷).

CI = {𝜽0 : 𝑙𝑛(�̂�𝑀𝐿 |𝐷) − 𝑙𝑛(𝜽0 |𝐷) ≤ Δ}

Here Δ is our tolerated deviation from the maximum log-likelihood. We will see
below how to determine a suitable Δ.

The above leads naturally to the Wilks log likelihood ratio statistic 𝑊(𝜽0)

65
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defined as:

𝑊(𝜽0) = 2 log
(
𝐿(�̂�𝑀𝐿 |𝐷)
𝐿(𝜽0 |𝐷)

)
= 2(𝑙𝑛(�̂�𝑀𝐿 |𝐷) − 𝑙𝑛(𝜽0 |𝐷))

With its help we can write the likelihood CI follows:

CI = {𝜽0 : 𝑊(𝜽0) ≤ 2Δ}

The Wilks statistic is named after Samuel S. Wilks (1906–1964).

Advantages of using a likelihood-based CI:

• not restricted to be symmetric
• enables to construct multivariate CIs for parameter vector easily even in

non-normal cases
• contains normal CI as special case

Question: how to choose Δ, i.e how to calibrate the likelihood interval?
Essentially, by comparing with a normal CI!

Example 5.1. Wilks statistic for the proportion:

The log-likelihood for the parameter 𝜃 is (cf. Example 3.1)

𝑙𝑛(𝜃 |𝐷) = 𝑛(�̄� log𝜃 + (1 − �̄�) log(1 − 𝜃))

Hence the Wilks statistic is

𝑊(𝜃0) = 2(𝑙𝑛(�̂�𝑀𝐿 |𝐷) − 𝑙𝑛(𝜃0 |𝐷))

= 2𝑛
(
�̄� log

(
�̄�

𝜃0

)
+ (1 − �̄�) log

(
1 − �̄�
1 − 𝜃0

))
Comparing with Example 2.8 we see that in this case the Wilks statistic is
essentially (apart from a scale factor 2𝑛) the KL divergence between two Bernoulli
distributions:

𝑊(𝜃0) = 2𝑛𝐷KL(Ber(�̂�𝑀𝐿), Ber(𝜃0))

Example 5.2. Wilks statistic for the mean parameter of a normal model:

The Wilks statistic is

𝑊(𝜇0)2 =
(�̄� − 𝜇0)2
𝜎2/𝑛

See Worksheet L3 for a derivation of the Wilks statistic directly from the log-
likelihood function.

Note this is the same as the squared Wald statistic discussed in Example 4.6.

https://en.wikipedia.org/wiki/Samuel_S._Wilks
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Comparing with Example 2.10 we see that in this case the Wilks statistic is
essentially (apart from a scale factor 2𝑛) the KL divergence between two normal
distributions with different means and variance equal to 𝜎2:

𝑊(𝑝0) = 2𝑛𝐷KL(𝑁(�̂�𝑀𝐿 , 𝜎
2), 𝑁(𝜇0 , 𝜎

2))

5.1.2 Quadratic approximation of Wilks statistic and squared
Wald statistic

Recall the quadratic approximation of the log-likelihood function 𝑙𝑛(𝜽0 |𝐷) (=
second order Taylor series around the MLE �̂�𝑀𝐿):

𝑙𝑛(𝜽0 |𝐷) ≈ 𝑙𝑛(�̂�𝑀𝐿 |𝐷) − 1
2 (𝜽0 − �̂�𝑀𝐿)𝑇 𝑱𝑛(�̂�𝑀𝐿)(𝜽0 − �̂�𝑀𝐿)

With this we can then approximate the Wilks statistic:

𝑊(𝜽0) = 2(𝑙𝑛(�̂�𝑀𝐿 |𝐷) − 𝑙𝑛(𝜽0 |𝐷))
≈ (𝜽0 − �̂�𝑀𝐿)𝑇 𝑱𝑛(�̂�𝑀𝐿)(𝜽0 − �̂�𝑀𝐿)
= 𝑡(𝜽0)2

Thus the quadratic approximation of the Wilks statistic yields the squared Wald
statistic!

Conversely, the Wilks statistic can be understood a generalisation of the squared
Wald statistic.

Example 5.3. Quadratic approximation of the Wilks statistic for a proportion
(continued from Example 5.1):

A Taylor series of second order (for 𝑝0 around �̄�) yields

log
(
�̄�

𝑝0

)
≈ −𝑝0 − �̄�

�̄�
+ (𝑝0 − �̄�)2

2�̄�2

and
log

(
1 − �̄�
1 − 𝑝0

)
≈
𝑝0 − �̄�
1 − �̄� +

(𝑝0 − �̄�)2
2(1 − �̄�)2

With this we can approximate the Wilks statistic of the proportion as

𝑊(𝑝0) ≈ 2𝑛
(
−(𝑝0 − �̄�) +

(𝑝0 − �̄�)2
2�̄� + (𝑝0 − �̄�) +

(𝑝0 − �̄�)2
2(1 − �̄�)

)
= 𝑛

( (𝑝0 − �̄�)2
�̄�

+ (𝑝0 − �̄�)2
(1 − �̄�)

)
= 𝑛

( (𝑝0 − �̄�)2
�̄�(1 − �̄�)

)
= 𝑡(𝑝0)2 .
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This verifies that the quadratic approximation of the Wilks statistic leads back to
the squared Wald statistic of Example 4.5.

Example 5.4. Quadratic approximation of the Wilks statistic for the mean
parameter of a normal model (continued from Example 5.2):

The normal log-likelihood is already quadratic in the mean parameter (cf. Exam-
ple 3.2). Correspondingly, the Wilks statistic is quadratic in the mean parameter
as well. Hence in this particular case the quadratic “approximation” is in fact
exact and the Wilks statistic and the squared Wald statistic are identical!

Correspondingly, confidence intervals and tests based on the Wilks statistic are
identical to those obtained using the Wald statistic.

5.1.3 Distribution of the Wilks statistic
The connection with the squared Wald statistic implies that both have asympoti-
cally the same distribution.

Hence, under 𝜽0 the Wilks statistic is distributed asymptotically as

𝑊(𝜽0) 𝑎∼ 𝜒2
𝑑

where 𝑑 is the number of parameters in 𝜽, i.e. the dimension of the model.

For scalar 𝜃 (i.e. single parameter and 𝑑 = 1) this becomes

𝑊(𝜃0) 𝑎∼ 𝜒2
1

This fact is known as Wilks’ theorem.

5.1.4 Cutoff values for the likelihood CI

coverage 𝜅 Δ =
𝑐chisq

2 (𝑚 = 1)
0.9 1.35
0.95 1.92
0.99 3.32

The asymptotic distribution for 𝑊 is useful to choose a suitable Δ for the
likelihood CI — note that 2Δ = 𝑐chisq where 𝑐chisq is the critical value for a
specified coverage 𝜅. This yields the above table for scalar parameter

Example 5.5. Likelihood confidence interval for a proportion:

We continue from Example 5.1, and as in Example 4.7 we asssume we have data
with 𝑛 = 30 and �̄� = 0.7.
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This yields (via numerical root finding) as the 95% likelihood confidence interval
the interval [0.524, 0.843]. It is similar but not identical to the corresponding
asymptotic normal interval [0.536, 0.864] obtained in Example 4.7.

The following figure illustrate the relationship between the normal CI, the
likelihood CI and also shows the role of the quadratic approximation (see also
Example 4.2). Note that:

• the normal CI is symmetric around the MLE whereas the likelihood CI is
not symmetric

• the normal CI is identical to the likelihood CI when using the quadratic
approximation!

0.3 0.4 0.5 0.6 0.7 0.8 0.9
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−
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−
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l n
(p
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5.1.5 Likelihood ratio test (LRT) using Wilks statistic
As in the normal case (with Wald statistic and normal CIs) one can also construct
a test using the Wilks statistic:

𝐻0 : 𝜽 = 𝜽0
𝐻1 : 𝜽 ≠ 𝜽0

True model is 𝜽0
True model is not 𝜽0

Null hypothesis
Alternative hypothesis

As test statistic we use the Wilks log likelihood ratio𝑊(𝜽0). Extreme values of
this test statistic imply evidence against 𝐻0.

Note that the null model is “simple” (= a single parameter value) whereas the
alternative model is “composite” (= a set of parameter values).
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Remarks:

• The composite alternative 𝐻1 is represented by a single point (the MLE).
• Reject 𝐻0 for large values of𝑊(𝜽0)
• under 𝐻0 and for large 𝑛 the statistic 𝑊(𝜽0) is chi-squared distributed,

i.e. 𝑊(𝜽0) 𝑎∼ 𝜒2
𝑑
. This allows to compute critical values (i.e tresholds

to declared rejection under a given significance level) and also 𝑝-values
corresponding to the observed test statistics.

• Models outside the CI are rejected
• Models inside the CI cannot be rejected, i.e. they can’t be statistically

distinguished from the best alternative model.

A statistic equivalent to𝑊(𝜽0) is the likelihood ratio

Λ(𝜽0) =
𝐿(𝜽0 |𝐷)
𝐿(�̂�𝑀𝐿 |𝐷)

The two statistics can be transformed into each other by𝑊(𝜽0) = −2 logΛ(𝜽0)
and Λ(𝜽0) = 𝑒−𝑊(𝜽0)/2. We reject 𝐻0 for small values of Λ.

It can be shown that the likelihood ratio test to compare two simple models
is optimal in the sense that for any given specified type I error (=probability
of wrongly rejecting 𝐻0, i.e. the sigificance level) it will maximise the power
(=1- type II error, probability of correctly accepting 𝐻1). This is known as the
Neyman-Pearson theorem.

Example 5.6. Likelihood test for a proportion:

We continue from Example 5.5 with 95% likelihood confidence interval
[0.524, 0.843].
The value 𝑝0 = 0.5 is outside the CI and hence can be rejected whereas 𝑝0 = 0.8
is insided the CI and hence cannot be rejected on 5% significance level.

The Wilks statistic for 𝑝0 = 0.5 and 𝑝0 = 0.8 takes on the following values:

• 𝑊(0.5) = 4.94 > 3.84 hence 𝑝0 = 0.5 can be rejected.
• 𝑊(0.8) = 1.69 < 3.84 hence 𝑝0 = 0.8 cannot be rejected.

Note that the Wilks statistic at the boundaries of the likelihood confidence
interval is equal to the critical value (3.84 corresponding to 5% significance level
for a chi-squared distribution with 1 degree of freedom).

Compare also with the normal test for a proportion in Example 4.9.

5.1.6 Origin of likelihood ratio statistic
The likelihood ratio statistic is asymptotically linked to differences in the KL
divergences of the two compared models with the underlying true model.

Assume that 𝐹 is the true (and unknown) data generating model and that 𝐺𝜽

is a family of models and we would like to compare two candidate models 𝐺𝐴
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and 𝐺𝐵 corresponding to parameters 𝜽𝐴 and 𝜽𝐵 on the basis of observed data
𝐷 = {𝑥1 , . . . , 𝑥𝑛}. The KL divergences 𝐷KL(𝐹, 𝐺𝐴) and 𝐷KL(𝐹, 𝐺𝐵) indicate how
close each of the models 𝐺𝐴 and 𝐺𝐵 fit the true 𝐹. The difference of the two
divergences is a way to measure the relative fit of the two models, and can be
computed as

𝐷KL(𝐹, 𝐺𝐵) − 𝐷KL(𝐹, 𝐺𝐴) = E𝐹 log
𝑔(𝑥 |𝜽𝐴)
𝑔(𝑥 |𝜽𝐵)

Replacing 𝐹 by the empirical distribution �̂�𝑛 leads to the large sample approxi-
mation

2𝑛(𝐷KL(𝐹, 𝐺𝐵) − 𝐷KL(𝐹, 𝐺𝐴)) ≈ 2(𝑙𝑛(𝜽𝐴 |𝐷) − 𝑙𝑛(𝜽𝐵 |𝐷))

Hence, the difference in the log-likelihoods provides an estimate of the difference
in the KL divergence of the two models involved.

The Wilks log likelihood ratio statistic

𝑊(𝜽0) = 2(𝑙𝑛(�̂�𝑀𝐿 |𝐷) − 𝑙𝑛(𝜽0 |𝐷))

thus compares the best-fit distribution with �̂�𝑀𝐿 as the parameter to the distri-
bution with parameter 𝜽0.

For some specific models the Wilks statistic can also be written in the form of
the KL divergence:

𝑊(𝜽0) = 2𝑛𝐷KL(𝐹�̂�𝑀𝐿
, 𝐹𝜽0)

This is the case for the examples 5.1 and 5.2 and also more generally for
exponential family models, but it is not true in general.

5.2 Generalised likelihood ratio test (GLRT)
Also known as maximum likelihood ratio test (MLRT). The Generalised
Likelihood Ratio Test (GLRT) works just like the standard likelihood ratio test
with the difference that now the null model 𝐻0 is also a composite model.

𝐻0 : 𝜽 ∈ 𝜔0 ⊂ Ω

𝐻1 : 𝜽 ∈ 𝜔1 = Ω \ 𝜔0

True model lies in restricted model space
True model is not the restricted model space

Both 𝐻0 and 𝐻1 are now composite hypotheses. Ω represents the unrestricted
model space with dimension (=number of free parameters) 𝑑 = |Ω|. The
constrained space 𝜔0 has degree of freedom 𝑑0 = |𝜔0 | with 𝑑0 < 𝑑. Note that in
the standard LRT the set 𝜔0 is a simple point with 𝑑0 = 0 as the null model is a
simple distribution. Thus, LRT is contained in GLRT as special case!

The corresponding generalised (log) likelihood ratio statistic is given by
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𝑊 = 2 log

(
𝐿(�̂�𝑀𝐿 |𝐷)
𝐿(�̂�0

𝑀𝐿
|𝐷)

)
and Λ =

max
𝜃∈𝜔0

𝐿(𝜃 |𝐷)

max
𝜃∈Ω

𝐿(𝜃 |𝐷)

where 𝐿(�̂�𝑀𝐿 |𝐷) is the maximised likelihood assuming the full model (with
parameter space Ω) and 𝐿(�̂�0

𝑀𝐿
|𝐷) is the maximised likelihood for the restricted

model (with parameter space 𝜔0). Hence, to compute the GRLT test statistic we
need to perform two optimisations, one for the full and another for the restricted
model.

Remarks:

• MLE in the restricted model space 𝜔0 is taken as a representative of 𝐻0.
• The likelihood is maximised in both numerator and denominator.
• The restricted model is a special case of the full model (i.e. the two models

are nested).
• The asymptotic distribution of𝑊 is chi-squared with degree of freedom

depending on both 𝑑 and 𝑑0:

𝑊
𝑎∼ 𝜒2

𝑑−𝑑0

• This result is due to Wilks (1938) 1. Note that it assumes that the true
model is contained among the investigated models.

• If 𝐻0 is a simple hypothesis (i.e. 𝑑0 = 0) then the standard LRT (and
corresponding CI) is recovered as special case of the GLRT.

Example 5.7. GLRT example:

Case-control study: (e.g. “healthy” vs. “disease”)
we observe normal data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} from two groups with sample size
𝑛1 and 𝑛2 (and 𝑛 = 𝑛1 + 𝑛2), with two different means 𝜇1 and 𝜇2 and common
variance 𝜎2:

𝑥1 , . . . , 𝑥𝑛1 ∼ 𝑁(𝜇1 , 𝜎
2)

and
𝑥𝑛1+1 , . . . , 𝑥𝑛 ∼ 𝑁(𝜇2 , 𝜎

2)

Question: are the two means 𝜇1 and 𝜇2 the same in the two groups?

𝐻0 : 𝜇1 = 𝜇2 (with variance unknown, i.e. treated as nuisance parameter)
𝐻1 : 𝜇1 ≠ 𝜇2

1Wilks, S. S. 1938. The large-sample distribution of the likelihood ratio for testing composite hypotheses.
Ann. Math. Statist. 9:60–62. https://doi.org/10.1214/aoms/1177732360

https://doi.org/10.1214/aoms/1177732360
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Restricted and full models:

𝜔0: restricted model with two parameters 𝜇0 and 𝜎2
0 (so that 𝑥1 , . . . , 𝑥𝑛 ∼

𝑁(𝜇0 , 𝜎2
0) ).

Ω: full model with three parameters 𝜇1 , 𝜇2 , 𝜎2.

Corresponding log-likelihood functions:

Restricted model 𝜔0:

log 𝐿(𝜇0 , 𝜎
2
0 |𝐷) = −𝑛2 log(𝜎2

0) −
1

2𝜎2
0

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇0)2

Full model Ω:

log 𝐿(𝜇1 , 𝜇2 , 𝜎
2 |𝐷) =

(
−𝑛1

2 log(𝜎2) − 1
2𝜎2

𝑛1∑
𝑖=1

(𝑥𝑖 − 𝜇1)2
)
+(

−𝑛2
2 log(𝜎2) − 1

2𝜎2

𝑛∑
𝑖=𝑛1+1

(𝑥𝑖 − 𝜇2)2
)

= −𝑛2 log(𝜎2) − 1
2𝜎2

(
𝑛1∑
𝑖=1

(𝑥𝑖 − 𝜇1)2 +
𝑛∑

𝑖=𝑛1+1
(𝑥𝑖 − 𝜇2)2

)
Corresponding MLEs:

𝜔0 :

Ω :

�̂�0 = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖

�̂�1 = 1
𝑛1

∑𝑛1
𝑖=1 𝑥𝑖

�̂�2 = 1
𝑛2

∑𝑛
𝑖=𝑛1+1 𝑥𝑖

𝜎2
0 = 1

𝑛

∑𝑛
𝑖=1(𝑥𝑖 − �̂�0)2

𝜎2 = 1
𝑛

{∑𝑛1
𝑖=1(𝑥𝑖 − �̂�1)2 +

∑𝑛
𝑖=𝑛1+1(𝑥𝑖 − �̂�2)2

}
Note that the estimated means are related by

�̂�0 =
𝑛1
𝑛
�̂�1 +

𝑛2
𝑛
�̂�2

so the overall mean is the weighted average of the two individual group means.

Moreover, the two estimated variances are related by

𝜎2
0 = 𝜎2 + 𝑛1𝑛2

𝑛2 (�̂�1 − �̂�2)2

= 𝜎2 ©«1 + 1
𝑛

(�̂�1 − �̂�2)2
𝑛

𝑛1𝑛2
𝜎2

ª®¬
= 𝜎2

(
1 +

𝑡2
𝑀𝐿

𝑛

)
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with

𝑡𝑀𝐿 =
�̂�1 − �̂�2√(
1
𝑛1

+ 1
𝑛2

)
𝜎2

(the 𝑡-statistic based on the ML variance estimate 𝜎2, see Appendix).

The above is an example of a variance decomposition, with

• 𝜎2
0 being the estimated total variance,

• 𝜎2 the estimated within-group variance and
• 𝜎2 𝑡

2
𝑀𝐿

𝑛 =
𝑛1𝑛2
𝑛2 (�̂�1 − �̂�2)2 the estimated between-group variance.

and

• �̂�2

�̂�2
0

= 1 + 𝑡2
𝑀𝐿

𝑛

Corresponding maximised log-likelihood:

Restricted model:

log 𝐿(�̂�0 , 𝜎2
0 |𝐷) = −𝑛2 log(𝜎2

0) −
𝑛

2

Full model:

log 𝐿(�̂�1 , �̂�2 , 𝜎2 |𝐷) = −𝑛2 log(𝜎2) − 𝑛

2

Likelihood ratio statistic:

𝑊 = 2 log ©«
𝐿(�̂�1 , �̂�2 , 𝜎2 |𝐷)

𝐿(�̂�0 , 𝜎2
0 |𝐷)

ª®¬
= 2 log 𝐿

(
�̂�1 , �̂�2 , 𝜎2 |𝐷

)
− 2 log 𝐿

(
�̂�0 , 𝜎2

0 |𝐷
)

= 𝑛 log ©«
𝜎2

0

𝜎2

ª®¬
= 𝑛 log

(
1 +

𝑡2
𝑀𝐿

𝑛

)
The last step uses the decomposition for the total variance 𝜎2

0 .



5.2. GENERALISED LIKELIHOOD RATIO TEST (GLRT) 75

We can express this also in terms of the conventional two sample 𝑡-statistic

𝑡 =
�̂�1 − �̂�2√(

1
𝑛1

+ 1
𝑛2

)
𝜎2UB

that uses an unbiased estimate of the variance rather than the MLE, with
𝜎2UB = 𝑛

𝑛−2𝜎
2 and thus 𝑡2/(𝑛 − 2) = 𝑡2

𝑀𝐿
/𝑛. This yields

𝑊 = 𝑛 log
(
1 + 𝑡2

𝑛 − 2

)
Thus, the log-likelihood ratio statistic𝑊 is a monotonic function (a one-to-one
transformation!) of the (squared) two sample 𝑡-statistic!

Asymptotic distribution:

The degree of freedom of the full model is 𝑑 = 3 and that of the constrained
model 𝑑0 = 2 so the generalised log likelihood ratio statistic 𝑊 is distributed
asymptotically as 𝜒2

1. Hence, we reject the null model on 5% significance level
for all𝑊 > 3.84.

Other application of GLRTs

As shown above, the two sample 𝑡 statistic can be derived as a likelihood ratio
statistic.

More generally, it turns out many other commonly used familiar statistical tests
and test statistics can be interpreted as GLRTs. This shows the wide applicability
of this procedure.
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Chapter 6

Optimality properties and
conclusion

6.1 Properties of maximum likelihood encountered
so far

1. MLE is a special case of relative entropy minimisation valid for large samples.
2. MLE can be seen as generalisation of least squares (and conversely, least

squares is a special case of ML).

Kullback-Leibler 1951
Entropy learning: minimise 𝐷KL(𝐹true , 𝐹𝜽)

↓
large 𝑛

↓
Fisher 1922

Maximise Likelihood 𝐿(𝜽 |𝐷)
↓

normal model
↓

Gauss 1805
Minimise squared error

∑
𝑖(𝑥𝑖 − 𝜃)2

3. Given a model, derivation of the MLE is basically automatic (only optimi-
sation required)!

4. MLEs are consistent, i.e. if the true underlying model 𝐹true with parameter
𝜽true is contained in the set of specified candidates models 𝐹𝜽 then the
MLE will converge to the true model.
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5. Correspondingly, MLEs are asympotically unbiased.

6. However, MLEs are not necessarily unbiased in finite samples (e.g. the
MLE of the variance parameter in the normal distribution).

7. The maximum likelihood is invariant against parameter transformations.

8. In regular situations (when local quadratic approximation is possible) MLEs
are asympotically normally distributed, with the asymptotic variance
determined by the observed Fisher information.

9. In regular situations and for large sample size MLEs are asympotically
optimally efficient (Cramer-Rao theorem): For large samples the MLE
achieves the lowest possible variance possible in an estimator — this is the
so-called Cramer-Rao lower bound. The variance decreases to zero with
𝑛 → ∞ typically with rate 1/𝑛.

10. The likelihood ratio can be used to construct optimal tests (in the sense of
the Neyman-Pearson theorem).

6.2 Summarising data and the concept of (minimal)
sufficiency

6.2.1 Sufficient statistic
Another important concept in statistics and likelihood theory are so-called
sufficient statistics to summarise the information available in the data about a
parameter in a model.

Generally, a statistic 𝑇(𝐷) is function of the observed data 𝐷 = {𝑥1 , . . . , 𝑥𝑛}. The
statistic 𝑇(𝐷) can be of any type and value (scalar, vector, matrix etc. — even
a function). 𝑇(𝐷) is called a summary statistic if it describes important aspects
of the data such as location (e.g. the average avg(𝐷) = �̄�, the median) or scale
(e.g. standard deviation, interquartile range).

A statistic 𝑇(𝐷) is said to be sufficient for a parameter 𝜽 in a model if the
corresponding likelihood function can be written using only 𝑇(𝐷) in the terms
that involve 𝜽 such that

𝐿(𝜽 |𝐷) = ℎ(𝑇(𝐷), 𝜽) 𝑘(𝐷) ,

where ℎ() and 𝑘() are positive-valued functions, and or equivalently on log-scale

𝑙𝑛(𝜽) = log ℎ(𝑇(𝐷), 𝜽) + log 𝑘(𝐷) .

This is known as the Fisher-Pearson factorisation.

By construction, estimation and inference about 𝜽 based on the factorised
likelihood 𝐿(𝜽) is mediated through the sufficient statistic 𝑇(𝐷) and does not
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require the original data 𝐷. Instead, the sufficient statistic 𝑇(𝐷) contains all the
information in 𝐷 required to learn about the parameter 𝜽.

Therefore, if the MLE �̂�𝑀𝐿 of 𝜽 exists and is unique then the MLE is a unique
function of the sufficient statistic 𝑇(𝐷). If the MLE is not unique then it can be
chosen to be function of 𝑇(𝐷). Note that a sufficient statistic always exists since
the data 𝐷 are themselves sufficient statistics, with 𝑇(𝐷) = 𝐷. Furthermore,
sufficient statistics are not unique since applying a one-to-one transformation to
𝑇(𝐷) yields another sufficient statistic.

6.2.2 Induced partioning of data space and likelihood equiva-
lence

Every sufficient statistic 𝑇(𝐷) induces a partitioning of the space of data sets by
clustering all hypothetical outcomes for which the statistic 𝑇(𝐷) assumes the
same value 𝑡:

𝒳𝑡 = {𝐷 : 𝑇(𝐷) = 𝑡}
The data sets in 𝒳𝑡 are equivalent in terms of the sufficient statistic 𝑇(𝐷). Note
that this implies that 𝑇(𝐷) is not a 1:1 transformation of 𝐷. Instead of 𝑛 data
points 𝑥1 , . . . , 𝑥𝑛 as few as one or two summaries (such as mean and variance)
may be sufficient to fully convey all the information in the data about the model
parameters. Thus, transforming data 𝐷 using a sufficient statistic 𝑇(𝐷) may
result in substantial data reduction.

Two data sets 𝐷1 and 𝐷2 for which the ratio of the corresponding likelihoods
𝐿(𝜽 |𝐷1)/𝐿(𝜽 |𝐷2) does not depend on 𝜽 (so the two likelihoods are proportional
to each other by a constant) are called likelihood equivalent because a likelihood-
based procedure to learn about 𝜽 will draw identical conclusions from 𝐷1 and
𝐷2. For data sets 𝐷1 , 𝐷2 ∈ 𝒳𝑡 which are equivalent with respect to a sufficient
statistic 𝑇 it follows directly from the Fisher-Pearson factorisation that the ratio

𝐿(𝜽 |𝐷1)/𝐿(𝜽 |𝐷2) = 𝑘(𝐷1)/𝑘(𝐷2)

and thus is constant with regard to 𝜽. As a result, all data sets in 𝒳𝑡 are
likelihood equivalent. However, the converse is not true: depending on the
sufficient statistics there usually will be many likelihood equivalent data sets
that are not part of the same set 𝒳𝑡 .

6.2.3 Minimal sufficient statistics
Of particular interest is therefore to find those sufficient statistics that achieve the
coarsest partitioning of the sample space and thus may allow the highest data
reduction. Specifically, a minimal sufficient statistic is a sufficient statistic for
which all likelihood equivalent data sets also are equivalent under this statistic.

Therefore, to check whether a sufficient statistic 𝑇(𝐷) is minimally sufficient
we need to verify whether for any two likelihood equivalent data sets 𝐷1 and
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𝐷2 it also follows that 𝑇(𝐷1) = 𝑇(𝐷2). If this holds true then 𝑇 is a minimally
sufficient statistic.

An equivalent non-operational definition is that a minimal sufficient statistic
𝑇(𝐷) is a sufficient statistic that can be computed from any other sufficient
statistic 𝑆(𝐷). This follows from the above directly: assume any sufficient
statistic 𝑆(𝐷), this defines a corresponding set 𝒳𝑠 of likelihood equivalent data
sets. By implication any𝐷1 , 𝐷2 ∈ 𝒳𝑠 will necessarily also be in 𝒳𝑡 , thus whenever
𝑆(𝐷1) = 𝑆(𝐷2) we also have 𝑇(𝐷1) = 𝑇(𝐷2), and therefore 𝑇(𝐷1) is a function of
𝑆(𝐷1).
A trivial but important example of a minimal sufficient statistic is the likelihood
function itself since by definition it can be computed from any set of sufficient
statistics. Thus the likelihood function 𝐿(𝜽) captures all information about 𝜽
that is available in the data. In other words, it provides an optimal summary
of the observed data with regard to a model. Note that in Bayesian statistics
(to be discussed in Part 2 of the module) the likelihood function is used as
proxy/summary of the data.

6.2.4 Example: normal distribution
Example 6.1. Sufficient statistics for the parameters of the normal distribution:

The normal model𝑁(𝜇, 𝜎2)with parameter vector𝜽 = (𝜇, 𝜎2)𝑇 and log-likelihood

𝑙𝑛(𝜽) = −𝑛2 log(2𝜋𝜎2) − 1
2𝜎2

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇)2

One possible set of minimal sufficient statistics for 𝜽 are �̄� and 𝑥2, and with these
we can rewrite the log-likelihood function without any reference to the original
data 𝑥1 , . . . , 𝑥𝑛 as follows

𝑙𝑛(𝜽) = −𝑛2 log(2𝜋𝜎2) − 𝑛

2𝜎2 (𝑥2 − 2�̄�𝜇 + 𝜇2)

An alternative set of minimal sufficient statistics for 𝜽 consists of 𝑠2 = 𝑥2 − �̄�2 =

𝜎2
𝑀𝐿 as and �̄� = �̂�𝑀𝐿. The log-likelihood written in terms of 𝑠2 and �̄� is

𝑙𝑛(𝜽) = −𝑛2 log(2𝜋𝜎2) − 𝑛

2𝜎2 (𝑠
2 + (�̄� − 𝜇)2)

Note that in this example the dimension of the parameter vector 𝜽 equals the
dimension of the minimal sufficient statistic, and furthermore, that the MLEs of
the parameters are in fact minimal sufficient!

6.2.5 MLEs of parameters of an exponential family are minimal
sufficient statistics

The conclusion from Example 6.1 holds true more generally: in an exponential
family model (such as the normal distribution as particular important case)
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the MLEs of the parameters are minimal sufficient statistics. Thus, there will
typically be substantial dimension reduction from the raw data to the sufficient
statistics.

However, outside exponential families the MLE is not necessarily a minimal
sufficient statistic, and may not even be a sufficient statistic. This is because a
(minimal) sufficient statistic of the same dimension as the parameters does
not always exist. A classic example is the Cauchy distribution for which the
minimal sufficient statistics are the ordered observations, thus the MLE of the
parameters do not constitute sufficient statistics, let alone minimal sufficient
statistics. However, the MLE is of course still a function of the minimal sufficient
statistic.

In summary, the likelihood function acts as perfect data summariser (i.e. as mini-
mally sufficient statistic), and in exponential families (e.g. normal distribution)
the MLEs of the parameters �̂�𝑀𝐿 are minimal sufficient.

Finally, while sufficiency is clearly a useful concept for data reduction one needs
to keep in mind that this is always in reference to a specific model. Therefore,
unless one strongly believes in a certain model it is generally a good idea to keep
(and not discard!) the original data.

6.3 Concluding remarks on maximum likelihood

6.3.1 Remark on KL divergence

Finding the model 𝐹𝜽 that best approximates the underlying true model 𝐹0 is
done by minimising the relative entropy 𝐷KL(𝐹0 , 𝐹𝜽). For large sample size
𝑛 we may approximate 𝐹0 by the empirical distribution �̂�0, and minimising
𝐷KL(�̂�0 , 𝐹𝜽) then yields the method of maximum likelihood, as discussed earlier.

However, since the KL divergence is not symmetric there are in fact two ways
to minimise the divergence between a fixed 𝐹0 and the family 𝐹𝜽, each with
different properties:

a) forward KL, approximation KL: min𝜽 𝐷KL(𝐹0 , 𝐹𝜽)

Note that here we keep the first argument fixed and minimise KL by
changing the second argument.

This is also called an “M (Moment) projection”. It has a zero avoiding
property: 𝑓𝜽(𝑥) > 0 whenever 𝑓0(𝑥) > 0.

This procedure is mean-seeking and inclusive, i.e. when there are multiple
modes in the density of 𝐹0 a fitted unimodal density 𝐹�̂� will seek to cover
all modes.
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b) reverse KL, inference KL: min𝜽 𝐷KL(𝐹𝜽 , 𝐹0)

Note that here we keep the second argument fixed and minimise KL by
changing the first argument.

This is also called an “I (Information) projection”. It has a zero forcing
property: 𝑓𝜽(𝑥) = 0 whenever 𝑓0(𝑥) = 0.

This procedure is mode-seeking and exclusive, i.e. when there are multiple
modes in the density of 𝐹0 a fitted unimodal density 𝐹�̂� will seek out one
mode to the exclusion of the others.

Maximum likelihood is based on “forward KL”, whereas Bayesian updating and
Variational Bayes approximations use “reverse KL”.

6.3.2 What happens if 𝑛 is small?
From the long list of optimality properties of ML it is clear that for large sample
size 𝑛 the best estimator will typically be the MLE.

However, for small sample size it is indeed possible (and necessary) to improve
over the MLE (e.g. via Bayesian estimation or regularisation). Some of these
ideas will be discussed in Part II.

• Likelihood will overfit!

Alternative methods need to be used:

• regularised/penalised likelihood
• Bayesian methods

which are essentially two sides of the same coin.
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Classic example of a simple non-ML estimator that is better than the MLE: Stein’s
example / Stein paradox (C. Stein, 1955):

• Problem setting: estimation of the mean in multivariate case

• Maximum likelihood estimation breaks down! → average (=MLE) is worse
in terms of MSE than Stein estimator.

• For small 𝑛 the asymptotic distributions for the MLE and for the LRT are
not accurate, so for inference in these situations the distributions may need
to be obtained by simulation (e.g. parametric or nonparametric bootstrap).

6.3.3 Model selection
• CI are sets of models that are not statistically distinguishable from the best

ML model
• in doubt, choose the simplest model compatible with data
• better prediction, avoids overfitting
• Useful for model exploration and model building.

• Note that, by construction, the model with more parameters always has a
higher likelihood, implying likelihood favours complex models

• Complex model may overfit!

• For comparison of models penalised likelihood or Bayesian approaches
may be necessary

• Model selection in small samples and high dimension is challenging

• Recall that the aim in statistics is not about rejecting models (this is easy as
for large sample size any model will be rejected!)

• Instead, the aim is model building, i.e. to find a model that explains the
data well and that predicts well!

• Typically, this will not be the best-fit ML model, but rather a simpler model
that is close enough to the best / most complex model.
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Part II

Bayesian Statistics
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Chapter 7

Conditioning and Bayes rule

In this chapter we review conditional probabilities. Conditional probability is
essential for Bayesian statistical modelling.

7.1 Conditional probability
Assume we have two random variables 𝑥 and 𝑦 with a joint density (or joint
PMF) 𝑝(𝑥, 𝑦). By definition

∫
𝑥,𝑦
𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1.

The marginal densities for the individual 𝑥 and 𝑦 are given by 𝑝(𝑥) =
∫
𝑦
𝑝(𝑥, 𝑦)𝑑𝑦

and 𝑝(𝑦) =
∫
𝑥
𝑓 (𝑥, 𝑦)𝑑𝑥. Thus, when computing the marginal densities a variable

is removed from the joint density by integrating over all possible states of that
variable. It follows also that

∫
𝑥
𝑝(𝑥)𝑑𝑥 = 1 and

∫
𝑦
𝑝(𝑦)𝑑𝑦 = 1, i.e. the marginal

densities also integrate to 1.

As alternative to integrating out a random variable in the joint density 𝑝(𝑥, 𝑦)
we may wish to keep it fixed at some value, say keep 𝑦 fixed at 𝑦0. In this case
𝑝(𝑥, 𝑦 = 𝑦0) is proportional to the conditional density (or PMF) given by the
ratio

𝑝(𝑥 |𝑦 = 𝑦0) =
𝑝(𝑥, 𝑦 = 𝑦0)
𝑝(𝑦 = 𝑦0)

The denominator 𝑝(𝑦 = 𝑦0) =
∫
𝑥
𝑝(𝑥, 𝑦 = 𝑦0)𝑑𝑥 is needed to ensure that∫

𝑥
𝑝(𝑥 |𝑦 = 𝑦0)𝑑𝑥 = 1, thus it renormalises 𝑝(𝑥, 𝑦 = 𝑦0) so that it is a proper

density.

To simplify notation, the specific value on which a variable is conditioned is
often left out so we just write 𝑝(𝑥 |𝑦).
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7.2 Bayes’ theorem
Thomas Bayes (1701-1761) was the first to state Bayes’ theorem on conditional
probabilities.

Using the definition of conditional probabilities we see that the joint density can
be written as the product of marginal and conditional density in two different
ways:

𝑝(𝑥, 𝑦) = 𝑝(𝑥 |𝑦)𝑝(𝑦) = 𝑝(𝑦 |𝑥)𝑝(𝑥)

This directly leads to Bayes’ theorem:

𝑝(𝑥 |𝑦) = 𝑝(𝑦 |𝑥) 𝑝(𝑥)
𝑝(𝑦)

This rule relates the two possible conditional densities (or conditional probability
mass functions) for two random variables 𝑥 and 𝑦. It thus allows to reverse the
ordering of conditioning.

Bayes’s theorem was published in 1763 only after his death by Richard Price
(1723-1791):

Pierre-Simon Laplace independently published Bayes’ theorem in 1774 and he
was in fact the first to routinely apply it to statistical calculations.

7.3 Conditional mean and variance
The mean E(𝑥 |𝑦) and variance Var(𝑥 |𝑦) of the conditional distribution with
density 𝑝(𝑥 |𝑦) are called conditional mean and conditional variance.

The law of total expectation states that

E(𝑥) = E(E(𝑥 |𝑦))

The law of total variance states that

Var(𝑥) = Var(E(𝑥 |𝑦)) + E(Var(𝑥 |𝑦))

The first term is the “explained” or “between-group” variance, and the second
the “unexplained” or “mean within group” variance.

Example 7.1. Mean and variance of a mixture model:

Assume 𝐾 groups indicated by a discrete variable 𝑦 = 1, 2, . . . , 𝐾with probability
𝑝(𝑦) = 𝜋𝑦 . In each group the observations 𝑥 follow a density 𝑝(𝑥 |𝑦) with
conditional mean 𝐸(𝑥 |𝑦) = 𝜇𝑦 and conditional variance Var(𝑥 |𝑦) = 𝜎2

𝑦 . The
joint density for 𝑥 and 𝑦 is 𝑝(𝑥, 𝑦) = 𝜋𝑦𝑝(𝑥 |𝑦). The marginal density for 𝑥 is∑𝐾
𝑦=1 𝜋𝑦𝑝(𝑥 |𝑦). This is called a mixture model.

https://de.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/An_Essay_towards_solving_a_Problem_in_the_Doctrine_of_Chances
https://en.wikipedia.org/wiki/Richard_Price
https://en.wikipedia.org/wiki/Richard_Price
https://de.wikipedia.org/wiki/Pierre-Simon_Laplace


7.4. CONDITIONAL ENTROPY AND ENTROPY CHAIN RULES 89

The total mean E(𝑥) = 𝜇0 is equal to
∑𝐾
𝑦=1 𝜋𝑦𝜇𝑦 .

The total variance Var(𝑥) = 𝜎2
0 is equal to

𝐾∑
𝑦=1

𝜋𝑦(𝜇𝑦 − 𝜇0)2 +
𝐾∑
𝑦=1

𝜋𝑦𝜎
2
𝑦

7.4 Conditional entropy and entropy chain rules
For the entropy of the joint distribution we find that

𝐻(𝑃𝑥,𝑦) = −E𝑃𝑥,𝑦 log 𝑝(𝑥, 𝑦)
= −E𝑃𝑥E𝑃𝑦 |𝑥 (log 𝑝(𝑥) + log 𝑝(𝑦 |𝑥)
= −E𝑃𝑥 log 𝑝(𝑥) − E𝑃𝑥E𝑃𝑦 |𝑥 log 𝑝(𝑦 |𝑥)
= 𝐻(𝑃𝑥) + 𝐻(𝑃𝑦 |𝑥)

thus it decomposes into the entropy of the marginal distribution and the
conditional entropy defined as

𝐻(𝑃𝑦 |𝑥) = −E𝑃𝑥E𝑃𝑦 |𝑥 log 𝑝(𝑦 |𝑥)

Note that to simplify notation by convention the expectation E𝑃𝑥 over the variable
𝑥 that we condition on (𝑥) is implicitly assumed.

Similarly, for the cross-entropy we get

𝐻(𝑄𝑥,𝑦 , 𝑃𝑥,𝑦) = −E𝑄𝑥,𝑦 log 𝑝(𝑥, 𝑦)
= −E𝑄𝑥E𝑄𝑦 |𝑥 log ( 𝑝(𝑥) 𝑝(𝑦 |𝑥) )
= −E𝑄𝑥 log 𝑝(𝑥) − E𝑄𝑥E𝑄𝑦 |𝑥 log 𝑝(𝑦 |𝑥)
= 𝐻(𝑄𝑥 , 𝑃𝑥) + 𝐻(𝑄𝑦 |𝑥 , 𝑃𝑦 |𝑥)

where the conditional cross-entropy is defined as

𝐻(𝑄𝑦 |𝑥 , 𝑃𝑦 |𝑥) = −E𝑄𝑥E𝑄𝑦 |𝑥 log 𝑝(𝑦 |𝑥)

Note again the implicit expectation E𝑄𝑥 over 𝑥 implied in this notation.

The KL divergence between the joint distributions can be decomposed as follows:

𝐷KL(𝑄𝑥,𝑦 , 𝑃𝑥,𝑦) = E𝑄𝑥,𝑦 log
(
𝑞(𝑥, 𝑦)
𝑝(𝑥, 𝑦)

)
= E𝑄𝑥E𝑄𝑦 |𝑥 log

(
𝑞(𝑥)𝑞(𝑦 |𝑥)
𝑝(𝑥)𝑝(𝑦 |𝑥)

)
= E𝑄𝑥 log

(
𝑞(𝑥)
𝑝(𝑥)

)
+ E𝑄𝑥E𝑄𝑦 |𝑥 log

(
𝑞(𝑦 |𝑥)
𝑝(𝑦 |𝑥)

)
= 𝐷KL(𝑄𝑥 , 𝑃𝑥) + 𝐷KL(𝑄𝑦 |𝑥 , 𝑃𝑦 |𝑥)
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with the conditional KL divergence or conditional relative entropy defined as

𝐷KL(𝑄𝑦 |𝑥 , 𝑃𝑦 |𝑥) = E𝑄𝑥E𝑄𝑦 |𝑥 log
(
𝑞(𝑦 |𝑥)
𝑝(𝑦 |𝑥)

)
(again the expectation E𝑄𝑥 is usually dropped for convenience). The conditional
relative entropy can also be computed from the conditional (cross-)entropies by

𝐷KL(𝑄𝑦 |𝑥 , 𝑃𝑦 |𝑥) = 𝐻(𝑄𝑦 |𝑥 , 𝑃𝑦 |𝑥) − 𝐻(𝑄𝑦 |𝑥)

The above decompositions for the entropy, the cross-entropy and relative entropy
are known as entropy chain rules.

7.5 Entropy bounds for the marginal variables
The chain rule for KL divergence directly shows that

𝐷KL(𝑄𝑥,𝑦 , 𝑃𝑥,𝑦)︸             ︷︷             ︸
upper bound

= 𝐷KL(𝑄𝑥 , 𝑃𝑥) + 𝐷KL(𝑄𝑦 |𝑥 , 𝑃𝑦 |𝑥)︸             ︷︷             ︸
≥0

≥ 𝐷KL(𝑄𝑥 , 𝑃𝑥)

This means that the KL divergence between the joint distributions forms an
upper bound for the KL divergence between the marginal distributions, with
the difference given by the conditional KL divergence 𝐷KL(𝑄𝑦 |𝑥 , 𝑃𝑦 |𝑥).
Equivalently, we can state an upper bound for the marginal cross-entropy:

𝐻(𝑄𝑥,𝑦 , 𝑃𝑥,𝑦) − 𝐻(𝑄𝑦 |𝑥)︸                         ︷︷                         ︸
upper bound

= 𝐻(𝑄𝑥 , 𝑃𝑥) + 𝐷KL(𝑄𝑦 |𝑥 , 𝑃𝑦 |𝑥)︸             ︷︷             ︸
≥0

≥ 𝐻(𝑄𝑥 , 𝑃𝑥)

Instead of an upper bound we may as well express this as lower bound for the
negative marginal cross-entropy

.

−𝐻(𝑄𝑥 , 𝑃𝑥) = −𝐻(𝑄𝑥𝑄𝑦 |𝑥 , 𝑃𝑥,𝑦) + 𝐻(𝑄𝑦 |𝑥)︸                               ︷︷                               ︸
lower bound

+𝐷KL(𝑄𝑦 |𝑥 , 𝑃𝑦 |𝑥)︸             ︷︷             ︸
≥0

≥ 𝐹
(
𝑄𝑥 , 𝑄𝑦 |𝑥 , 𝑃𝑥,𝑦

)
Since entropy and KL divergence is closedly linked with maximum likelihood the
above bounds play a major role in statistical learning of models with unobserved
latent variables (here 𝑦). They form the basis of important methods such as the
EM algorithm as well as of variational Bayes.



Chapter 8

Models with latent variables
and missing data

8.1 Complete data log-likelihood versus observed
data log-likelihood

It is frequently the case that we need to employ models where not all variables
are observable and the corresponding data are missing.

For example consider two random variables 𝑥 and 𝑦 with a joint density

𝑝(𝑥, 𝑦 |𝜽)

and parameters 𝜽. If we observe data 𝐷𝑥 = {𝑥1 , . . . , 𝑥𝑛} and 𝐷𝑦 = {𝑦1 , . . . , 𝑦𝑛}
for 𝑛 samples we can use the complete data log-likelihood

𝑙𝑛(𝜽 |𝐷𝑥 , 𝐷𝑦) =
𝑛∑
𝑖=1

log 𝑝(𝑥𝑖 , 𝑦𝑖 |𝜽)

to estimate 𝜽. Recall that

𝑙𝑛(𝜽 |𝐷𝑥 , 𝐷𝑦) = −𝑛𝐻(�̂�𝑥,𝑦 , 𝑃𝑥,𝑦 |𝜽)

where �̂�𝑥,𝑦 is the empirical joint distribution based on both𝐷𝑥 and𝐷𝑦 and 𝑃𝑥,𝑦 |𝜽
the joint model, so maximising the complete data log-likelihood minimises the
cross-entropy 𝐻(�̂�𝑥,𝑦 , 𝑃𝑥,𝑦 |𝜽).
Now assume that 𝑦 is not observable and hence is a so-called latent variable.
Then we don’t have observations 𝐷𝑦 and therefore cannot use the complete data
likelihood. Instead, for maximum likelihood estimation with missing data we
need to use the observed data log-likelihood.
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From the joint density we obtain the marginal density for 𝑥 by integrating out
the unobserved variable 𝑦:

𝑝(𝑥 |𝜽) =
∫
𝑦

𝑝(𝑥, 𝑦 |𝜽)𝑑𝑦

Using the marginal model we then compute the observed data log-likelihood

𝑙𝑛(𝜽 |𝐷𝑥) =
𝑛∑
𝑖=1

log 𝑝(𝑥𝑖 |𝜽) =
𝑛∑
𝑖=1

log
∫
𝑦

𝑝(𝑥𝑖 , 𝑦 |𝜽)𝑑𝑦

Note that only the data 𝐷𝑥 are used.

Maximum likelihood estimation based on the marginal model proceeds as usual
by maximising the corresponding observed data likelihood function which is

𝑙𝑛(𝜽 |𝐷𝑥) = −𝑛𝐻(�̂�𝑥 , 𝑃𝑥 |𝜽)

where �̂�𝑥 is the empirical distribution based only on 𝐷𝑥 and 𝑃𝑥 |𝜽 is the model
family. Hence, maximising the observed data log-likelihood minimises the
cross-entropy 𝐻(�̂�𝑥 , 𝑃𝑥 |𝜽).

Example 8.1. Two group normal mixture model:

Assume we have two groups labelled by 𝑦 = 1 and 𝑦 = 2 (thus the variable 𝑦 is
discrete). The data 𝑥 observed in each group are normal with means 𝜇1 and 𝜇2
and variances 𝜎2

1 and 𝜎2
2 , respectively. The probability of group 1 is 𝜋1 = 𝑝 and

the probability of group 2 is 𝜋2 = 1 − 𝑝. The density of the joint model for 𝑥 and
𝑦 is

𝑝(𝑥, 𝑦 |𝜽) = 𝜋𝑦𝑁(𝑥 |𝜇𝑦 , 𝜎𝑦)

The model parameters are 𝜽 = (𝑝, 𝜇1 , 𝜇2 , 𝜎2
1 , 𝜎

2
2)𝑇 and they can be inferred from

the complete data comprised of 𝐷𝑥 = {𝑥1 , . . . , 𝑥𝑛} and the group allocations
𝐷𝑦 = {𝑦1 , . . . , 𝑦𝑛} of each sample using the complete data log-likelihood

𝑙𝑛(𝜽 |𝐷𝑥 , 𝐷𝑦) =
𝑛∑
𝑖=1

log𝜋𝑦𝑖 +
𝑛∑
𝑖=1

log𝑁(𝑥𝑖 |𝜇𝑦𝑖 , 𝜎𝑦𝑖 )

However, typically we do not know the class allocation 𝑦 and thus we need to
use the marginal model for 𝑥 alone which has density

𝑝(𝑥 |𝜽) =
2∑
𝑦=1

𝜋𝑦𝑁(𝜇𝑦 , 𝜎2
𝑦)

= 𝑝𝑁(𝑥 |𝜇1 , 𝜎
2
1) + (1 − 𝑝)𝑁(𝑥 |𝜇2 , 𝜎

2
2)



8.2. ESTIMATION OF THE UNOBSERVABLE LATENT STATES USING BAYES THEOREM93

This is an example of a two-component mixture model. The corresponding
observed data log-likelihood is

𝑙𝑛(𝜽 |𝐷𝑥) =
𝑛∑
𝑖=1

log
2∑
𝑦=1

𝜋𝑦𝑁(𝑥 |𝜇𝑦 , 𝜎2
𝑦)

Note that the form of the observed data log-likelihood is more complex than that
of the complete data log-likelihood because it contains the logarithm of a sum
that cannot be simplified. It is used to estimate the model parameters 𝜽 from 𝐷𝑥

without requiring knowledge of the class allocations 𝐷𝑦 .

Example 8.2. Alternative computation of the observed data likelihood:

An alternative way to arrive at the observed data likelihood is to marginalise the
complete data likelihood.

𝐿𝑛(𝜽 |𝐷𝑥 , 𝐷𝑦) =
𝑛∏
𝑖=1

𝑝(𝑥𝑖 , 𝑦𝑖 |𝜽)

and

𝐿𝑛(𝜽 |𝐷𝑥) =
∫
𝑦1 ,...,𝑦𝑛

𝑛∏
𝑖=1

𝑝(𝑥𝑖 , 𝑦𝑖 |𝜽)𝑑𝑦1 . . . 𝑑𝑦𝑛

The integration (sum) and the multiplication can be interchanged as per Gener-
alised Distributive Law leading to

𝐿𝑛(𝜽 |𝐷𝑥) =
𝑛∏
𝑖=1

∫
𝑦

𝑝(𝑥𝑖 , 𝑦 |𝜽)𝑑𝑦

which is the same as constructing the likelihood from the marginal density.

8.2 Estimation of the unobservable latent states using
Bayes theorem

After estimating the marginal model it is straightforward to obtain a probabilistic
prediction about the state of the latent variables 𝑦1 , . . . , 𝑦𝑛 . Since

𝑝(𝑥, 𝑦 |𝜽) = 𝑝(𝑥 |𝜽) 𝑝(𝑦 |𝑥, 𝜽) = 𝑝(𝑦 |𝜽) 𝑝(𝑥 |𝑦, 𝜽)

given an estimate �̂� we are able to compute for each observation 𝑥𝑖

𝑝(𝑦𝑖 |𝑥𝑖 , �̂�) =
𝑝(𝑥𝑖 , 𝑦𝑖 |�̂�)
𝑝(𝑥𝑖 |�̂�)

=
𝑝(𝑦𝑖 |�̂�) 𝑝(𝑥𝑖 |𝑦𝑖 , �̂�)

𝑝(𝑥𝑖 |�̂�)

the probabilities / densities of all states of 𝑦𝑖 (note this an application of Bayes’
theorem).

https://en.wikipedia.org/wiki/Generalized_distributive_law
https://en.wikipedia.org/wiki/Generalized_distributive_law
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Example 8.3. Latent states of two group normal mixture model:

Continuing from Example 8.1 above we assume the marginal model has been
fitted with parameter values �̂� = (�̂� , �̂�1 , �̂�2 , 𝜎2

1 , 𝜎
2
2)𝑇 . Then for each sample 𝑥𝑖 we

can get probabilistic prediction about group assocation of each sample by

𝑝(𝑦𝑖 |𝑥𝑖 , �̂�) =
�̂�𝑦𝑖𝑁(𝑥𝑖 |�̂�𝑦𝑖 , 𝜎2

𝑦𝑖 )

�̂�𝑁(𝑥𝑖 |�̂�1 , 𝜎2
1) + (1 − �̂�)𝑁(𝑥𝑖 |�̂�2 , 𝜎2

2)

8.3 EM Algorithm
Computing and maximising the observed data log-likelihood can be difficult
because of the integration over the unobserved variable (or summation in case of
a discrete latent variable). In contrast, the complete data log-likelihood function
may be easier to compute.

The widely used EM algorithm, formally described by Dempster and others
(1977) but also used before, addresses this problem and maximises the observed
data log-likelihood indirectly in an iterative procedure comprising two steps:

1) First (“E” step), the missing data 𝐷𝑦 is imputed using Bayes’ theorem. This
provides probabilities (“soft allocations”) for each possible state of the
latent variable.

2) Subsequently (“M” step), the expected complete data log-likelihood func-
tion is computed, where the expectation is taken with regard to the
distribution over the latent states, and it is maximised with regard to 𝜽 to
estimate the model parameters.

The EM algorithm leads to the exact same estimates as if the observed data
log-likelihood would be optimised directly. Therefore the EM algorithm is in
fact not an approximation, it is just a different way to find the MLEs.

The EM algorithm and application to clustering is discussed in more detail in
the module MATH38161 Multivariate Statistics and Machine Learning.

In a nutshell, the justication for the EM algorithm follows from the entropy chain
rules and the corresponding bounds, such as 𝐷KL(𝑄𝑥,𝑦 , 𝑃𝑥,𝑦) ≥ 𝐷KL(𝑄𝑥 , 𝑃𝑥) (see
previous chapter). Given observed data for 𝑥 we know the empirical distribution
�̂�𝑥 . Hence, by minimising 𝐷KL(�̂�𝑥𝑄𝑦 |𝑥 , 𝑃

𝜽
𝑥,𝑦) iteratively

1) with regard to 𝑄𝑦 |𝑥 (“E” step) and
2) with regard to the parameters 𝜽 of 𝑃𝜽

𝑥,𝑦 (“M” step”)

one minimises 𝐷KL(�̂�𝑥 , 𝑃
𝜽
𝑥 ) with regard to the parameters of 𝑃𝜽

𝑥 .

Interestingly, in the “E” step the first argument of the KL divergence is optimised
(“I” projection) and in the “M” step the second argument (“M” projection).

https://strimmerlab.github.io/publications/lecture-notes/MATH38161/
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Alternatively, instead of bounding the marginal KL divergence one can also
either minimise the upper bound of the cross-entropy or maximise the lower
bound of the negative cross-entropy. All of these three procedures yield the
same EM algorithm.

Note that the optimisation of the entropy bound in the “E” step requires
variational calculus since the argument is a distribution! The EM algorithm is
therefore in fact a special case of a variational Bayes algorithm since it not only
provides estimates of 𝜽 but also yields the distribution of the latent states by
means of the calculus of variations.

Finally, in the above we see that we can learn about unobservable states by means
of Bayes theorem. By extending this same principle to learning about parameters
and models we arrive at Bayesian learning.
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Chapter 9

Essentials of Bayesian statistics

9.1 Principle of Bayesian learning

9.1.1 From prior to posterior distribution
Bayesian statistical learning applies Bayes’ theorem to update our state of
knowledge about a parameter in the light of data.

Ingredients:

• 𝜽 parameter(s) of interest, unknown and fixed.
• prior distribution with density 𝑝(𝜽) describing the uncertainty (not ran-

domness!) about 𝜽
• data generating process 𝑝(𝑥 |𝜽)

Note the model underlying the Bayesian approach is the joint distribution

𝑝(𝜽, 𝑥) = 𝑝(𝜽)𝑝(𝑥 |𝜽)

as both a prior distribution over the parameters as well as a data generating
process have to be specified.

Question: new information in the form of new observation 𝑥 arrives - how does
the uncertainty about 𝜽 change?

Answer: use Bayes’ theorem to update the prior density to the posterior density.

𝑝(𝜽 |𝑥)︸ ︷︷ ︸
posterior

= 𝑝(𝜽)︸︷︷︸
prior

𝑝(𝑥 |𝜽)
𝑝(𝑥)

97



98 CHAPTER 9. ESSENTIALS OF BAYESIAN STATISTICS

For the denominator in Bayes formula we need to compute 𝑝(𝑥). This is obtained
by

𝑝(𝑥) =
∫
𝜽
𝑝(𝑥, 𝜽)𝑑𝜽

=

∫
𝜽
𝑝(𝑥 |𝜽)𝑝(𝜽)𝑑𝜽

i.e. by marginalisation of the parameter 𝜽 from the joint distribution of 𝜽 and 𝑥.
(For discrete 𝜽 replace the integral by a sum). Depending on the context this
quantity is either called the

• normalisation constant as it ensures that the posterior density 𝑝(𝜽 |𝑥)
integrates to one.

• prior predictive density of the data 𝑥 given the model 𝑀 before seeing
any data. To emphasise the implicit conditioning on a model we may write
𝑝(𝑥 |𝑀). Since all parameters have been integrated out 𝑀 in fact refers to a
model class.

• marginal likelihood of the underlying model (class) 𝑀 given data 𝑥.
To emphasise this may write 𝐿(𝑀 |𝑥). Sometimes it is also called model
likelihood.

9.1.2 Zero forcing property
It is easy to see that if in Bayes rule the prior density/probability is zero for some
parameter value 𝜽 then the posterior density/probability will remain at zero for
that 𝜽, regardless of any data collected. This zero-forcing property of the Bayes
update rule has been called Cromwell’s rule by Dennis Lindley (1923–2013).
Therefore, assigning prior density/probability 0 to an event should be avoided.

Note that this implies that assigning prior probability 1 should be avoided, too.

9.1.3 Bayesian update and likelihood
After independent and identically distributed data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} have been
observed the Bayesian posterior is computed by

https://en.wikipedia.org/wiki/Dennis_Lindley
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𝑝(𝜽 |𝐷)︸  ︷︷  ︸
posterior

= 𝑝(𝜽)︸︷︷︸
prior

𝐿(𝜽 |𝐷)
𝑝(𝐷)

involving the likelihood 𝐿(𝜽 |𝐷) = ∏𝑛
𝑖=1 𝑝(𝑥𝑖 |𝜽) and the marginal likelihoood

𝑝(𝐷) =
∫
𝜽
𝑝(𝜽)𝐿(𝜽 |𝐷)𝑑𝜽 with 𝜽 integrated out.

The marginal likelihood serves as a standardising factor so that the posterior
density for 𝜽 integrates to 1:∫

𝜽
𝑝(𝜽 |𝐷)𝑑𝜽 =

1
𝑝(𝐷)

∫
𝜽
𝑝(𝜽)𝐿(𝜽 |𝐷)𝑑𝜽 = 1

Unfortunately, the integral to compute the marginal likelihood is typically ana-
lytically intractable and requires numerical integration and/or approximation.

Comparing likelihood and Bayes procedures note that

• conducting a Bayesian statistical analysis requires integration respectively
averaging (to compute the marginal likelihood)

• in contrast to a likelihood analysis that requires optimisation (to find the
maximum likelihood).

9.1.4 Sequential updates
Note that the Bayesian update procedure can be repeated again and again: we
can use the posterior as our new prior and then update it with further data.
Thus, we may also update the posterior density sequentially, with the data
points 𝑥1 , . . . , 𝑥𝑛 arriving one after the other, by computing first 𝑝(𝜽 |𝑥1), then
𝑝(𝜽 |𝑥1 , 𝑥2) and so on until we reach 𝑝(𝜽 |𝑥1 , . . . , 𝑥𝑛) = 𝑝(𝜽 |𝐷).
For example, for the first update we have

𝑝(𝜽 |𝑥1) = 𝑝(𝜽)𝑝(𝑥1 |𝜽)
𝑝(𝑥1)

with 𝑝(𝑥1) =
∫
𝜽
𝑝(𝑥1 |𝜽)𝑝(𝜽)𝑑𝜽. The second update yields

𝑝(𝜽 |𝑥1 , 𝑥2) = 𝑝(𝜽 |𝑥1)
𝑝(𝑥2 |𝜽, 𝑥1)
𝑝(𝑥2 |𝑥1)

= 𝑝(𝜽 |𝑥1)
𝑝(𝑥2 |𝜽)
𝑝(𝑥2 |𝑥1)

= 𝑝(𝜽) 𝑝(𝑥1 |𝜽)𝑝(𝑥2 |𝜽)
𝑝(𝑥1)𝑝(𝑥2 |𝑥1)

with 𝑝(𝑥2 |𝑥1) =
∫
𝜽
𝑝(𝑥2 |𝜽)𝑝(𝜽 |𝑥1)𝑑𝜽. The final step is

𝑝(𝜽 |𝐷) = 𝑝(𝜽 |𝑥1 , . . . , 𝑥𝑛) = 𝑝(𝜽)
∏𝑛

𝑖=1 𝑝(𝑥𝑖 |𝜽)
𝑝(𝐷)
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with the marginal likelihood factorising into

𝑝(𝐷) =
𝑛∏
𝑖=1

𝑝(𝑥𝑖 |𝑥<𝑖)

with

𝑝(𝑥𝑖 |𝑥<𝑖) =
∫
𝜽
𝑝(𝑥𝑖 |𝜽)𝑝(𝜽 |𝑥<𝑖)𝑑𝜽

The last factor is the posterior predictive density of the new data 𝑥𝑖 after seeing
data 𝑥1 , . . . , 𝑥𝑖−1 (given the model class 𝑀). It is straightforward to understand
why the probability of the new 𝑥𝑖 depends on the previously observed data
points — because the uncertainty about the model parameter 𝜽 depends on how
much data we have already observed. Therefore the marginal likelihood 𝑝(𝐷) is
not simply the product of the marginal densities 𝑝(𝑥𝑖) at each 𝑥𝑖 but instead the
product of the conditional densities 𝑝(𝑥𝑖 |𝑥<𝑖).

Only when the parameter is fully known and there is no uncertainty about 𝜽
the observations 𝑥𝑖 are independent. This leads back to the standard likelihood
where we condition on a particular 𝜽 and the likelihood is the product 𝑝(𝐷 |𝜽) =∏𝑛

𝑖=1 𝑝(𝑥𝑖 |𝜽).

9.1.5 Summaries of posterior distributions and credible inter-
vals

The Bayesian estimate is the full complete posterior distribution!

However, it is useful to summarise aspects of the posterior distribution:

• Posterior mean E(𝜽 |𝐷)
• Posterior variance Var(𝜽 |𝐷)
• Posterior mode etc.

In particular the mean of the posterior distribution is often taken as a Bayesian
point estimate.

The posterior distribution also allows to define credible regions or credible
intervals. These are the Bayesian equivalent to confidence intervals and are
constructed by finding the areas of highest probability mass (say 95%) in the
posterior distribution.
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Bayesian credible intervals (unlike their frequentist confidence counterparts) are
thus very easy to interpret - they simply correspond to the area in the parameter
space in which the we can find the parameter with a given specified probability.
In contrast, in frequentist statistics it does not make sense to assign a probability
to a parameter value!

Note that there are typically many credible intervals with the given specified
coverage 𝛼 (say 95%). Therefore, we may need further criteria to construct these
intervals.

For univariate parameter 𝜃 a two-sided equal-tail credible interval is obtained
by finding the corresponding lower 1 − 𝛼/2 and upper 𝛼/2 quantiles. Typically
this type of credible interval is easy to compute. However, note that the density
values at the left and right boundary points of such an interval are typically
different. Also this does not generalise well to a multivariate parameter 𝜽.

As alternative, a highest posterior density (HPD) credible interval of coverage
𝛼 is found by identifying the shortest interval (i.e. with smallest support) for the
given 𝛼 probability mass. Any point within an HDP credible interval has higher
density than a point outside the HDP credible interval. Correspondingly, the
density at the boundary of an HPD credible interval is constant taking on the
same value everywhere along the boundary.

A Bayesian HPD credible interval is constructed in a similar fashion as a
likelihood-based confidence interval, starting from the mode of the posterior
density and then looking for a common threshold value for the density to define
the boundary of the credible interval. When the posterior density has multiple
modes the HPD interval may be disjoint. HPD intervals are also well defined for
multivariate 𝜽 with the boundaries given by the contour lines of the posterior
density resulting from the threshold value.

In the Worksheet B1 examples for both types of credible intervals are given and
compared visually.
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9.1.6 Practical application of Bayes statistics on the computer
As we have seen Bayesian learning is conceptually straightforward:

1) Specify prior uncertainty 𝑝(𝜽) about the parameters of interest 𝜽.
2) Specify the data generating process for a specified parameter: 𝑝(𝑥 |𝜽).
3) Apply Bayes’ theorem to update prior uncertainty in the light of the new

data.

In practise, however, computing the posterior distribution can be computationally
very demanding, especially for complex models.

For this reason specialised software packages have been developed for computa-
tional Bayesian modelling, for example:

• Bayesian statistics in R: https://cran.r-project.org/web/views/Bayesian.h
tml

• Stan probabilistic programming language (interfaces with R, Python, Julia
and other languages) — https://mc-stan.org/

• Bayesian statistics in Python: PyMC using Aesara/JAX as backend,
NumPyro using JAX as backend, TensorFlow Probability on JAX using
JAX as backend, PyMC3 using Theano as backend, Pyro using PyTorch as
backend, TensorFlow Probability using Tensorflow as backend.

• Bayesian statistics in Julia: Turing.jl

• Bayesian hierarchical modelling with BUGS, JAGS and NIMBLE.

In addition to numerical procedures to sample from the posterior distribution
there are also many procedures aiming to approximate the Bayesian posterior,
employing the Laplace approximation, integrated nested Laplace approximation
(INLA), variational Bayes etc.

9.2 Some background on Bayesian statistics

9.2.1 Bayesian interpretation of probability
9.2.1.1 What makes you “Bayesian”?

If you use Bayes’ theorem are you therefore automatically a Bayesian? No!!

Bayes’ theorem is a mathematical fact from probability theory. Hence, Bayes’
theorem is valid for everyone, whichever form for statistical learning your are
subscribing (such as frequentist ideas, likelihood methods, entropy learning,
Bayesian learning).

As we discuss now the key difference between Bayesian and frequentist sta-
tistical learning lies in the differences in interpretation of probability, not in the
mathematical formalism for probability (which includes Bayes’ theorem).

https://cran.r-project.org/web/views/Bayesian.html
https://cran.r-project.org/web/views/Bayesian.html
https://mc-stan.org/
https://github.com/pymc-devs/pymc
https://aesara.readthedocs.io
https://jax.readthedocs.io
http://num.pyro.ai/
https://jax.readthedocs.io
https://www.tensorflow.org/probability/examples/TensorFlow_Probability_on_JAX
https://jax.readthedocs.io
https://docs.pymc.io/
https://theano.readthedocs.io
http://docs.pyro.ai/
https://pytorch.org/
https://www.tensorflow.org/probability/
https://www.tensorflow.org/
https://github.com/TuringLang/Turing.jl
https://www.mrc-bsu.cam.ac.uk/software/bugs/
https://mcmc-jags.sourceforge.io/
https://r-nimble.org/
https://en.wikipedia.org/wiki/Laplace%27s_method
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
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9.2.1.2 Mathematics of probability

The mathematics of probability in its modern foundation was developed by
Andrey Kolmogorov (1903–1987). In this book Foundations of the Theory of
Probability (1933) he establishes probability in terms of set theory/ measure
theory. This theory provides a coherent mathematical framework to work with
probabilities.

However, Kolmogorov’s theory does not provide an interpretation of probability!

→ The Kolmogorov framework is the basis for both the frequentist and the
Bayesian interpretation of probability.

9.2.1.3 Interpretations of probability

Essentially, there are two major commonly used interpretation of probability in
statistics - the frequentist interpretation and the Bayesian interpretation.

A: Frequentist interpretation

probability = frequency (of an event in a long-running series of identically
repeated experiments)

This is the ontological view of probability (i.e. probability “exists” and is identical
to something that can be observed.).

It is also a very restrictive view of probability. For example, frequentist probability
cannot be used to describe events that occur only a single time. Frequentist
probability thus can only be applied asymptotically, for large samples!

B: Bayesian probability

“Probability does not exist” — famous quote by Bruno de Finetti (1906–1985), a
Bayesian statistician.

What does this mean?

Probability is a description of the state of knowledge and of uncertainty.

Probability is thus an epistemological quantity that is assigned and that changes
rather than something that is an inherent property of an object.

Note that this does not require any repeated experiments. The Bayesian in-
terpretation of probability is valid regardless of sample size or the number or
repetitions of an experiment.

Hence, the key difference between frequentist and Bayesian approaches is not
the use of Bayes’ theorem. Rather it is whether you consider probability as
ontological (frequentist) or epistemological entity (Bayesian).

https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://en.wikipedia.org/wiki/Probability_axioms
https://en.wikipedia.org/wiki/Probability_axioms
https://en.wikipedia.org/wiki/Bruno_de_Finetti


104 CHAPTER 9. ESSENTIALS OF BAYESIAN STATISTICS

9.2.2 Historical developments
• Bayesian statistics is named after Thomas Bayes (1701-1761). His paper 1

introducing the famous theorem was published only after his death (1763).

• Pierre-Simon Laplace (1749-1827) was the first to practically use Bayes’
theorem for statistical calculations, and he also independently discovered
Bayes’ theorem in 1774 2

• This activity was then called “inverse probability” and not “Bayesian
statistics”.

• Between 1900 and 1940 classical mathematical statistics was developed
and the field was heavily influenced and dominated by R.A. Fisher (who
invented likelihood theory and ANOVA, among other things - he was also
working in biology and was professor of genetics). Fisher was very much
opposed to Bayesian statistics.

• 1931 Bruno de Finetti publishes his “representation theorem”. This shows
that the joint distribution of a sequence of exchangeable events (i.e. where
the ordering can be permuted) can be represented by a mixture distribution
that can be constructed via Bayes’ theorem. (Note that exchangeability is a
weaker condition than i.i.d.) This theorem is often used as a justification of
Bayesian statistics (along with the so-called Dutch book argument, also by
de Finetti).

• 1933 publication of Andrey Kolmogorov’s book on probability theory.

• 1946 Cox theorem by Richard T. Cox (1898–1991): the aim to generalise
classical logic from TRUE/FALSE statements to continuous measures of
uncertainty inevitably leads to probability theory and Bayesian learning!
This justification of Bayesian statistics was later popularised by Edwin T.
Jaynes (1922–1998) in various books (1959, 2003).

• 1955 Stein Paradox - Charles M. Stein (1920–2016) publishes a paper on
the Stein estimator — an estimator of the mean that dominates the ML
estimator (i.e. the sample average). The Stein estimator is better in terms of
MSE than the ML estimator, which was very puzzling at that time but it is
easy to understand from a Bayesian perspective.

• Only from the 1950s the use of the term “Bayesian statistics” became
prevalent — see Fienberg (2006) 3

1Bayes, T. 1763. An essay towards solving a problem in the doctrine of chances. The Philosophical
Transactions 53:370–418. https://doi.org/10.1098/rstl.1763.0053

2Laplace, P.-S. 1774. Mémoire sur la probabilité de causes par les évenements. Mémoires de mathéma-
tique et de physique, présentés à l’Académie Royale des sciences par divers savants et lus dans ses
assemblées. Paris, Imprimerie Royale, pp. 621–657.

3Fienberg, S. E. 2006. When did Bayesian inference become “Bayesian”? Bayesian Analysis 1:1–40.
https://doi.org/10.1214/06-BA101

https://de.wikipedia.org/wiki/Thomas_Bayes
https://de.wikipedia.org/wiki/Pierre-Simon_Laplace
https://en.wikipedia.org/wiki/Inverse_probability
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Bruno_de_Finetti
https://en.wikipedia.org/wiki/De_Finetti%27s_theorem
https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://en.wikipedia.org/wiki/Richard_Threlkeld_Cox
https://en.wikipedia.org/wiki/Edwin_Thompson_Jaynes
https://en.wikipedia.org/wiki/Edwin_Thompson_Jaynes
https://en.wikipedia.org/wiki/Charles_M._Stein
https://doi.org/10.1098/rstl.1763.0053
https://doi.org/10.1214/06-BA101
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Due to advances in personal computing from 1970 onwards Bayesian learning
has become more pervasive!

• Computers allow to do the complex (numerical) calculations needed in
Bayesian statistics .

• Metropolis-Hastings algorithm published in 1970 (which allows to sample
from a posterior distribution without explicitly computing the marginal
likelihood).

• Development of regularised estimation techniques such as penalised
likelihood in regression (e.g. ridge regression 1970).

• penalised likelihood via KL divergence for model selection (Akaike 1973).
• A lot of work on interpreting Stein estimators as empirical Bayes estimators

(Efron and Morris 1975)
• regularisation originally was only meant to make singular sys-

tems/matrices invertible, but then it turned out regularisation has also a
Bayesian interpretation.

• Reference priors (Bernardo 1979) proposed as default priors for models
with multiple parameters.

• The EM algorithm (published in 1977) uses Bayes theorem for imputing
the distribution of the latent variables.

Another boost was in the 1990/2000s when in science (e.g. genomics) many
complex and high-dimensional data set were becoming the norm, not the
exception.

• Classical statistical methods cannot be used in this setting (overfitting!) so
new methods were developed for high-dimensional data analysis, many
with a direct link to Bayesian statistics

• 1996 lasso (L1 regularised) regression invented by Robert Tibshirani.
• Machine learning methods for non-parametric and extremely highly para-

metric models (neural network) require either explicit or implicit regulari-
sation.

• Many Bayesians in this field, many using variational Bayes techniques
which may be viewed as generalisation of the EM algorithm and are also
linked to methods used in statistical physics.

https://en.wikipedia.org/wiki/Robert_Tibshirani
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
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Chapter 10

Bayesian learning in practise

In this chapter we discuss how three basic problems, namely how to estimate a
proportion, the mean and the variance in a Bayesian framework.

10.1 Estimating a proportion using the beta-binomial
model

10.1.1 Binomial likelihood
In order to apply Bayes’ theorem we first need to find a suitable likelihood. We
use the Bernoulli model as in Example 3.1:

Repeated Bernoulli experiment (binomial model):

Bernoulli data generating process:

𝑥 ∼ Ber(𝜃)

• 𝑥 ∈ {0, 1} (e.g. “success” vs. “failure”)
• The “success” is indicated by outcome 𝑥 = 1 and the “failure” by 𝑥 = 0
• Parameter: 𝜃 is the probability of “success”
• probability mass function (PMF): Pr(𝑥 = 1) = 𝜃, Pr(𝑥 = 0) = 1 − 𝜃
• Mean: E(𝑥) = 𝜃
• Variance Var(𝑥) = 𝜃(1 − 𝜃)

Binomial model Bin(𝑛, 𝜃) (sum of 𝑛 Bernoulli experiments):

• 𝑦 ∈ {0, 1, . . . , 𝑛} = ∑𝑛
𝑖=1 𝑥𝑖

• Mean: E(𝑦) = 𝑛𝜃
• Variance: Var(𝑦) = 𝑛𝜃(1 − 𝜃)
• Mean of standardised 𝑦: E(𝑦/𝑛) = 𝜃
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• Variance of standardised 𝑦: Var(𝑦/𝑛) = 𝜃(1−𝜃)
𝑛

Maximum likelihood estimate of 𝜃:

• We conduct 𝑛 Bernoulli trials and observe data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} with
average �̄� and 𝑛1 successes and 𝑛2 = 𝑛 − 𝑛1 failures.

• Binomial likelihood:

𝐿(𝜃 |𝐷) =
(
𝑛
𝑛1

)
𝜃𝑛1(1 − 𝜃)𝑛2

Note that the binomial coefficient arises as the ordering of the 𝑥𝑖 is irrelevant
but it may be discarded as is does not contain the parameter 𝜃.

• From Example 3.1 we know that the maximum likelihood estimate of the
proportion 𝜃 is the frequency

�̂�𝑀𝐿 =
𝑛1
𝑛

= �̄�

Thus, the MLE �̂�𝑀𝐿 can be expressed as an average (of the individual data
points). This seemingly trivial fact is important for Bayesian estimation of
𝜃 using linear shrinkage, as will become evident below.

10.1.2 Beta prior distribution
In Bayesian statistics we need not only to specify the data generating process but
also a prior distribution over the parameters of the likelihood function.

Therefore, we need to explicitly specify our prior uncertainty about 𝜃.

The parameter 𝜃 has support [0, 1]. Therefore we may use a beta distribution
Beta(𝛼1 , 𝛼2) as prior for 𝜃 (see the Appendix for properties of this distribution).
We will see below that the beta distribution is a natural choice as a prior in
conjunction with a binomial likelihood.

The parameters of a prior (here 𝛼1 ≥ 0 and 𝛼2 ≥ 0) are also known as the
hyperparameters of the model to distinguish them from the parameters of the
likelihood function (here 𝜃).

We write for the prior distribution

𝜃 ∼ Beta(𝛼1 , 𝛼2)

with density

𝑝(𝜃) = 1
𝐵(𝛼1 , 𝛼2)

𝜃𝛼1−1(1 − 𝜃)𝛼2−1

In terms of mean parameterisation Beta(𝜇0 , 𝑘0) this corresponds to:

• The prior concentration parameter is set to 𝑘0 = 𝛼1 + 𝛼2
• The prior mean parameter is set to 𝜇0 = 𝛼1/𝑘0.
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The prior mean is therefore
E(𝜃) = 𝜇0

and the prior variance

Var(𝜃) =
𝜇0(1 − 𝜇0)
𝑘0 + 1

It is important that this does not actually mean that 𝜃 is random. It only means
that we model the uncertainty about 𝜃 using a beta-distributed random variable.
The flexibility of the beta distribution allows to accommodate a large variety of
possible scenarios for our prior knowledge using just two parameters.

Note the mean and variance of the beta prior and the mean and variance of
the standardised binomial variable 𝑦/𝑛 have the same form. This is further
indication that the binomial likelihood and the beta prior are well matched —
see the discussion below about “conjugate priors”.

10.1.3 Computing the posterior distribution
After observing data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} with 𝑛1 “successes” and 𝑛2 = 𝑛 − 𝑛1
“failures” we can compute the posterior density over 𝜃 using Bayes’ theorem:

𝑝(𝜃 |𝐷) =
𝑝(𝜃)𝐿(𝜃 |𝐷)

𝑝(𝐷)

Applying Bayes’ theorem results in the posterior distribution:

𝜃 |𝐷 ∼ Beta(𝛼1 + 𝑛2 , 𝛼2 + 𝑛2)

with density

𝑝(𝜃 |𝐷) = 1
𝐵(𝛼1 + 𝑛1 , 𝛼2 + 𝑛2)

𝜃𝛼1+𝑛1−1(1 − 𝜃)𝛼2+𝑛2−1

(For a proof see Worksheet B1.)

In the corresponding mean parameterisation Beta(𝜇1 , 𝑘1) this results in the
following updates:

• The concentration parameter is updated to 𝑘1 = 𝑘0 + 𝑛
• The mean parameter is updated to

𝜇1 =
𝛼1 + 𝑛1
𝑘1

This can be written as

𝜇1 =
𝛼1
𝑘1

+ 𝑛1
𝑘1

=
𝑘0
𝑘1

𝛼1
𝑘0

+ 𝑛

𝑘1

𝑛1
𝑛

= 𝜆𝜇0 + (1 − 𝜆)�̂�𝑀𝐿
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with 𝜆 =
𝑘0
𝑘1

. Hence, 𝜇1 is a convex combination of the prior mean and the
MLE.

Therefore, the posterior mean is

E(𝜃 |𝐷) = 𝜇1

and the posterior variance is

Var(𝜃 |𝐷) = 𝜇1(1 − 𝜇1)
𝑘1 + 1

10.2 Properties of Bayesian learning
The beta-binomial model, even though it is one of the simplest possible models,
already allows to observe a number of important features and properties of
Bayesian learning. Many of these apply also to other models as we will see later.

10.2.1 Prior acting as pseudodata
In the expression for the mean and variance you can see that the concentration
parameter 𝑘0 = 𝛼1 + 𝛼2 behaves like an implicit sample size connected with the
prior information about 𝜃.

Specifically, 𝛼1 and 𝛼2 act as pseudocounts that influence both the posterior mean
and the posterior variance, exactly in the same way as conventional observations.

For example, the larger 𝑘0 (and thus the larger 𝛼1 and 𝛼2) the smaller is the
posterior variance, with variance decreasing proportional to the inverse of 𝑘0. If
the prior is highly concentrated, i.e. if it has low variance and large precision
(=inverse variance) then the implicit data size 𝑘0 is large. Conversely, if the prior
has large variance, then the prior is vague and the implicit data size 𝑘0 is small.

Hence, a prior has the same effect as if one would add data — but without
actually adding data! This is precisely this why a prior acts as a regulariser and
prevents overfitting, because it increases the effective sample size.

Another interpretation is that a prior summarises data that may have been
available previously as observations.

10.2.2 Linear shrinkage of mean
In the beta-binomial model the posterior mean is a convex combination (i.e. the
weighted average) of the ML estimate and the prior mean as can be seen from
the update formula

𝜇1 = 𝜆𝜇0 + (1 − 𝜆)�̂�𝑀𝐿

with weight 𝜆 ∈ [0, 1]
𝜆 =

𝑘0
𝑘1
.



10.2. PROPERTIES OF BAYESIAN LEARNING 111

Thus, the posterior mean 𝜇1 is a linearly adjusted �̂�𝑀𝐿. The factor 𝜆 is called the
shrinkage intensity — note that this is the ratio of the “prior sample size” (𝑘0)
and the “effective total sample size” (𝑘1).

1. This adjustment of the MLE is called shrinkage, because the �̂�𝑀𝐿 is “shrunk”
towards the prior mean𝜇0 (which is often called the “target”, and sometimes
the target is zero, and then the terminology “shrinking” makes most sense).

2. If the shrinkage intensity is zero (𝜆 = 0) then the ML point estimator is
recovered. This happens when 𝛼1 = 0 and 𝛼2 = 0 or for 𝑛 → ∞.

Remark: using maximum likelihood to estimate 𝜃 (for moderate or small 𝑛)
is the same as Bayesian posterior mean estimation using the beta-binomial
model with prior 𝛼1 = 0 and 𝛼2 = 0. This prior is extremely “u-shaped”
and the implicit prior for the ML estimation. Would you use such a prior
intentionally?

3. If the shrinkage intensity is large (𝜆 → 1) then the posterior mean corre-
sponds to the prior. This happens if 𝑛 = 0 or if 𝑘0 is very large (implying
that the prior is sharply concentrated around the prior mean).

4. Since the ML estimate �̂�𝑀𝐿 is unbiased the Bayesian point estimate is biased
(for finite 𝑛!). And the bias is induced by the prior mean deviating from the
true mean. This is also true more generally as Bayesian learning typically
produces biased estimators (but asymptotically they will be unbiased like
in ML).

5. The fact that the posterior mean is a linear combination of the MLE and
the prior mean is not a coincidence. In fact, this is true for all distributions
that are exponential families, see e.g. Diaconis and Ylvisaker (1979)1.
Crucially, exponential families can always be parameterised such that the
corresponding MLEs are expressed as averages of functions of the data
(more technically: the MLE of the mean parameter in an EF is the average
of the canonical statistic). In conjunction with a particular type of prior
(conjugate priors, always existing for exponential families, see below) this
allows to write the update from the prior to posterior mean as a linear
adjustment of the MLE.

6. Furthermore, it is possible (and indeed quite useful for computational
reasons!) to formulate Bayes learning assuming only first and second
moments (i.e. without full distributions) and in terms of linear shrinkage,
see e.g. Hartigan (1969)2. The resulting theory is called “Bayes linear
statistics” (Goldstein and Wooff, 2007)3.

1Diaconis, P., and D Ylvisaker. 1979. Conjugate Priors for Exponential Families. Ann. Statist.
7:269–281. https://doi.org/10.1214/aos/1176344611

2Hartigan, J. A. 1969. Linear Bayesian methods. J. Roy. Statist. Soc. B 31:446-454 https:
//doi.org/10.1111/j.2517-6161.1969.tb00804.x

3Goldstein, M., and D. Wooff. 2007. Bayes Linear Statistics: Theory and Methods. Wiley. https:
//doi.org/10.1002/9780470065662

https://doi.org/10.1214/aos/1176344611
https://doi.org/10.1111/j.2517-6161.1969.tb00804.x
https://doi.org/10.1111/j.2517-6161.1969.tb00804.x
https://doi.org/10.1002/9780470065662
https://doi.org/10.1002/9780470065662
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10.2.3 Conjugacy of prior and posterior distribution
In the beta-binomial model for estimating the proportion 𝜃 the choice of the beta
distribution as prior distribution along with the binomial likelihood resulted
in having the beta distribution as posterior distribution as well.

If the prior and posterior belong to the same distributional family the prior is
called a conjugate prior. This will be the case if the prior has the same functional
form as the likelihood. Therefore one also says that the prior is conjugate for the
likelihood.

It can be shown that conjugate priors exist for all likelihood functions that are
based on data generating models that are exponential families.

In the beta-binomial model the likelihood is based on the binomial distribution
and has the following form (only terms depending on the parameter 𝜃 are
shown):

𝜃𝑛1(1 − 𝜃)𝑛2

The form of the beta prior is (again, only showing terms depending on 𝜃):

𝜃𝛼1−1(1 − 𝜃)𝛼2−1

Since the posterior is proportional to the product of prior and likelihood the
posterior will have exactly the same form as the prior:

𝜃𝛼1+𝑛1−1(1 − 𝜃)𝛼2+𝑛2−1

Choosing the prior distribution from a family conjugate for the likelihood greatly
simplifies Bayesian analysis since the Bayes formula can then be written in form
of an update formula for the parameters of the beta distribution:

𝛼1 → 𝛼1 + 𝑛1 = 𝛼1 + 𝑛�̂�𝑀𝐿

𝛼2 → 𝛼2 + 𝑛2 = 𝛼2 + 𝑛(1 − �̂�𝑀𝐿)

Thus, conjugate prior distributions are very convenient choices. However, in their
application it must be ensured that the prior distribution is flexible enough to
encapsulate all prior information that may be available. In cases where this is not
the case alternative priors should be used (and most likely this will then require
to compute the posterior distribution numerically rather than analytically).

10.2.4 Large sample limits of mean and variance
If 𝑛 is large and 𝑛 >> 𝛼, 𝛽 then 𝜆 → 0 and hence the posterior mean and variance
become asympotically

E(𝜃 |𝐷) 𝑎
=
𝑛1
𝑛

= �̂�𝑀𝐿
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and

Var(𝜃 |𝐷) 𝑎
=

�̂�𝑀𝐿(1 − �̂�𝑀𝐿)
𝑛

Thus, if the sample size is large then the Bayes’ estimator turns into the ML
estimator! Specifically, the posterior mean becomes the ML point estimate, and
the posterior variance is equal to the asymptotic variance computed via the
observed Fisher information.

Thus, for large 𝑛 the data dominate and any details about the prior (such as the
settings of the hyperparameters 𝛼1 and 𝛼2) become irrelevant!

10.2.5 Asymptotic normality of the posterior distribution
Also known as Bayesian Central Limit Theorem (CLT).

Under some regularity conditions (such as regular likelihood and positive prior
probability for all parameter values, finite number of parameters, etc.) for large
sample size the Bayesian posterior distribution converges to a normal distribution
centred around the MLE and with the variance of the MLE:

for large 𝑛: 𝑝(𝜽 |𝐷) → 𝑁(�̂�𝑀𝐿 ,Var(�̂�𝑀𝐿))

So not only are the posterior mean and variance converging to the MLE and the
variance of the MLE for large sample size, but also the posterior distribution
itself converges to the sampling distribution!

This holds generally in many regular cases, not just in the simple case above.

The Bayesian CLT is generally known as the Bernstein-von Mises theorem (who
discovered it at around 1920–30), but special cases were already known as by
Laplace.

In the Worksheet B1 the asymptotic convergence of the posterior distribution to
a normal distribution is demonstrated graphically.

10.2.6 Posterior variance for finite 𝑛
From the Bayesian posterior we can obtain a Bayesian point estimate for the
proportion 𝜃 by computing the posterior mean

E(𝜃 |𝐷) = 𝛼1 + 𝑛1
𝑘1

= �̂�Bayes

along with the posterior variance

Var(𝜃 |𝐷) =
�̂�Bayes(1 − �̂�Bayes)

𝑘1 + 1

https://en.wikipedia.org/wiki/Bernstein%E2%80%93von_Mises_theorem
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Asymptotically for large 𝑛 the posterior mean becomes the maximum likelihood
estimate (MLE), and the posterior variance becomes the asymptotic variance of
the MLE. Thus, for large 𝑛 the Bayesian point estimate will be indistinguishable
from the MLE and shares its favourable properties.

In addition, for finite sample size the posterior variance will typically be smaller
than both the asymptotic posterior variance (for large 𝑛) and the prior variance,
showing that combining the information available in the prior and in the data
leads to a more efficient estimate.

10.3 Estimating the mean using the normal-normal
model

10.3.1 Normal likelihood
As in Example 3.2 where we estimated the mean parameter by maximum
likelihood we assume as data-generating model the normal distribution with
unknown mean 𝜇 and known variance 𝜎2:

𝑥 ∼ 𝑁(𝜇, 𝜎2)

We observe 𝑛 samples 𝐷 = {𝑥1 , . . . 𝑥𝑛}. This yields using maximum likelihood
the estimate �̂�𝑀𝐿 = �̄�.

We note that the MLE �̂�𝑀𝐿 is expressed as an average of the data points, which
is what enables the linear shrinkage seen below.

10.3.2 Normal prior distribution
The normal distribution is the conjugate distribution for the mean parameter
of a normal likelihood, so if we use a normal prior then posterior for 𝜇 is normal
as well.

To model the uncertainty about 𝜇 we use the normal distribution in the form
𝑁(𝜇, 𝜎2/𝑘) with a mean parameter 𝜇 and a concentration parameter 𝑘 > 0
(remember that 𝜎2 is given and is also used in the likelihood).

Specifically, we use as normal prior distribution for the mean

𝜇 ∼ 𝑁

(
𝜇0 ,

𝜎2

𝑘0

)
• The prior concentration parameter is set to 𝑘0
• The prior mean parameter is set to 𝜇0

Hence the prior mean is
E(𝜇) = 𝜇0
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and the prior variance

Var(𝜇) = 𝜎2

𝑘0

where the concentration parameter 𝑘0 corresponds the implied sample size of
the prior. Note that 𝑘0 does not need to be an integer value.

10.3.3 Normal posterior distribution
After observing data 𝐷 the posterior distribution is also normal with updated
parameters 𝜇 = 𝜇1 and 𝑘1

𝜇|𝐷 ∼ 𝑁

(
𝜇1 ,

𝜎2

𝑘1

)
• The posterior concentration parameter is updated to 𝑘1 = 𝑘0 + 𝑛
• The posterior mean parameter is updated to

𝜇1 = 𝜆𝜇0 + (1 − 𝜆)�̂�𝑀𝐿

with 𝜆 =
𝑘0
𝑘1

. This can be seen as linear shrinkage of �̂�𝑀𝐿 towards the prior
mean 𝜇0.

(For a proof see Worksheet B2.)

The posterior mean is
E(𝜇|𝐷) = 𝜇1

and the posterior variance is

Var(𝜇|𝐷) = 𝜎2

𝑘1

10.3.4 Large sample asymptotics
For 𝑛 large and 𝑛 >> 𝑘0 the shrinkage intensity 𝜆 → 0 and and 𝑘1 → 𝑛. As a
result

E(𝜇|𝐷) 𝑎
= �̂�𝑀𝐿

Var(𝜇|𝐷) 𝑎
=

𝜎2

𝑛

i.e. we recover the MLE and its asymptotic variance!

Note that for finite 𝑛 the posterior variance 𝜎2

𝑛+𝑘0
is smaller than both the

asymptotic variance 𝜎2

𝑛 of the MLE and the prior variance 𝜎2

𝑘0
.



116 CHAPTER 10. BAYESIAN LEARNING IN PRACTISE

10.4 Estimating the variance using the inverse-
gamma-normal model

10.4.1 Normal likelihood
As data generating model we use normal distribution

𝑥 ∼ 𝑁(𝜇, 𝜎2)

with unknown variance 𝜎2 and known mean 𝜇. This yields as maximum
likelihood estimate for the variance

𝜎2
𝑀𝐿 =

1
𝑛

𝑛∑
𝑖=1

(𝑥𝑖 − 𝜇)2

Note that, again, the MLE is an average (of a quadratic function of the individual
data points). This enables linear shrinkage of the MLE as seen below.

10.4.2 IG prior distribution
To model the uncertainty about the variance we use the inverse-gamma (IG)
distribution, also known as inverse Wishart (IW) distribution (see Appendix for
details of this distribution). The IG distribution is conjugate for the variance
parameter in the normal likelihood, hence both the prior and the posterior
distribution are IG.
As we use the Wishart parameterisation we may equally well call this an inverse
Wishart (IW) prior, and the whole model IW-normal model.

Specifically, as prior distribution for 𝜎2 we assume using the mean parameter 𝜇
and concentration parameter 𝜅:

𝜎2 ∼𝑊−1
1 (𝜓 = 𝜅0𝜎

2
0 , 𝜈 = 𝜅0 + 2)

• The prior concentration parameter is set to 𝜅0
• The prior mean parameter is set to 𝜎2

0

The corresponding prior mean is

E(𝜎2) = 𝜎2
0

and the prior variance is

Var(𝜎2) =
2𝜎4

0
𝜅0 − 2

(note that 𝜅0 > 2 for the variance to exist)
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10.4.3 IG posterior distribution
After observing 𝐷 = {𝑥1 . . . , 𝑥𝑛} the posterior distribution is also IG with
updated parameters:

𝜎2 |𝐷 ∼𝑊−1
1 (𝜓 = 𝜅1𝜎

2
1 , 𝜈 = 𝜅1 + 2)

• The posterior concentration parameter is updated to 𝜅1 = 𝜅0 + 𝑛
• The posterior mean parameter update follows the standard linear shrinkage

rule:
𝜎2

1 = 𝜆𝜎2
0 + (1 − 𝜆)𝜎2

𝑀𝐿

with 𝜆 =
𝜅0
𝜅1

.

The posterior mean is
E(𝜎2 |𝐷) = 𝜎2

1
and the posterior variance

Var(𝜎2 |𝐷) =
2𝜎4

1
𝜅1 − 2

10.4.4 Large sample asymptotics
For large sample size 𝑛 with 𝑛 >> 𝜅0 the shrinkage intensity vanishes (𝜆 → 0)
and therefore 𝜎2

1 → 𝜎2
𝑀𝐿. We also find that 𝜅1 − 2 → 𝑛.

This results in the asymptotic posterior mean

E(𝜎2 |𝐷) 𝑎
= 𝜎2

𝑀𝐿

and the asymptotic posterior variance

Var(𝜎2 |𝐷) 𝑎
=

2(𝜎2
𝑀𝐿)2
𝑛

Thus we recover the MLE of 𝜎2 and its asymptotic variance.

10.4.5 Other equivalent update rules
Above the update rule from prior to posterior inverse gamma distribution is
stated for the mean parameterisation:

• 𝜅0 → 𝜅1 = 𝜅0 + 𝑛
• 𝜎2

0 → 𝜎2
1 = 𝜆𝜎2

0 + (1 − 𝜆)𝜎2
𝑀𝐿 with 𝜆 =

𝜅0
𝜅1

This has the advantage that the mean of the inverse gamma distribution is
updated directly, and that the prior and posterior variance is also straightforward
to compute.

The same update rule can also be expressed in terms of the other parameterisa-
tions. In terms of the conventional parameters 𝛼 and 𝛽 of the inverse gamma
distribution the update rule is
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• 𝛼0 → 𝛼1 = 𝛼0 + 𝑛
2

• 𝛽0 → 𝛽1 = 𝛽0 + 𝑛
2 𝜎

2
𝑀𝐿 = 𝛽0 + 1

2
∑𝑛
𝑖=1(𝑥𝑖 − 𝜇)2

For the parameters 𝜓 and 𝜈 of the univariate inverse Wishart distribution the
update rule is

• 𝜈0 → 𝜈1 = 𝜈0 + 𝑛
• 𝜓0 → 𝜓1 = 𝜓0 + 𝑛𝜎2

𝑀𝐿 = 𝜓0 +
∑𝑛
𝑖=1(𝑥𝑖 − 𝜇)2

For the parameters 𝜏2 and 𝜈 of the scaled inverse chi-squared distribution the
update rule is

• 𝜈0 → 𝜈1 = 𝜈0 + 𝑛
• 𝜏2

0 → 𝜏2
1 =

𝜈0
𝜈1
𝜏2

0 +
𝑛
𝜈1
𝜎2

𝑀𝐿

(See Worksheet B3 for proof of equivalence of all above update rules.)

10.5 Estimating the precision using the gamma-
normal model

10.5.1 MLE of the precision
Instead of estimating the variance 𝜎2 we may wish to estimate the precision
𝑤1/𝜎2, i.e. the inverse of variance.

As above the data generating model is a normal distribution

𝑥 ∼ 𝑁(𝜇, 1/𝑤)

with unknown precision 𝑤 and known mean 𝜇. This yields as maximum
likelihood estimate (easily derived thanks to the invariance principle)

�̂�𝑀𝐿 =
1

𝜎2
𝑀𝐿

=
1

1
𝑛

∑𝑛
𝑖=1(𝑥𝑖 − 𝜇)2

Crucially, the MLE of the precision 𝑤 is not an average itself (instead, it is a
function of an average). As a consequence, as seen below, the posterior mean of
𝑤 cannot be written as linear adjustment of the MLE.

10.5.2 Gamma (Wishart) prior
For modelling the variance we have used an inverse gamma (inverse Wishart)
distribution for the prior and posterior distributions. Thus, in order to model
the precision we therefore now use a gamma (Wishart) distribution.

Specifically, we use the Wishart distribution in the mean parameterisation (see
Appendix):

𝑤 ∼𝑊1(𝑠2 = 𝑤0/𝑘0 , 𝑘 = 𝑘0)



10.5. ESTIMATING THE PRECISION USING THE GAMMA-NORMAL MODEL119

• The prior concentration parameter is set to 𝑘0
• The prior mean parameter is set to 𝑤0

The corresponding prior mean is

E(𝑤) = 𝑤0

and the prior variance is
Var(𝜎2) = 2𝑤2

0/𝑘0

10.5.3 Gamma / Wishart posterior
After observing 𝐷 = {𝑥1 . . . , 𝑥𝑛} the posterior distribution is also gamma resp.
Wishart with updated parameters:

𝑤 |𝐷 ∼𝑊1(𝑠2 = 𝑤1/𝑘1 , 𝑘 = 𝑘1)
• The posterior concentration parameter is updated to 𝑘1 = 𝑘0 + 𝑛
• The posterior mean parameter update follows the update:

1
𝑤1

= 𝜆
1
𝑤0

+ (1 − 𝜆) 1
�̂�𝑀𝐿

with 𝜆 =
𝑘0
𝑘1

. Crucially, the linear update is applied to the inverse of the
precision but not to the precision itself. This is because the MLE of the
precision parameter cannot be expressed as an average.

• Equivalent update rules are for the inverse scale parameter 𝑠2

1
𝑠2

1
=

1
𝑠2

0
+ 𝑛𝜎2

𝑀𝐿

and for the rate parameter 𝛽 = 1/(2𝑠2) of the gamma distribution

𝛽1 = 𝛽0 +
𝑛

2 𝜎2
𝑀𝐿

This is the form you will find most often in textbooks.

The posterior mean is
E(𝑤 |𝐷) = 𝑤1

and the posterior variance

Var(𝑤 |𝐷) = 2𝑤2
1/𝑘1
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Chapter 11

Bayesian model comparison

11.1 Marginal likelihood as model likelihood

11.1.1 Simple and composite models
In the introduction of the Bayesian learning we already encountered the marginal
likelihood 𝑝(𝐷 |𝑀) of a model class 𝑀 in the denominator of Bayes’ rule:

𝑝(𝜽 |𝐷, 𝑀) = 𝑝(𝜽 |𝑀)𝑝(𝐷 |𝜽, 𝑀)
𝑝(𝐷 |𝑀)

Computing this marginal likelihood is different for simple and composite models.

A model is called “simple” if it directly corresponds to a specific distribution, say,
a normal distribution with fixed mean and variance, or a binomial distribution
with a given probability for the two classes. Thus, a simple model is a point in
the model space described by the parameters of a distribution family (e.g. 𝜇 and
𝜎2 for the normal family 𝑁(𝜇, 𝜎2). For a simple model 𝑀 the density 𝑝(𝐷 |𝑀)
corresponds to standard likelihood of 𝑀 and there are no free parameters.

On the other hand, a model is “composite” if it is composed of simple models.
This can be a finite set, or it can be comprised of infinite number of simpple
models. Thus a composite model represent a model class. For example, a normal
distribution with a given mean but unspecified variance, or a binomial model
with unspecified class probability, is a composite model.

If 𝑀 is a composite model, with the underlying simple models indexed by a
parameter 𝜽, the likelihood of the model is obtained by marginalisation over 𝜽:

𝑝(𝐷 |𝑀) =
∫
𝜽
𝑝(𝐷 |𝜽, 𝑀)𝑝(𝜽 |𝑀)𝑑𝜽

=

∫
𝜽
𝑝(𝐷, 𝜽 |𝑀)𝑑𝜽

121
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i.e. we integrate over all parameter values 𝜽.

If the distribution over the parameter 𝜽 of a model is strongly concentrated
around a specific value 𝜽0 then the composite model degenerates to a simple
point model, and the marginal likelihood becomes the likelihood of the parameter
𝜽0 under that model.

Example 11.1. Beta-binomial distribution:

Assume that likelihood is binomial with mean parameter 𝜃. If 𝜃 follows a
Beta distribution then the marginal likelihood with 𝜃 integrated out is the
beta-binomial distribution (see also Worksheet B3). This is an example of a
compound probability distribution.

11.1.2 Log-marginal likelihood as penalised maximum log-
likelihood

By rearranging Bayes’ rule we see that

log 𝑝(𝐷 |𝑀) = log 𝑝(𝐷 |𝜽, 𝑀) − log
𝑝(𝜽 |𝐷, 𝑀)
𝑝(𝜽 |𝑀)

The above is valid for all 𝜽.

Assuming concentration of the posterior around the MLE �̂�ML we will have
𝑝(�̂�ML |𝐷, 𝑀) > 𝑝(�̂�ML |𝑀) and thus

log 𝑝(𝐷 |𝑀) = log 𝑝(𝐷 |�̂�ML , 𝑀)︸               ︷︷               ︸
maximum log-likelihood

− log
𝑝(�̂�ML |𝐷, 𝑀)
𝑝(�̂�ML |𝑀)︸                ︷︷                ︸

penalty > 0

Therefore, the log-marginal likelihood is essentially a penalised version of the
maximum log-likelihood, and the penalty depends on the concentration of the
posterior around the MLE

11.1.3 Model complexity and Occams razor
Intriguingly, the penality implicit in the log-marginal likelihood is linked to the
complexity of the model, in particular to the number of parameters of 𝑀. We
will see this directly in the Schwarz approximation of the log-marginal likelihood
discussed below.

Thus, the averaging over 𝜽 in the marginal likelihood has the effect of automati-
cally penalising complex models. Therefore, when comparing models using the
marginal likelihood a complex model may be ranked below simpler models. In
contrast, when selecting a model by comparing maximum likelihood directly the
model with the highest number of parameters always wins over simpler models.

https://en.wikipedia.org/wiki/Beta-binomial_distribution
https://en.wikipedia.org/wiki/Compound_probability_distribution
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Hence, the penalisation implicit in the marginal likelihood prevents overfitting
that occurs with maximum likelihood.

The principle of preferring a less complex model is called Occam’s razor or the
law of parsimony.

When choosing models a simpler model is often preferable over a more complex
model, because the simpler model is typically better suited to both explaining
the currently observed data as well as future data, whereas a complex model
will typically only excel in fitting the current data but will perform poorly in
prediction.

11.2 The Bayes factor for comparing two models

11.2.1 Definition of the Bayes factor
The Bayes factor is the ratio of the likelihoods of the two models:

𝐵12 =
𝑝(𝐷 |𝑀1)
𝑝(𝐷 |𝑀2)

The log-Bayes factor log 𝐵12 is also called the weight of evidence for 𝑀1 over
𝑀2.

11.2.2 Bayes theorem in terms of the Bayes factor
We would like to compare two models 𝑀1 and 𝑀2. Before seeing data 𝐷 we
can check their Prior odds (= ratio of prior probabilities of the models𝑀1 and𝑀2):

Pr(𝑀1)
Pr(𝑀2)

After seeing data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} we arrive at the Posterior odds (= ratio of
posterior probabilities):

Pr(𝑀1 |𝐷)
Pr(𝑀2 |𝐷)

Using Bayes Theorem Pr(𝑀𝑖 |𝐷) = Pr(𝑀𝑖) 𝑝(𝐷 |𝑀𝑖 )
𝑝(𝐷) we can rewrite the posterior

odds as
Pr(𝑀1 |𝐷)
Pr(𝑀2 |𝐷)︸      ︷︷      ︸

posterior odds

=
𝑝(𝐷 |𝑀1)
𝑝(𝐷 |𝑀2)︸     ︷︷     ︸

Bayes factor 𝐵12

Pr(𝑀1)
Pr(𝑀2)︸   ︷︷   ︸
prior odds

The Bayes factor is the multiplicative factor that updates the prior odds to the
posterior odds.
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On the log scale we see that

log-posterior odds = weight of evidence + log-prior odds

11.2.3 Scale for the Bayes factor
Following Harold Jeffreys (1961) 1 one may interpret the strength of the Bayes
factor as follows:

𝐵12 log 𝐵12 evidence in favour of 𝑀1 versus 𝑀2

> 100 > 4.6 decisive
10 to 100 2.3 to 4.6 strong
3.2 to 10 1.16 to 2.3 substantial
1 to 3.2 0 to 1.16 not worth more than a bare mention

More recently, Kass and Raftery (1995) 2 proposed to use the following slightly
modified scale:

𝐵12 log 𝐵12 evidence in favour of 𝑀1 versus 𝑀2

> 150 > 5 very strong
20 to 150 3 to 5 strong
3 to 20 1 to 3 positive
1 to 3 0 to 1 not worth more than a bare mention

11.2.4 Bayes factor versus likelihood ratio
If both 𝑀1 and 𝑀2 are simple models then the Bayes factor is identical to the
likelihood ratio of the two models.

However, if one of the two models is composite then the Bayes factor and the
generalised likelihood ratio differ: In the Bayes factor the representative of a
composite model is the model average of the simple models indexed by 𝜽, with
weights taken from the prior distribution over the simple models contained in
𝑀. In contrast, in the generalised likelihood ratio statistic the representative of a
composite model is chosen by maximisation.

Thus, for composite models, the Bayes factor does not equal the corresponding
generalised likelihood ratio statistic. In fact, the key difference is that the Bayes
factor is a penalised version of the likelihood ratio, with the penality depending
on the difference in complexity (number of parameters) of the two models

1Jeffreys, H. Theory of Probability. 3rd ed. Oxford University Press.
2Kass, R.E., and A.E. Raftery. 1995. Bayes factors. JASA 90:773–795. https://doi.org/10.1080/0162

1459.1995.10476572

https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1080/01621459.1995.10476572
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11.3 Approximate computations
The marginal likelihood and the Bayes factor can be difficult to compute in
practise. Therefore, a number of approximations have been developed. The most
important is the so-called Schwarz (1978) approximation of the log-marginal
likelihood. It is used to approximate the log-Bayes factor and also yields the BIC
(Bayesian information criterion) which can be interpreted as penalised maximum
likelihood.

11.3.1 Schwarz (1978) approximation of log-marginal likelihood
The logarithm of the marginal likelihood of a model can be approximated
following Schwarz (1978) 3 as follow:

log 𝑝(𝐷 |𝑀) ≈ 𝑙𝑀𝑛 (�̂�𝑀𝑀𝐿) −
1
2 𝑑𝑀 log 𝑛

where 𝑑𝑀 is the dimension of the model𝑀 (number of parameters in 𝜽 belonging
to 𝑀) and 𝑛 is the sample size and �̂�

𝑀

𝑀𝐿 is the MLE. For a simple model 𝑑𝑀 = 0
so then there is no approximation as in this case the marginal likelihood equals
the likelihood.

The above formula can be obtained by quadratic approximation of the likelihood
assuming large 𝑛 and assuming that the prior is locally uniform around the
MLE. The Schwarz (1978) approximation is therefore a special case of a Laplace
approximation.

Note that the approximation is the maximum log-likelihood minus a penalty
that depends on the model complexity (as measured by dimension 𝑑), hence
this is an example of penalised ML! Also note that the distribution over the
parameter 𝜽 is not required in the approximation.

11.3.2 Bayesian information criterion (BIC)
The BIC (Bayesian information criterion) of the model 𝑀 is the approximated
log-marginal likelihood times the factor -2:

𝐵𝐼𝐶(𝑀) = −2𝑙𝑀𝑛 (�̂�𝑀𝑀𝐿) + 𝑑𝑀 log 𝑛

Thus, when comparing models one aimes to maximise the marginal likelihood
or, as approximation, minimise the BIC.

The reason for the factor “-2” is simply to have a quantity that is on the same
scale as the Wilks log likelihood ratio. Some people / software packages also
use the factor “2”.

3Schwarz, G. 1978. Estimating the dimension of a model. Ann. Statist. 6:461–464. https:
//doi.org/10.1214/aos/1176344136

https://en.wikipedia.org/wiki/Laplace%27s_method
https://en.wikipedia.org/wiki/Laplace%27s_method
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
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11.3.3 Approximating the weight of evidence (log-Bayes factor)
with BIC

Using BIC (twice) the log-Bayes factor can be approximated as

2 log 𝐵12 ≈ −𝐵𝐼𝐶(𝑀1) + 𝐵𝐼𝐶(𝑀2)

= 2
(
𝑙
𝑀1
𝑛 (�̂�𝑀1

𝑀𝐿) − 𝑙𝑀2
𝑛 (�̂�𝑀2

𝑀𝐿)
)
− log(𝑛)(𝑑𝑀1 − 𝑑𝑀2)

i.e. it is the penalised log-likelihood ratio of model 𝑀1 vs. 𝑀2.

11.4 Bayesian testing using false discovery rates
We introduce False Discovery Rates (FDR) as a Bayesian method to distinguish
a null model from an alternative model. This is closely linked with classical
frequentist multiple testing procedures.

11.4.1 Setup for testing a null model 𝐻0 versus an alternative
model 𝐻𝐴

We consider two models:

𝐻0 : null model, with density 𝑓0(𝑥) and distribution 𝐹0(𝑥)
𝐻𝐴 : alternative model, with density 𝑓𝐴(𝑥) and distribution 𝐹𝐴(𝑥)
Aim: given observations 𝑥1 , . . . , 𝑥𝑛 we would like to decide for each 𝑥𝑖 whether
it belongs to 𝐻0 or 𝐻𝐴.

This is done by a critical decision threshold 𝑥𝑐 : if 𝑥𝑖 > 𝑥𝑐 then 𝑥𝑖 is called
“significant” and otherwise called “not significant”.

In classical statistics one of the the most widely used approach to find the
decision threshold is by computing 𝑝-values from the 𝑥𝑖 (this uses only the null
model but not the alternative model), and then thresholding the 𝑝-values a a
certain level (say 5%). If 𝑛 is large then often the test is modified by adjusting
the 𝑝-values or the threshold (e.g. if Bonferroni correction).

Note that this procedure ignores any information we may have about the
alternative model!

11.4.2 Test errors
11.4.2.1 True and false positives and negatives

For any decision threshold 𝑥𝑐 we can distinguish the following errors:

• False positives (FP), “false alarm”, type I error: 𝑥𝑖 belongs to null but is
called “significant”
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• False negative (FN), “miss”, type II error: 𝑥𝑖 belongs to alternative, but is
called “not significant”

In addition we have:

• True positives (TP), “hits”: belongs to alternative and is called “significant”
• True negatives (TN), “correct rejections”: belongs to null and is called “not

significant”

11.4.2.2 Specificity and Sensitivity

From counts of TP, TN, FN, FP we can derive further quantities:

• True Negative Rate TNR, specificity: 𝑇𝑁𝑅 = 𝑇𝑁
𝑇𝑁+𝐹𝑃 = 1 − 𝐹𝑃𝑅 with

FPR=False Positive Rate = 1 − 𝛼𝐼

• True Positive Rate TPR, sensitivity, power, recall: 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 = 1−𝐹𝑁𝑅

with FNR=False negative rate = 1 − 𝛼𝐼𝐼

• Accuracy: 𝐴𝐶𝐶 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Another common way to choose the decision threshold 𝑥𝑑 in classical statistics
is to balance sensitivity/power vs. specificity (maximising both power and
specificity, or equivalently, minimising both false positive and false negative
rates). ROC curves plot TPR/sensitivity vs. FPR = 1-specificity.

11.4.2.3 FDR and FNDR

It is possible to link the above with the observed counts of TP, FP, TN, FN:

• False Discovery Rate (FDR): 𝐹𝐷𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑃

• False Nondiscovery Rate (FNDR): 𝐹𝑁𝐷𝑅 = 𝐹𝑁
𝑇𝑁+𝐹𝑁

• Positive predictive value (PPV), True Discovery Rate (TDR), precision:
𝑃𝑃𝑉 = 𝑇𝑃

𝐹𝑃+𝑇𝑃 = 1 − 𝐹𝐷𝑅
• Negative predictive value (NPV): 𝑁𝑃𝑉 = 𝑇𝑁

𝑇𝑁+𝐹𝑁 = 1 − 𝐹𝑁𝐷𝑅
In order to choose the decision threshold it is natural to balance FDR and FDNR
(or PPV and NPV), by minimising both FDR and FNDR or maximising both PPV
and NPV.

In machine learning it is common to use “precision-recall plots” that plot
precision (=PPV, TDR) vs. recall (=power, sensitivity).

11.4.3 Bayesian perspective
11.4.3.1 Two component mixture model

In the Bayesian perspective the problem of choosing the decision threshold is
related to computing the posterior probability

Pr(𝐻0 |𝑥𝑖),
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i.e. probability of the null model given the observation 𝑥𝑖 , or equivalently
computing

Pr(𝐻𝐴 |𝑥𝑖) = 1 − Pr(𝐻0 |𝑥𝑖)
the probability of the alternative model given the observation 𝑥𝑖 .

This is done by assuming a mixture model

𝑓 (𝑥) = 𝜋0 𝑓0(𝑥) + (1 − 𝜋0) 𝑓𝐴(𝑥)

where 𝜋0 = Pr(𝐻0) is the prior probability of 𝐻0 and. 𝜋𝐴 = 1 − 𝜋0 = Pr(𝐻𝐴) the
prior probabiltiy of 𝐻𝐴.

Note that the weights 𝜋0 can in fact be estimated from the observations by fitting
the mixture distribution to the observations 𝑥1 , . . . , 𝑥𝑛 (so it is effectively an
empirical Bayes method where the prior is informed by the data).

11.4.3.2 Local FDR

The posterior probability of the null model given a data point is then given by

Pr(𝐻0 |𝑥𝑖) =
𝜋0 𝑓0(𝑥𝑖)
𝑓 (𝑥𝑖)

= 𝐿𝐹𝐷𝑅(𝑥𝑖)

This quantity is also known as the local FDR or local False Discovery Rate.

In the given one-sided setup the local FDR is large (close to 1) for small 𝑥, and will
become close to 0 for large 𝑥. A common decision rule is given by thresholding
local false discovery rates: if 𝐿𝐹𝐷𝑅(𝑥𝑖) < 0.1 the 𝑥𝑖 is called significant.

11.4.3.3 q-values

In correspondence to 𝑝-values one can also define tail-area based false discovery
rates:

𝐹𝑑𝑟(𝑥𝑖) = Pr(𝐻0 |𝑋 > 𝑥𝑖) =
𝜋0𝐹0(𝑥𝑖)
𝐹(𝑥𝑖)

These are called q-values, or simply False Discovery Rates (FDR). Intrigu-
ingly, these also have a frequentist interpretation as adjusted p-values (using a
Benjamini-Hochberg adjustment procedure).

11.4.4 Software
There are a number of R packages to compute (local) FDR values:

For example:

• locfdr
• qvalue
• fdrtool

https://cran.r-project.org/package=locfdr
http://www.bioconductor.org/packages/release/bioc/html/qvalue.html
https://cran.r-project.org/package=fdrtool
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and many more.

Using FDR values for screening is especially useful in high-dimensional settings
(e.g. when analysing genomic and other high-throughput data).

FDR values have both a Bayesian as well as frequentist interpretation, providing
further evidence that good classical statistical methods do have a Bayesian
interpretation.
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Chapter 12

Choosing priors in Bayesian
analysis

12.1 Choosing a prior

12.1.1 Prior as part of the model
It is essential in a Bayesian analysis to specify your prior uncertainty about
the model parameters. Note that this is simply part of the modelling process!
Thus in a Bayesian approach the data analyst needs to be more explicit about all
modelling assumptions.

Typically, when choosing a suitable prior distribution we consider the overall
form (shape and domain) of the distribution as well as its key characteristics such
as the mean and variance. As we have learned the precision (inverse variance) of
the prior may often be viewed as implied sample size.

For large sample size 𝑛 the posterior mean converges to the maximum likelihood
estimate (and the posterior distribution to normal distribution centered around
the MLE), so for large 𝑛 we may ignore specifying a prior.

However, for small 𝑛 it is essential that a prior is specified. In non-Bayesian
approaches this prior is still there but it is either implicit (maximum likeli-
hood estimation) or specified via a penality (penalised maximum likelihood
estimation).

12.1.2 Some guidelines
So the question remains what are good ways to choose a prior? Two useful ways
are:
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1. Use a weakly informative prior. This means that you do have an idea (even
if only vague) about the suitable values of the parameter of interest, and
you use a corresponding prior (for example with moderate variance) to
model the uncertainty. This acknowledges that there are no uninformative
priors and but also aims that the prior does not dominate the likelihood
(i.e. the data). The result is a weakly regularised estimator. Note that it is
often desirable that the prior adds information (if only a little) so that it
can act as a regulariser.

2. Empirical Bayes methods can often be used to determine one or all of the
hyperparameters (i.e. the parameters in the prior) from the observed data.
There are several ways to do this, one of them is to tune the shrinkage
parameter 𝜆 to achieve minimum MSE. We discuss this further below.

Furthermore, there also exist many proposals advocating so-called “uninforma-
tive priors” or “objective priors”. However, there are no actually unformative
priors, since a prior distribution that looks uninformative (i.e. “flat”) in one
coordinate system can be informative in another — this is a simple consequence
of the rule for transformation of probability densities. As a result, often the
suggested objective priors are in fact improper, i.e. are not actually probability
distributions!

12.2 Default priors or uninformative priors
Objective or for default priors are attempts 1) to automatise specification of a
prior and 2) to find uniformative priors.

12.2.1 Jeffreys prior
The most well-known non-informative prior is given by a proposal by Harold
Jeffreys (1891–1989) in 1946 1.

Specifically, this prior is constructed from the expected Fisher information and
thus promises automatic construction of objective uninformative priors using
the likelihood:

𝑝(𝜽) ∝
√

det 𝑰Fisher(𝜽)

The reasoning underlying this prior is invariance against transformation of the
coordinate system of the parameters.

For the Beta-Binomial model the Jeffreys prior corresponds to Beta( 1
2 ,

1
2 ). Note

this is not the uniform distribution but a U-shaped prior.

For the normal-normal model it corresponds to the flat improper prior 𝑝(𝜇) = 1.

1Jeffreys, H. 1946. An invariant form for the prior probability in estimation problems. Proc. Roy. Soc. A
186:453–461. https://doi.org/10.1098/rspa.1946.0056.

https://en.wikipedia.org/wiki/Harold_Jeffreys
https://en.wikipedia.org/wiki/Harold_Jeffreys
https://doi.org/10.1098/rspa.1946.0056
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For the IG-normal model the Jeffreys prior is the improper prior 𝑝(𝜎2) = 1
𝜎2 .

This already illustrates the main problem with this type of prior – namely
that it often is improper, i.e. the prior distribution is not actually a probability
distribution (i.e. the density does not integrate to 1).

Another issue is that Jeffreys priors are usually not conjugate which complicates
the update from the prior to the posterior.

Furthermore, if there are multiple parameters (𝜽 is a vector) then Jeffreys priors
do not usually lead to sensible priors.

12.2.2 Reference priors
An alternative to Jeffreys priors are the so-called reference priors developed by
Bernardo (1979) 2. This type of priors aims to choose the prior such that there
is maximal “correlation” between the data and the parameter. More precisely,
the mutual information between 𝜃 and 𝑥 is maximised (i.e. the the expected
KL divergence between the posterior and prior distribution). The underlying
motivation is that the data and parameters should be maximally linked (thereby
minimising the influence of the prior).

For univariate settings the reference priors are identical to Jeffreys priors. How-
ever, reference prior also provide reasonable priors in multivariate settings.

In both Jeffreys’ and the reference prior approach the choice of prior is by
expectation over the data, i.e. not for the specific data set at hand (this can be
seen both as a positive and negative!).

12.3 Empirical Bayes
In empirical Bayes the data analysist specifies a family of prior distribution (say
a Beta distribution with free parameters), and then the data at hand are used to
find an optimal choise for the hyper-parameters (hence the name “empirical”).
Thus the hyper-parameters are not specified but themselves estimated.

12.3.1 Type II maximum likelihood
In particular, assuming data 𝐷, a likelihood 𝑝(𝐷 |𝜽) for some model with
parameters 𝜽 as well as a prior 𝑝(𝜽 |𝜆) for 𝜽 with hyper-parameter 𝜆 the marginal
likelihood now depends on 𝜆:

𝑝(𝐷 |𝜆) =
∫
𝜽
𝑝(𝐷 |𝜽)𝑝(𝜽 |𝜆)𝑑𝜽

2Bernardo, J. M. 1979. Reference posterior distributions for Bayesian inference (with discussion). JRSS B
41:113–147. https://doi.org/10.1111/j.2517-6161.1979.tb01066.x

https://doi.org/10.1111/j.2517-6161.1979.tb01066.x
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We can therefore use maximum (marginal) likelihood find optimal values of 𝜆
given the data.

Since maximum-likelihood is used in a second level step (the hyper-parameters)
this type of empirical Bayes is also often called “type II maximum likelihood”.

12.3.2 Shrinkage estimation using empirical risk minimisation
An alternative (but related) way to estimate hyper-parameters is by minimising
the empirical risk.

In the examples for Bayesian estimation that we have considered so far the
posterior mean of the parameter of interest was obtained by linear shrinkage

�̂�shrink = E(𝜃 |𝐷) = 𝜆𝜃0 + (1 − 𝜆)�̂�ML

of the MLE �̂�ML towards the prior mean 𝜃0, with shrinkage intensity 𝜆 =
𝑘0
𝑘0

determined by the ration of the prior and posterior concentration parameters 𝑘0
and 𝑘1.

The resulting point estimate �̂�shrink is called shrinkage estimate and is a convex
combination of 𝜃0 and �̂�ML. The prior mean 𝜃0 is also called the “target”.

The hyperparameter in this setting is 𝑘0 (linked to the precision of the prior) and
or equivalently the shrinkage intensity 𝜆.

An optimal value for 𝜆 can be obtained by minimising the mean squared error
of the estimator �̂�shrink.

In particular, by construction, the target 𝜃0 has low or even zero variance but
non-vanishing and potentially large bias, whereas the MLE �̂�ML will have low
or zero bias but a substantial variance. By combinining these two estimators
with opposite properties the aim is to achieve a bias-variance tradeoff so that the
resulting estimator �̂�shrink has lower MSE than either 𝜃0 and �̂�ML.

Specifically, the aim is to find

𝜆★ = arg min
𝜆

E
(
(𝜃 − �̂�shrink)2

)
It turns out that this can be minimised without knowing the actual true value of
𝜃 and the result for an unbiased �̂�ML is

𝜆★ =
Var(�̂�ML)

E((�̂�ML − 𝜃0)2)

Hence, the shrinkage intensity will be small if the variance of the MLE is small
and/or if the target and the MLE differ substantially. On the other hand, if the
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variance of the MLE is large and/or the target is close to the MLE the shrinkage
intensity will be large.

Choosing the shrinkage parameter by optimising expected risk (here mean
squared error) is also a form empirical Bayes.

Example 12.1. James-Stein estimator:

Empirical risk minimisation to estimate the shrinkage parameter of the normal-
normal model for a single observation yields the James-Stein estimator (1955).

Specifically, James and Stein propose the following estimate for the multivariate
mean 𝝁 of using a single sample 𝒙 drawn from the multivariate normal 𝑁𝑑(𝝁, 𝑰):

�̂�𝐽𝑆 =

(
1 − 𝑑 − 2

| |𝒙 | |2

)
𝒙

Here, we recognise �̂�𝑀𝐿 = 𝒙, 𝝁0 = 0 and shrinkage intensity 𝜆★ = 𝑑−2
| |𝒙 | |2 .

Efron and Morris (1972) and Lindley and Smith (1972) later generalised the
James-Stein estimator to the case of multiple observations 𝒙1 , . . . 𝒙𝑛 and target
𝝁0, yielding an empirical Bayes estimate of 𝜇 based on the normal-normal model.
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Chapter 13

Optimality properties and
summary

13.1 Bayesian statistics in a nutshell
• Bayesian statistics explicitly models the uncertainty about the parameters

of interest by probability
• In the light of new evidence (observed data) the uncertainty is updated,

i.e. the prior distribution is combined via Bayes rule with the likelihood to
form the posterior distribution

• If the posterior distribution is in same family as the prior → conjugate
prior.

• In an exponential family the Bayesian update of the mean is always
expressible as linear shrinkage of the MLE.

• For large sample size the posterior mean becomes maximum likelihood
estimator and the prior playes no role.

• Conversely, for small sample size if no data is available the posterior stays
close the prior..

13.1.1 Advantages

• Adding prior information has regularisation properties. This is very
important in more complex models with many parameters, e.g., in the
estimation of a covariance matrix (to avoid singularity).

• Improves small-sample accuracy (e.g. MSE)
• Bayesian estimators tend to perform better than MLEs - this is not surprising

as they use the observed data plus the extra information available in the
prior.
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• Bayesian credible intervals are conceptually much more simple than fre-
quentist confidence intervals.

13.1.2 Frequentist properties of Bayesian estimators
A Bayesian point estimator (e.g. the posterior mean) can also be assessed by its
frequentist properties.

• First, by construction due to introducing a prior the Bayesian estimator
will be biased for finite 𝑛 even if the MLE is unbiased.

• Second, intriguingly it turns out that the sampling variance of the Bayes
point estimator (not to be confused with the posterior variance!) can be
smaller than the variance of the MLE. This depends on the choice of the
shrinkage parameter 𝜆 that also determines the posterior variance.

As a result, Bayesian estimators may have smaller MSE (=squared bias + variance)
than the ML estimator for finite 𝑛.

In statistical decision theory this is called the theorem of admissibility of Bayes
rules. It states that under mild conditions every admissible estimation rule
(i.e. one that dominates all other estimators with regard to some expected loss,
such as the MSE) is in fact a Bayes estimator with some prior.

Unfortunately, this theorem does not tell which prior is needed to achive
optimality, however an optimal estimator can often be found by tuning the
hyperparameters.

13.1.3 Specifying the prior — problem or advantage?
In Bayesian statistics the data analyst needs to be very explicit about the modelling
assumptions:

Model = data generating process (likelihood) + prior uncertainty (prior
distribution)

Note that alternative statistical methods can often be interpreted as Bayesian
methods assuming a specific implicit prior!

For example, likelihood estimation for the binomial model is equivalent to Bayes
estimation using the Beta-Binomial model with a Beta(0, 0) prior (=Haldane
prior).
However, when choosing a prior explicitly for this model, interestingly most
analysts would rather use a flat prior Beta(1, 1) (=Laplace prior) with implicit
sample size 𝑘0 = 2 or a transformation-invariant prior Beta(1/2, 1/2) (=Jeffreys
prior) with implicit sample size 𝑘0 = 1 rather than the Haldane prior!

→ be aware about the implicit priors!!

Better to acknowledge that a prior is being used (even if implicit!)
Being specific about all your assumptions is enforced by the Bayesian approach.
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Specifying a prior is thus best understood as an intrinsic part of model specifica-
tion. It helps to improve inference and it may only be ignored if there is lots of
data.

13.2 Optimality of Bayesian inference
The optimality of Bayesian model making use of full model specification (like-
lihood plus prior) can be shown from a number of different perspectives.
Correspondingly, there are many theorems that prove (or at least indicate) this
optimality:

1) Richard Cox’s theorem: generalising classical logic invariably leads to
Bayesian inference.

2) de Finetti’s representation theorem: joint distribution of exchangeable
observations can always be expressed as weighted mixture over a prior
distribution for the parameter of the model. This implies the existence of
the prior distribution and the requirement of a Bayesian approach.

3) Frequentist decision theory: all admissible decision rules are Bayes rules!

4) Entropy perspective: The posterior density (a function!) is obtained as a
result of optimising an entropy criterion. Bayesian updating may thus be
viewed as a variational optimisation problem. Specifically, Bayes theorem is
the minimal update when new information arrives in form of observations
(see below).

Remark: there exist a number of further (often somewhat esoteric) suggestions
for propagating uncertainty such as “fuzzy logic”, imprecise probabilities, etc.
These contradict Bayesian learning and are thus in direct violation of the above
theorems.

13.3 Connection with entropy learning
The Bayesian update rule is a very general form of learning when the new information
arrives in the form of data. But actually there is an even more general principle
of which the Bayesian update rule is just a special case: the principle of
minimal information update (e.g. Jaynes 1959, 2003) or principle of minimum
information discrimination (MDI) (Kullback 1959).

It can be summarised as follows: Change your beliefs only as much as necessary
to be coherent with new evidence!

Under this principle of “inertia of beliefs” when new information arrives the
uncertainty about a parameter is only minimally adjusted, only as much as
needed to account for the new information. To implement this principle KL
divergence is a natural measure to quantify the change of the underlying beliefs.
This is known as entropy learning.

https://en.wikipedia.org/wiki/Cox%27s_theorem
https://en.wikipedia.org/wiki/De_Finetti%27s_theorem
https://en.wikipedia.org/wiki/Admissible_decision_rule
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The Bayes rule emerges a special case of entropy learning:

• The KL divergence between the joint posterior 𝑄𝑥,𝜽 and joint prior dis-
tribution 𝑃𝑥,𝜽 is computed, with the posterior distribution 𝑄𝜽 |𝑥 as free
parameter.

• The conditional distribution𝑄𝜽 |𝑥 is found by minimising the KL divergence
𝐷KL(𝑄𝑥,𝜽 , 𝑃𝑥,𝜽).

• The optimal solution to this variational optimisation problem is given by
Bayes’ rule!

This application of the KL divergence is an example of reverse KL optimisation
(aka 𝐼-projection, see Part I of the notes). Intringuingly, this explains the zero
forcing property of Bayes’ rule (because that this is a general property of an
𝐼-projection).

Applying entropy learning therefore includes Bayesian learning as special case:

1) If information arrives in form of data → update prior by Bayes’ theorem
(Bayesian learning).

Interestingly, entropy learning will lead to other update rules for other types of
information:

2) If information arrives in the form of another distribution → update using
R. Jeffrey’s rule of conditioning (1965).

3) If the information is presented in the form of constraints → Kullback’s
principle of minimum MDI (1959), E. T. Jaynes maximum entropy (MaxEnt)
principle (1957).

This shows (again) how fundamentally important KL divergence is in statistics.
It not only leads to likelihood inference (via forward KL) but also to Bayesian
learning, as well as to other forms of information updating (via reverse KL).

Furthermore, in Bayesian statistics relative entropy is useful to choose priors
(e.g. reference priors) and it also helps in (Bayesian) experimental design to
quantify the information provided by an experiment.

13.4 Conclusion
Bayesian statistics offers a coherent framework for statistical learning from data,
with methods for

• estimation
• testing
• model building

There are a number of theorems that show that “optimal” estimators (defined in
various ways) are all Bayesian.

It is conceptually very simple — but can be computationally very involved!
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It provides a coherent generalisation of classical TRUE/FALSE logic (and there-
fore does not suffer from some of the inconsistencies prevalent in frequentist
statistics).

Bayesian statistics is a non-asymptotic theory, it works for any sample size.
Asympotically (large 𝑛) it is consistent and converges to the true model (like
ML!). But Bayesian reasoning can also be applied to events that take place
only once — no assumption of hypothetical infinitely many repetitions as in
frequentist statistics is needed.

Moreover, many classical (frequentist) procedures may be viewed as approxima-
tions to Bayesian methods and estimators, so using classical approaches in the
correct application domain is perfectly in line with the Bayesian framework.

Bayesian estimation and inference also automatically regularises (via the prior)
which is important for complex models and when there is the problem of
overfitting.
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Part III

Regression

143





Chapter 14

Overview over regression
modelling

14.1 General setup

• 𝑦: response variable, also known as outcome or label

• 𝑥1 , 𝑥2 , 𝑥3 , . . . , 𝑥𝑑: predictor variables, also known as covariates or covari-
ables

• The relationship between the outcomes and the predictor variables is
assumed to follow

𝑦 = 𝑓 (𝑥1 , 𝑥2 , . . . , 𝑥𝑑) + 𝜀

where 𝑓 is the regression function (not a density) and 𝜀 represents noise.
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14.2 Objectives
1. Understand the relationship between the response 𝑦 and the predictor

variables 𝑥𝑖 by learning the regression function 𝑓 from observed data
(training data). The estimated regression function is 𝑓 .

2. Prediction of outcomes

�̂�︸︷︷︸
predicted response

using fitted 𝑓

= 𝑓 (𝑥1 , 𝑥2 , . . . , 𝑥𝑑)

If instead of the fitted function 𝑓 the known regression function 𝑓 is used
we denote this by

𝑦★︸︷︷︸
predicted response

using known 𝑓

= 𝑓 (𝑥1 , 𝑥2 , . . . , 𝑥𝑑)

3. Variable importance

• which covariates are most relevant in predicting the outcome?
• allows to better understand the data and model

→ variable selection (to build simpler model with same predictive
capability)

14.3 Regression as a form of supervised learning
Regression modelling is a special case of supervised learning.

In supervised learning we make use of labelled data, i.e. 𝒙 𝑖 has an associated
label 𝑦𝑖 . Thus, the data is consists of pairs (𝒙1 , 𝑦1), (𝒙2 , 𝑦2), . . . , (𝒙𝑛 , 𝑦𝑛).

The supervision part of in supervised learning refers to the fact that the labels are
given.

In regression typically the label 𝑦𝑖 is continuous and called the response.

On the other hand, if the label 𝑦𝑖 is discrete/categorical then supervised learning
is called classification.

Supervised Learning
−→ Discrete 𝑦

−→ Continuous 𝑦

−→ Classification Methods

−→ Regression Methods
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Another important type of statistical learning is unsupervised learning where la-
bels 𝑦 are inferred from the data 𝒙 (this is also known as clustering). Furthermore,
there is also semi-supervised learning with labels only partly known.

Note that there are regression models (e.g. logistic regression) with discrete
response that are performing classification, so one may argue that “supervised
learning”=“generalised regression”.

14.4 Various regression models used in statistics
In this course we only study linear multiple regression. However, you should
be aware that the linear model is in fact just a special cases of some much more
general regression approaches.

General regression model:

𝑦 = 𝑓 (𝑥1 , . . . , 𝑥𝑑) + "noise"

• The function 𝑓 is estimated nonparametrically - splines - Gaussian processes

• Generalised Additive Models (GAM): - the function 𝑓 is assumed to be the
sum of individual functions 𝑓𝑖(𝑥𝑖)

• Generalised Linear Models (GLM): - 𝑓 is a transformed linear predictor
ℎ(∑ 𝑏𝑖𝑥𝑖), noise is assumed from an exponential family

• Linear Model (LM): - linear predictor
∑
𝑏𝑖𝑥𝑖 , normal noise

In R the linear model is implemented in the function lm(), and generalised linear
models in the function glm(). Generalised additive models are available in the
package “mgcv”.

In the following we focus on the linear regression model with continuous
response.
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Chapter 15

Linear Regression

15.1 The linear regression model
In this module we assume that 𝑓 is a linear function:

𝑓 (𝑥1 , . . . , 𝑥𝑑) = 𝛽0 +
𝑑∑
𝑗=1

𝛽 𝑗𝑥 𝑗 = 𝑦★

In vector notation:
𝑓 (𝒙) = 𝛽0 + 𝜷𝑇𝒙 = 𝑦★

with 𝜷 =
©«
𝛽1
...
𝛽𝑑

ª®®¬ and 𝒙 =
©«
𝑥1
...
𝑥𝑑

ª®®¬
Therefore, the linear regression model is

𝑦 = 𝛽0 +
𝑑∑
𝑗=1

𝛽 𝑗𝑥 𝑗 + 𝜀

= 𝛽0 + 𝜷𝑇𝒙 + 𝜀

= 𝑦★ + 𝜀

where:

• 𝛽0 is the intercept
• 𝜷 = (𝛽1 , . . . , 𝛽𝑑)𝑇 are the regression coefficients
• 𝒙 = (𝑥1 , . . . , 𝑥𝑑)𝑇 is the predictor vector containing the predictor variables

149
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15.2 Interpretation of regression coefficients and in-
tercept

• The regression coefficient 𝛽𝑖 corresponds to the slope (first partial deriva-
tive) of the regression function in the direction of 𝑥𝑖 . In other words, the
gradient of 𝑓 (𝒙) are the regression coefficients: ∇ 𝑓 (𝒙) = 𝜷

• The intercept 𝛽0 is the offset at the origin (𝑥1 = 𝑥2 = . . . = 𝑥𝑑 = 0):

15.3 Different types of linear regression:
• Simple linear regression: 𝑦 = 𝛽0 + 𝛽𝑥 + 𝜀 (=single predictor)
• Multiple linear regression: 𝑦 = 𝛽0 +

∑𝑑
𝑗=1 𝛽 𝑗𝑥 𝑗 + 𝜀 (= multiple predictor

variables)
• Multivariate regression: multivariate response 𝒚

15.4 Distributional assumptions and properties
General assumptions:

• We treat 𝑦 and 𝑥1 , . . . , 𝑥𝑑 as the primary observables that can be described
by random variables.

• 𝛽0 , 𝜷 are parameters to be inferred from the observations on 𝑦 and
𝑥1 , . . . , 𝑥𝑑.

• Specifically, will we assume that response and predictors have a mean and
a (cov)variance:

i. Response:
E(𝑦) = 𝜇𝑦
Var(𝑦) = 𝜎2

𝑦

The variance of the response Var(𝑦) is also called the total variation .
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ii. Predictors:
E(𝑥𝑖) = 𝜇𝑥𝑖 (or E(𝒙) = 𝝁𝒙)
Var(𝑥𝑖) = 𝜎2

𝑥𝑖
and Cor(𝑥𝑖 , 𝑥 𝑗) = 𝜌𝑖 𝑗 (or Var(𝒙) = 𝚺𝒙)

The signal variance Var(𝑦★) = Var(𝛽0 + 𝜷𝑇𝒙) = 𝜷𝑇𝚺𝒙𝜷 is also called
the explained variation.

• We assume that 𝑦 and 𝒙 are jointly distributed with correlation Cor(𝑦, 𝑥 𝑗) =
𝜌𝑦,𝑥 𝑗 between each predictor variable 𝑥 𝑗 and the response 𝑦.

• In contrast to 𝑦 and 𝒙 the noise variable 𝜀 is only indirectly observed via
the difference 𝜀 = 𝑦 − 𝑦★. We denote the mean and variance of the noise
by E(𝜀) and Var(𝜀).
The noise variance Var(𝜀) is also called the unexplained variation or the
residual variance. The residual standard error is SD(𝜀).

Identifiability assumptions:

In a statistical analysis we would like to be able to separate signal (𝑦★) from
noise (𝜀). To achieve this we require some distributional assumptions to ensure
identifiability and avoid confounding:

1) Assumption 1: 𝜀 and 𝑦★ are are independent. This implies Var(𝑦) =

Var(𝑦★) + Var(𝜀), or equivalently Var(𝜀) = Var(𝑦) − Var(𝑦★).

Thus, this assumption implies the decomposition of variance, i.e. that the
total variation Var(𝑦) equals the sum of the explained variationVar(𝑦★)
and the unexplained variationVar(𝜀).

2) Assumption 2: E(𝜀) = 0. This allows to identify the intercept 𝛽0 and
implies E(𝑦) = E(𝑦★).

Optional assumptions (often but not always):

• The noise 𝜀 is normally distributed
• The response 𝑦 and and the predictor variables 𝑥𝑖 are continuous variables
• The response and predictor variables are jointly normally distributed

Further properties:

• As a result of the independence assumption 1) we can only choose two out
of the three variances freely:

i. in a generative perspective we will choose signal variance Var(𝑦★)
(or equivalently the variances Var(𝑥 𝑗)) and the noise variance Var(𝜀),
then the variance of the response Var(𝑦) follows.

ii. in an observational perspective we will observe the variance of the
reponse Var(𝑦) and the variances Var(𝑥 𝑗), and then the error variance
Var(𝜀) follows.

• As we will see later the regression coefficients 𝛽 𝑗 depend on the correlations
between the response 𝑦 and and the predictor variables 𝑥 𝑗 . Thus, the choice
of regression coefficients implies a specific correlation pattern, and vice
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versa (in fact, we will use this correlation pattern to infer the regression
coefficients from data!).

15.5 Regression in data matrix notation
We can also write the regression in terms of actual observed data (rather than in
terms of random variables):

Data matrix for the predictors:

𝑿 =
©«
𝑥11 . . . 𝑥1𝑑
...

. . .
...

𝑥𝑛1 . . . 𝑥𝑛𝑑

ª®®¬
Note the statistics convention: the 𝑛 rows of 𝑿 contain the samples, and the 𝑑
columns contain variables.

Response data vector: (𝑦1 , . . . , 𝑦𝑛)𝑇 = 𝒚

Then the regression equation is written in data matrix notation:

𝒚︸︷︷︸
𝑛×1

= 1𝑛𝛽0︸︷︷︸
𝑛×1

+ 𝑿︸︷︷︸
𝑛×𝑑

𝜷︸︷︷︸
𝑑×1

+ 𝜺︸︷︷︸
𝑛 × 1︸︷︷︸
residuals

where 1𝑛 =
©«
1
...
1

ª®®¬ is a column vector of length 𝑛 (size 𝑛 × 1).

Note that here the regression coefficients are now multiplied after the data matrix
(compare with the original vector notation where the transpose of regression
coefficients come before the vector of the predictors).

The observed noise values (i.e. realisations of the random variable 𝜀) are called
the residuals.

15.6 Centering and vanishing of the intercept 𝛽0

If 𝒙 and 𝑦 are centered, i.e. if E(𝒙) = 𝝁𝒙 = 0 and E(𝑦) = 𝜇𝑦 = 0, then the intercept
𝛽0 disappears:

The regression equation is
𝑦 = 𝛽0 + 𝜷𝑇𝒙 + 𝜀
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with 𝐸(𝜀). Taking the expectation on both sides we get 𝜇𝑦 = 𝛽0 + 𝜷𝑇𝝁𝒙 and
therefore

𝛽0 = 𝜇𝑦 − 𝜷𝑇𝝁𝒙

This is zero if the mean of the response 𝜇𝑦 and the mean of predictors 𝝁𝒙 vanish.
Conversely, if we assume that the intercept vanishes (𝛽0 = 0) this is only possible
for general 𝜷 if both 𝝁𝒙 = 0 and 𝜇𝑦 = 0.

Thus, in the linear model is always possible to transform 𝑦 and 𝒙 (or data 𝒚 and
𝑿 ) so that the intercept vanishes. To simplify equations we will therefore often
set 𝛽0 = 0.

15.7 Objectives in data analysis using linear regres-
sion

1. Understand functional relationship: find estimates of the intercept (�̂�0)
and the regression coefficients (�̂� 𝑗), as well as the associated errors.

2. Prediction:

• Known coefficients 𝛽0 and 𝜷: 𝑦★ = 𝛽0 + 𝜷𝑇𝒙
• Estimated coefficients �̂�0 and �̂� (note the “hat”!): �̂� = �̂�0 +

∑𝑑
𝑗=1 �̂� 𝑗𝑥 𝑗 =

�̂�0 + �̂�
𝑇
𝒙

For each point prediction find the corresponding prediction error!

3. Variable importance: Which predictors 𝑥 𝑗 are most relevant?
→ test whether 𝛽 𝑗 = 0
→ find measures of variable importance

Remark: as we will see 𝛽 𝑗 or �̂� 𝑗 itself is not a measure of variable importance!
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Chapter 16

Estimating regression
coefficients

In this chapter we discuss various ways to estimate the regression coefficients.
First, we discuss estimation by Ordinary Least Squares (OLS) by minimising the
residual sum of squares. This yields the famous Gauss estimator. Second, we
derive estimates of the regression coefficients using the methods of maximum
likelihood assuming normal errors. This also leads to the Gauss estimator. Third,
we show that the coefficients in linear regression can written and interpreted in
terms of two covariance matrices and that the Gauss estimator of the regression
coefficients is a plug-in estimator using the MLEs of these covariance matrices.
Furthermore, we show that the (population version) of the Gauss estimator
can also be derived by finding the best linear predictor and by conditioning.
Finally, we discuss special cases of regression coefficients and their relationship
to marginal correlation.

16.1 Ordinary Least Squares (OLS) estimator of re-
gression coefficients

Now we show the classic way (Gauss 1809; Legendre 1805) to estimate regression
coefficients by the method of ordinary least squares (OLS).

Idea: choose regression coefficients such as to minimise the squared error between
observations and the prediction.

155
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In data matrix notation (note we assume 𝛽0 = 0 and thus centered data 𝑿 and 𝒚):

RSS(𝜷) = (𝒚 − 𝑿𝜷)𝑇(𝒚 − 𝑿𝜷)

RSS is an abbreviation for “Residual Sum of Squares” which is is a function of 𝜷.
Minimising RSS yields the OLS estimate:

�̂�OLS = arg min
𝜷

RSS(𝜷)

RSS(𝜷) = 𝒚𝑇𝒚 − 2𝜷𝑇𝑿𝑇𝒚 + 𝜷𝑇𝑿𝑇𝑿𝜷

Gradient:
∇RSS(𝜷) = −2𝑿𝑇𝒚 + 2𝑿𝑇𝑿𝜷

∇RSS(�̂�) = 0 −→ 𝑿𝑇𝒚 = 𝑿𝑇𝑿 �̂�

=⇒ �̂�OLS =

(
𝑿𝑇𝑿

)−1
𝑿𝑇𝒚

Note the similarities in the procedure to maximum likelihood (ML) estimation
(with minimisation instead of maximisation)! In fact, as we see next this is not
by chance as OLS is indeed a special case of ML! This also implies that OLS is
generally a good method — but only if sample size 𝑛 is large!

The above Gauss’ estimator is fundamental in statistics so it is worthwile to
memorise it!
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16.2 Maximum likelihood estimation of regression
coefficients

16.2.1 Normal log-likelihood function for regression coefficients
and noise variance

We now show how to estimate regression coefficients using the method of
maximum likelihood. This is a second method to derive �̂�.

We recall the basic regression equation

𝑦 = 𝛽0 + 𝜷𝑇𝒙 + 𝜀

with independent noise 𝜀 and observed data 𝑦1 , . . . , 𝑦𝑛 and 𝒙1 , . . . , 𝒙𝑛 .

Assuming E(𝜀) = 0 the intercept is identified as

𝛽0 = 𝜇𝑦 − 𝜷𝑇𝝁𝒙

Combining the two above equations we see that noise variable equals

𝜀 = (𝑦 − 𝜇𝑦) − 𝜷𝑇(𝒙 − 𝝁𝒙)

Assuming joint (multivariate) normality for the observed data, the response 𝑦
and predictors 𝒙, we get as the MLEs for the respective means and (co)variances:

• �̂�𝑦 = Ê(𝑦) = 1
𝑛

∑𝑛
𝑖=1 𝑦𝑖

• �̂�2
𝑦 = V̂ar(𝑦) = 1

𝑛

∑𝑛
𝑖=1(𝑦𝑖 − �̂�𝑦)2

• �̂�𝒙 = Ê(𝒙) = 1
𝑛

∑𝑛
𝑖=1 𝒙 𝑖

• �̂�𝒙𝒙 = V̂ar(𝒙) = 1
𝑛

∑𝑛
𝑖=1(𝒙 𝑖 − �̂�𝒙)(𝒙 𝑖 − �̂�𝒙)𝑇

• �̂�𝒙𝑦 = Ĉov(𝒙 , 𝑦) = 1
𝑛

∑𝑛
𝑖=1(𝒙 𝑖 − �̂�𝒙)(𝑦𝑖 − �̂�𝑦)

Note that these are are sufficient statistics and hence summarize perfectly the
observed data for 𝒙 and 𝑦 under the normal assumption

Consequently, the residuals (indirect observations of the noise variable) for a
given choice of regression coefficients 𝜷 and the observed data for 𝒙 and 𝑦 are

𝜀𝑖 = (𝑦𝑖 − �̂�𝑦) − 𝜷𝑇(𝒙 𝑖 − �̂�𝒙)

Assuming that the noise 𝜀 ∼ 𝑁(0, 𝜎2
𝜀) is normally distributed with mean 0 and

variance Var(𝜀) = 𝜎2
𝜀. we can write down the normal log-likelihood function for

𝜎2
𝜀 and 𝜷:

log 𝐿(𝜷, 𝜎2
𝜀) = −𝑛2 log 𝜎2

𝜀 −
1

2𝜎2
𝜀

𝑛∑
𝑖=1

(
(𝑦𝑖 − �̂�𝑦) − 𝜷𝑇(𝒙 𝑖 − �̂�𝒙)

)2
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Maximising this function leads to the MLEs of 𝜎2
𝜀 and 𝜷!

Note that the residual sum of squares appears in the log-likelihood function
(with a minus sign), which implies that ML assuming normal distribution will
recover the OLS estimator for the regression coefficients! So OLS is a special case
of ML !

16.2.2 Detailed derivation of the MLEs
The gradient with regard to 𝜷 is

∇𝜷 log 𝐿(𝜷, 𝜎2
𝜀) =

1
𝜎2
𝜀

𝑛∑
𝑖=1

(
(𝒙 𝑖 − �̂�𝒙)(𝑦𝑖 − �̂�𝑦) − (𝒙 𝑖 − �̂�𝒙)(𝒙 𝑖 − �̂�𝒙)

𝑇𝜷
)

=
𝑛

𝜎2
𝜀

(
�̂�𝒙𝑦 − �̂�𝒙𝒙𝜷

)
Setting this equal to zero yields the Gauss estimator

�̂� = �̂�
−1
𝒙𝒙�̂�𝒙𝑦

By plugin we the get the MLE of 𝛽0 as

�̂�0 = �̂�𝑦 − �̂�
𝑇
�̂�𝒙

Taking the derivative of log 𝐿(�̂�, 𝜎2
𝜀) with regard to 𝜎2

𝜀 yields

𝜕

𝜕𝜎2
𝜀

log 𝐿(�̂�, 𝜎2
𝜀) = − 𝑛

2𝜎2
𝜀

+ 1
2𝜎4

𝜀

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2

with �̂�𝑖 = �̂�0 + �̂�
𝑇
𝒙 𝑖 and the residuals 𝑦𝑖 − �̂�𝑖 resulting from the fitted linear

model. This leads to the MLE of the noise variance

𝜎2
𝜀 =

1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2

Note that the MLE 𝜎2
𝜀 is a biased estimate of 𝜎2

𝜀. The unbiased estimate is
1

𝑛−𝑑−1
∑𝑛
𝑖=1(𝑦𝑖 − �̂�𝑖)2, where 𝑑 is the dimension of 𝜷 (i.e. the number of predictors).

16.2.3 Asymptotics
The advantage of using maximum likelihood is that we also get the (asympotic)
variance associated with each estimator and typically can also assume asymptotic
normality.
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Specifically, for �̂� we get via the observed Fisher information at the MLE an
asymptotic estimator of its variance

V̂ar(�̂�) = 1
𝑛
𝜎2
𝜀�̂�

−1
𝒙𝒙

Similarly, for �̂�0 we have

V̂ar(�̂�0) =
1
𝑛
𝜎2
𝜀(1 + �̂�𝑇�̂�

−1
𝒙𝒙 �̂�)

For finite sample size 𝑛 with known Var(𝜀) one can show that the variances are

Var(�̂�) = 1
𝑛
𝜎2
𝜀�̂�

−1
𝒙𝒙

and
Var(�̂�0) =

1
𝑛
𝜎2
𝜀(1 + �̂�𝑇𝒙 �̂�

−1
𝒙𝒙 �̂�𝒙)

and that the regression coefficients and the intercept are normally distributed
according to

�̂� ∼ 𝑁𝑑(𝜷,Var(�̂�))
and

�̂�0 ∼ 𝑁(𝛽0 ,Var(�̂�0))

We may use this to test whether whether 𝛽 𝑗 = 0 and 𝛽0 = 0.

16.3 Covariance plug-in estimator of regression co-
efficients

16.3.1 Regression coeffients as product of variances
We now try to understand regression coefficients in terms of covariances (thus
obtaining a third way to compute and estimate them).

We recall that the Gauss regression coefficients are given by

�̂� =

(
𝑿𝑇𝑿

)−1
𝑿𝑇𝒚

where 𝑿 is the 𝑛 × 𝑑 data matrix (in statistics convention)

𝑿 =
©«
𝑥11 . . . 𝑥1𝑑
...

. . .
...

𝑥𝑛1 . . . 𝑥𝑛𝑑

ª®®¬
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Note that we assume that the data matrix 𝑿 is centered (i.e. column sums
𝑿𝑇1𝑛 = 0 are zero).

Likewise 𝒚 = (𝑦1 , . . . , 𝑦𝑛)𝑇 is the response data vector (also centered with
𝒚𝑇1𝑛 = 0).

Noting that

�̂�𝒙𝒙 =
1
𝑛
(𝑿𝑇𝑿 )

is the MLE of covariance matrix among 𝒙 and

�̂�𝒙𝑦 =
1
𝑛
(𝑿𝑇𝒚)

is the MLE of the covariance between 𝒙 and 𝑦 we see that the OLS estimate of
the regression coefficients can be expressed as

�̂� =

(
�̂�𝒙𝒙

)−1
�̂�𝒙𝑦

We can write down a population version (with no hats!):

𝜷 = 𝚺−1
𝒙𝒙𝚺𝒙𝑦

Thus, OLS regression coefficients can be interpreted as plugin estimator using
MLEs of covariances! In fact, we may also use the unbiased estimates since the
scale factor (1/𝑛 or 1/(𝑛 − 1)) cancels out so it does not matter which one you
use!

16.3.2 Importance of positive definiteness of estimated covari-
ance matrix

Note that �̂�𝒙𝒙 is inverted in �̂� =

(
�̂�𝒙𝒙

)−1
�̂�𝒙𝑦 .

• Hence, the estimate �̂�𝒙𝒙 needs to be positive definite!
• But �̂�MLE

𝒙𝒙 is only positive definite if 𝑛 > 𝑑!

Therefore we can use the ML estimate (empirical estimator) only for large 𝑛 >
𝑑, otherwise we need to employ a different (regularised) estimation approach
(e.g. Bayes or a penalised ML)!

Remark: writing �̂� explicitly based on covariance estimates has the advantage
that we can construct plug-in estimators of regression coefficients based on
regularised covariance estimators that improve over ML for small sample size.
This leads to the so-called SCOUT method (=covariance-regularized regression
by Witten and Tibshirani, 2008).
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16.4 Standardised regression coefficients and their
relationship to correlation

We recall the relationship between regression coefficients 𝜷 and the marginal
covariance 𝚺𝒙𝑦 and the covariances among the predictors 𝚺𝒙𝒙 :

𝜷 = 𝚺−1
𝒙𝒙𝚺𝒙𝑦

We can rewrite the regression coefficients in terms of marginal correlations
𝑷𝒙𝑦 and correlations 𝑷𝒙𝒙 among the predictors using the variance-correlation
decompositions 𝚺𝒙𝒙 = 𝑽 1/2

𝒙 𝑷𝒙𝒙𝑽
1/2
𝒙 and 𝚺𝒙𝑦 = 𝑽 1/2

𝒙 𝑷𝒙𝑦𝜎𝑦 :

𝜷 = 𝑽−1/2
𝒙︸︷︷︸

(inverse) scale of 𝑥𝑖

𝑷−1
𝒙𝒙𝑷𝒙𝑦 𝜎𝑦︸︷︷︸

scale of 𝑦

= 𝑽−1/2
𝒙 𝜷std 𝜎𝑦

Thus the regression coefficients 𝜷 contain the scale of the variables, and take into
account the correlations among the predictors (𝑷𝒙𝒙) in addition to the marginal
correlations between the response 𝑦 and the predictors 𝑥𝑖 (𝑷𝒙𝑦).

This decomposition allows to understand a number special cases for which the
regression coefficients simplify further:

a) If the response and the predictors are standardised to have variance one,
i.e. Var(𝑦) = 1 and Var(𝑥𝑖) = 1, then 𝜷 becomes equal to the standardised
regression coefficients

𝜷std = 𝑷−1
𝒙𝒙𝑷𝒙𝑦

Note that standardised regression coefficients do not make use of variances
and and thus are scale-independent.

b) If there is no correlation among the predictors , i.e. 𝑷𝒙𝒙 = 𝑰 the the
regression coefficients reduce to

𝜷 = 𝑽−1
𝒙 𝚺𝒙𝑦

where 𝑽 𝒙 is a diagonal matrix containing the variances of the predictors.
This is also called marginal regression. Note that the inversion of 𝑽 𝒙 is
trival since you only need to invert each diagonal element individually.

c) If both a) and b) apply simultaneously (i.e. there is no correlation among
predictors and response and predictors and predictors are standardised)
then the regression coefficients simplify even further to

𝜷 = 𝑷𝒙𝑦

Thus, in this very special case the regression coefficients are identical to
the correlations between the response and the predictors!
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16.5 Further ways to obtain regression coefficients

16.5.1 Best linear predictor
The best linear predictor is a fourth way to arrive at the linear model. This is
closely related to OLS and minimising squared residual error.

Without assuming normality the above multiple regression model can be shown
to be optimal linear predictor under the minimum mean squared prediction
error:

Assumptions:

• 𝑦 and 𝒙 are random variables
• we construct a new variable (the linear predictor) 𝑦★★ = 𝑏0 + 𝒃𝑇𝒙 to

optimally approximate 𝑦

Aim:

• choose 𝑏0 and 𝒃 such to minimize the mean squared prediction error
E((𝑦 − 𝑦★★)2)

16.5.1.1 Result:

The mean squared prediction error 𝑀𝑆𝑃𝐸 in dependence of (𝑏0 , 𝒃) is

E((𝑦 − 𝑦★★)2) = Var(𝑦 − 𝑦★★) + E(𝑦 − 𝑦★★)2

= Var(𝑦 − 𝑏0 − 𝒃𝑇𝒙) + (E(𝑦) − 𝑏0 − 𝒃𝑇E(𝒙))2

= 𝜎2
𝑦 + Var(𝒃𝑇𝒙) + 2 Cov(𝑦,−𝒃𝑇𝒙) + (𝜇𝑦 − 𝑏0 − 𝒃𝑇𝝁𝒙)

2

= 𝜎2
𝑦 + 𝒃𝑇𝚺𝒙𝒙𝒃 − 2 𝒃𝑇𝚺𝒙𝑦 + (𝜇𝑦 − 𝑏0 − 𝒃𝑇𝝁𝒙)

2

= 𝑀𝑆𝑃𝐸(𝑏0 , 𝒃)

We look for
(𝛽0 , 𝜷) = arg min

𝑏0 ,𝒃
𝑀𝑆𝑃𝐸(𝑏0 , 𝒃)

In order to find the minimum we compute the gradient with regard to (𝑏0 , 𝒃)

∇𝑀𝑆𝑃𝐸 =

(
−2(𝜇𝑦 − 𝑏0 − 𝒃𝑇𝝁𝒙)

2𝚺𝒙𝒙𝒃 − 2𝚺𝒙𝑦 − 2𝝁𝒙(𝜇𝑦 − 𝑏0 − 𝒃𝑇𝝁𝒙)

)
and setting this equal to zero yields(

𝛽0
𝜷

)
=

(
𝜇𝑦 − 𝜷𝑇𝝁𝒙
𝚺−1
𝒙𝒙𝚺𝒙𝑦

)
Thus, the optimal values for 𝑏0 and 𝒃 in the best linear predictor correspond to
the previously derived coefficients 𝛽0 and 𝜷!
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16.5.1.2 Irreducible Error

The minimum achieved MSPE (=irreducible error) is

𝑀𝑆𝑃𝐸(𝛽0 , 𝜷) = 𝜎2
𝑦 − 𝜷𝑇𝚺𝒙𝒙𝜷 = 𝜎2

𝑦 − 𝚺𝑦𝒙𝚺−1
𝒙𝒙𝚺𝒙𝑦

With the abbreviation Ω2 = 𝑷𝑦𝒙𝑷−1
𝒙𝒙𝑷𝒙𝑦 = 𝜎−2

𝑦 𝚺𝑦𝒙𝚺−1
𝒙𝒙𝚺𝒙𝑦 we can simplify this to

𝑀𝑆𝑃𝐸(𝛽0 , 𝜷) = 𝜎2
𝑦(1 −Ω2) = Var(𝜀)

Writing 𝑏0 = 𝛽0 + Δ0 and 𝒃 = 𝜷 + 𝚫 it is easy to see that the mean squared
predictive error is a quadratic function around the minimum:

𝑀𝑆𝑃𝐸(𝛽0 + Δ0 , 𝜷 + 𝚫) = Var(𝜀) + Δ2
0 + 𝚫𝑇𝚺𝒙𝒙𝚫

Note that usually 𝑦★ = 𝛽0 + 𝜷𝑇𝒙 does not perfectly approximate 𝑦 so there will
be an irreducible error (= noise variance)

Var(𝜀) = 𝜎2
𝑦(1 −Ω2) > 0

which implies Ω2 < 1.

The quantity Ω2 has a further interpretation of the population version of as the
squared multiple correlation coefficient between the response and the predictors
and plays a vital role in decomposition of variance, as discussed later.

16.5.2 Regression by conditioning
Conditioning is a fifth way to arrive at the linear model. This is also the most
general way and can be used to derive many other regression models (not just
the simple linear model).

16.5.2.1 General idea:

• two random variables 𝑦 (response, scalar) and 𝒙 (predictor variables,
vector)

• we assume that 𝑦 and 𝒙 have a joint distribution 𝐹𝑦,𝒙
• compute conditional random variable 𝑦 |𝒙 and the corresponding distribu-

tion 𝐹𝑦 |𝒙

16.5.2.2 Multivariate normal assumption

Now we assume that 𝑦 and 𝒙 are (jointly) multivariate normal. Then the
conditional distribution 𝐹𝑦 |𝒙 is a univariate normal with the following moments
(you can verify this by looking up the general conditional multivariate normal
distribution):
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a) Conditional expectation:

E(𝑦 |𝒙) = 𝑦★ = 𝛽0 + 𝜷𝑇𝒙

with coefficients 𝜷 = 𝚺−1
𝒙𝒙𝚺𝒙𝑦 and intercept 𝛽0 = 𝜇𝑦 − 𝜷𝑇𝝁𝒙 .

Note that as 𝑦★ depends on 𝒙 it is a random variable itself with mean

E(𝑦★) = 𝛽0 + 𝜷𝑇𝝁𝒙 = 𝜇𝑦

and variance

Var(𝑦★) = Var(E(𝑦 |𝒙))
= 𝜷𝑇𝚺𝒙𝒙𝜷 = 𝚺𝑦𝒙𝚺−1

𝒙𝒙𝚺𝒙𝑦

= 𝜎2
𝑦𝑷𝑦𝒙𝑷−1

𝒙𝒙𝑷𝒙𝑦

= 𝜎2
𝑦Ω

2

b) Conditional variance:

Var(𝑦 |𝒙) = 𝜎2
𝑦 − 𝜷𝑇𝚺𝒙𝒙𝜷

= 𝜎2
𝑦 − 𝚺𝑦𝒙𝚺−1

𝒙𝒙𝚺𝒙𝑦

= 𝜎2
𝑦(1 −Ω2)

Note this is a constant so E(Var(𝑦 |𝒙)) = 𝜎2
𝑦(1 −Ω2) as well.



Chapter 17

Squared multiple correlation
and variance decomposition in
linear regression

In this chapter we first introduce the (squared) multiple correlation and the
multiple and adjusted 𝑅2 coefficients as estimators. Subsequently we discuss
variance decomposition.

17.1 Squared multiple correlation Ω2 and the 𝑅2 co-
efficient

In the previous chapter we encountered the following quantity:

Ω2 = 𝑷𝑦𝒙𝑷−1
𝒙𝒙𝑷𝒙𝑦 = 𝜎−2

𝑦 𝚺𝑦𝒙𝚺−1
𝒙𝒙𝚺𝒙𝑦

With 𝜷 = 𝚺−1
𝒙𝒙𝚺𝒙𝑦 and 𝛽0 = 𝜇𝑦 − 𝜷𝑇𝝁𝒙 it is straightforward to verify the following:

• the cross-covariance between 𝑦 and 𝑦★ is

Cov(𝑦, 𝑦★) = 𝚺𝑦𝒙𝜷 = 𝚺𝑦𝒙𝚺−1
𝒙𝒙𝚺𝒙𝑦

= 𝜎2
𝑦𝑷𝑦𝒙𝑷−1

𝒙𝒙𝑷𝒙𝑦 = 𝜎2
𝑦Ω

2

• the (signal) variance of 𝑦★ is

Var(𝑦★) = 𝜷𝑇𝚺𝒙𝒙𝜷 = 𝚺𝑦𝒙𝚺−1
𝒙𝒙𝚺𝒙𝑦

= 𝜎2
𝑦𝑷𝑦𝒙𝑷−1

𝒙𝒙𝑷𝒙𝑦 = 𝜎2
𝑦Ω

2

165
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hence the correlation Cor(𝑦, 𝑦★) = Cov(𝑦,𝑦★)
SD(𝑦)SD(𝑦★) = Ω with Ω ≥ 0.

This helps to understand the Ω and Ω2 coefficients:

• Ω is the linear correlation between the response (𝑦) and prediction 𝑦★.

• Ω2 is called the squared multiple correlation between the scalar 𝑦 and the
vector 𝒙.

• Note that if we only have one predictor (if 𝑥 is a scalar) then 𝑷𝑥𝑥 = 1
and 𝑷𝑦𝑥 = 𝜌𝑦𝑥 so the multiple squared correlation coefficient reduces to
squared correlation Ω2 = 𝜌2

𝑦𝑥 between two scalar random variables 𝑦 and
𝑥.

17.1.1 Estimation of Ω2 and the multiple 𝑅2 coefficient
The multiple squared correlation coefficient Ω2 can be estimated by plug-in of
empirical estimates for the corresponding correlation matrices:

𝑅2 = �̂�𝑦𝒙�̂�
−1
𝒙𝒙 �̂�𝒙𝑦 = �̂�−2

𝑦 �̂�𝑦𝒙�̂�
−1
𝒙𝒙�̂�𝒙𝑦

This estimator of Ω2 is called the multiple 𝑅2 coefficient.

If the same scale factor 1/𝑛 or 1/(𝑛 − 1) is used in estimating the variance 𝜎2
𝑦 and

the covariances 𝚺𝒙𝒙 and 𝚺𝑦𝒙 then this factor will cancel out.

Above we have seen that Ω2 is directly linked with the noise variance via

Var(𝜀) = 𝜎2
𝑦(1 −Ω2) .

so we can express the squared multiple correlation as

Ω2 = 1 − Var(𝜀)/𝜎2
𝑦

The maximum likelihood estimate of the noise variance Var(𝜀) (also called
residual variance) can be computed from the residual sum of squares 𝑅𝑆𝑆 =∑𝑛
𝑖=1(𝑦𝑖 − �̂�𝑖)2 as follows:

V̂ar(𝜀)𝑀𝐿 =
𝑅𝑆𝑆

𝑛

whereas the unbiased estimate is obtained by

V̂ar(𝜀)𝑈𝐵 =
𝑅𝑆𝑆

𝑛 − 𝑑 − 1 =
𝑅𝑆𝑆

𝑑𝑓

where the degree of freedom is 𝑑𝑓 = 𝑛 − 𝑑 − 1 and 𝑑 is the number of predictors.

Similarly, we can find the maximum likelihood estimate 𝑣𝑀𝐿
𝑦 for 𝜎2

𝑦 (with factor
1/𝑛) as well as an unbiased estimate 𝑣𝑈𝐵𝑦 (with scale factor 1/(𝑛 − 1))
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The multiple 𝑅2 coefficient can then be written as

𝑅2 = 1 − V̂ar(𝜀)𝑀𝐿/𝑣𝑀𝐿
𝑦

Note we use MLEs.

In contrast, the so-called adjusted multiple 𝑅2 coefficient is given by

𝑅2
adj = 1 − V̂ar(𝜀)𝑈𝐵/𝑣𝑈𝐵𝑦

where the unbiased variances are used.

Both 𝑅2 and 𝑅2
adj are estimates of Ω2 and are related by

1 − 𝑅2 = (1 − 𝑅2
adj)

𝑑𝑓

𝑛 − 1

17.1.2 R commands
In R the command lm() fits the linear regression model.

In addition to the regression cofficients (and derived quantities) the R function
lm() also lists

• the multiple R-squared 𝑅2,
• the adjusted R-squared 𝑅2

adj,
• the degrees of freedom 𝑑𝑓 and

• the residual standard error
√

V̂ar(𝜀)𝑈𝐵 (computed from the unbiased
variance estimate).

See also Worksheet R3 which provides R code to reproduce the exact output of
the native lm() R function.

17.2 Variance decomposition in regression
The squared multiple correlation coefficient is useful also because it plays an
important role in the decomposition of the total variance:

• total variance: Var(𝑦) = 𝜎2
𝑦

• unexplained variance (irreducible error): 𝜎2
𝑦(1 −Ω2) = Var(𝜀)

• the explained variance is the complement: 𝜎2
𝑦Ω

2 = Var(𝑦★)

In summary:

Var(𝑦) = Var(𝑦★) + Var(𝜀)
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becomes
𝜎2
𝑦︸︷︷︸

total variance

= 𝜎2
𝑦Ω

2︸︷︷︸
explained variance

+ 𝜎2
𝑦(1 −Ω2)︸       ︷︷       ︸

unexplained variance

The unexplained variance measures the fit after introducing predictors into
the model (smaller means better fit). The total variance measures the fit of the
model without any predictors. The explained variance is the difference between
total and unexplained variance, it indicates the increase in model fit due to the
predictors.

17.2.1 Law of total variance and variance decomposition
The law of total variance is

Var(𝑦)︸ ︷︷ ︸
total variance

= Var(E(𝑦 |𝒙))︸        ︷︷        ︸
explained variance

+ E(Var(𝑦 |𝒙))︸        ︷︷        ︸
unexplained variance

provides a very general decomposition in explained and unexplained parts of
the variance that is valid regardless of the form of the distributions 𝐹𝑦,𝒙 and 𝐹𝑦 |𝒙 .

In regression it conncects variance decomposition and conditioning. If you plug-
in the conditional expections for the multivariate normal model (cf. previous
chapter) we recover

𝜎2
𝑦︸︷︷︸

total variance

= 𝜎2
𝑦Ω

2︸︷︷︸
explained variance

+ 𝜎2
𝑦(1 −Ω2)︸       ︷︷       ︸

unexplained variance

17.2.2 Related quantities
Using the above three quantities (total variance, explained variance, and unex-
plained variance) we can construct a number of scores:

1) coefficient of determination, squared multiple correlation:

explained var
total var =

𝜎2
𝑦Ω

2

𝜎2
𝑦

= Ω2

(range 0 to 1, with 1 indicating perfect fit)

2) coefficient of non-determination, coefficient of alienation:

unexplained var
total var =

𝜎2
𝑦(1 −Ω2)

𝜎2
𝑦

= 1 −Ω2
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(range 0 to 1, with 0 indicating perfect fit)

3) 𝐹 score, 𝑡2 score:

explained var
unexplained var =

𝜎2
𝑦Ω

2

𝜎2
𝑦(1 −Ω2)

=
Ω2

1 −Ω2 = ℱ =
𝜏2

𝑛

(range 0 to ∞, with ∞ indicating perfect fit)

Note that the ℱ and 𝜏2 scores are population versions of the 𝐹 and 𝑡2 statistics.

Also note that Ω2 = 𝜏2

𝜏2+𝑛 = ℱ
ℱ +1 links squared correlation with squared 𝑡-scores

and 𝐹-scores.

17.3 Sample version of variance decomposition
If Ω2 and 𝜎2

𝑦 are replaced by their MLEs this can be written in a sample version
as follows using data points 𝑦𝑖 , predictions �̂�𝑖 and �̄� = 1

𝑛

∑𝑛
𝑖=1 𝑦𝑖

𝑛∑
𝑖=1

(𝑦𝑖 − �̄�)2︸        ︷︷        ︸
total sum of squares (TSS)

=

𝑛∑
𝑖=1

(�̂�𝑖 − �̄�)2︸        ︷︷        ︸
explained sum of squares (ESS)

+
𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2︸         ︷︷         ︸
residual sum of squares (RSS)

Note that TSS, ESS and RSS all scale with 𝑛. Using data vector notation the
sample-based variance decomposition can be written in form of the Pythagorean
theorem:

| |𝒚 − �̄�1 | |2︸       ︷︷       ︸
total sum of squares (TSS)

= | |�̂� − �̄�1| |2︸      ︷︷      ︸
explained sum of squares (ESS)

+ ||𝒚 − �̂� | |2︸    ︷︷    ︸
residual sum of squares (RSS)

17.3.1 Geometric interpretation of regression as orthogonal
projection:

The above equation can be further simplified to

| |𝒚 | |2 = | |�̂� | |2 + ||𝒚 − �̂� | |2︸    ︷︷    ︸
RSS

Geometrically speaking, this implies �̂� is an orthogonal projection of 𝒚, since the
residuals 𝒚 − �̂� and the predictions �̂� are orthogonal (by construction!).

This also valid for the centered versions of the vectors, i.e. �̂�− �̄�1𝑛 is an orthogonal
projection of 𝒚 − �̄�1𝑛 (see Figure).
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Also note that the angle 𝜃 between the two centered vectors is directly related
to the (estimated) multiple correlation, with 𝑅 = cos(𝜃) =

| |�̂�−�̄�1𝑛 | |
| |𝒚−�̄�1𝑛 | | , or 𝑅2 =

cos(𝜃)2 =
| |�̂�−�̄�1𝑛 | |2
| |𝒚−�̄�1𝑛 | |2 = ESS

TSS .

Source of Figure: Stack Exchange

http://stats.stackexchange.com/questions/123651/geometric-interpretation-of-multiple-correlation-coefficient-r-and-coefficient


Chapter 18

Prediction and variable
selection

In this chapter we discuss how to compute (lower bounds) of the prediction
error and how to select variables relevant for prediction

18.1 Prediction and prediction intervals
Learning the regression function from (training) data is only the first step in
application of regression models.

The next step is to actually make prediction of future outcomes 𝑦test given test
data 𝒙test:

𝑦test = �̂�(𝒙test) = 𝑓�̂�0 ,�̂�
(𝒙test)

Note that 𝑦test is a point estimator. Is it possible also to construct a corresponding
interval estimate?

171
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The answer is yes, and leads back to the conditioning approach:

𝑦★ = E(𝑦 |𝒙) = 𝛽0 + 𝜷𝑇𝒙

Var(𝜀) = Var(𝑦 |𝒙) = 𝜎2
𝑦(1 −Ω2)

We know that the mean squared prediction error for 𝑦★ is E((𝑦 − 𝑦★)2) = Var(𝜀)
and that this is the minimal irreducible error. Hence, we may use Var(𝜀) as the
minimum variability for the prediction.

The corresponding prediction interval is[
𝑦★(𝒙test) ± 𝑐 × SD(𝜀)

]
where 𝑐 is some suitable constant (e.g. 1.96 for symmetric 95% normal intervals).

However, please note that the prediction interval constructed in this fashion will
be an underestimate. The reason is that this assumes that we employ 𝑦★ = 𝛽0+𝜷𝑇𝒙

but in reality we actually use �̂� = �̂�0 + �̂�
𝑇
𝒙 for prediction — note the estimated

coefficients! We recall from an earlier chapter (best linear predictor) that this
leads to increase of MSPE compared with using the optimal 𝛽0 and 𝜷.

Thus, for better prediction intervals we would need to consider the mean squared
prediction error of �̂� that can be written as E((𝑦 − �̂�)2) = Var(𝜀) + 𝛿 where 𝛿 is an
additional error term due to using an estimated rather than the true regression
function. 𝛿 typically declines with 1/𝑛 but can be substantial for small 𝑛 (in
particular as it usually depends on the number of predictors 𝑑).

For more details on this we refer to later modules on regression.

18.2 Variable importance and prediction
Another key question in regression modelling is to find out predictor variables
𝑥1 , 𝑥2 , . . . , 𝑥𝑑 are actually important for predicting the outcome 𝑦.

→ We need to study variable importance measures (VIM).

18.2.1 How to quantify variable importance?
A variable 𝑥𝑖 is important if it improves prediction of the response 𝑦.

Recall variance decomposition:

Var(𝑦) = 𝜎2
𝑦 = 𝜎2

𝑦Ω
2︸︷︷︸

explained variance

+ 𝜎2
𝑦(1 −Ω2)︸       ︷︷       ︸

unexplained/residual variance =Var(𝜀)
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• Ω2 squared multiple correlation ∈ [0, 1]
• Ω2 large → 1 predictor variables explain most of 𝜎2

𝑦

• Ω2 small → 0 linear model fails and predictors do not explain variability

• ⇒ If a predictor helps to increase explained variance
decrease unexplained variance then it is impor-

tant!
• Ω2 = 𝑷𝑦𝒙𝑷−1

𝒙𝒙𝑷𝒙𝑦=̂ a function of the 𝑋!

VIM: which predictors contribute most to Ω2

18.2.2 Some candidates for VIMs
1. The regression coefficients 𝜷

• 𝜷 = 𝚺−1
𝒙𝒙𝚺𝒙𝑦 = 𝑽−1/2

𝒙 𝑷−1
𝒙𝒙𝑷𝒙𝑦𝜎𝑦

• Not a good VIM since 𝜷 contains the scale!
• Large �̂�𝑖 does not indicate that 𝑥𝑖 is important.
• Small �̂�𝑖 does not indicate that 𝑥𝑖 is not important.

2. Standardised regression coefficients 𝜷std

• 𝜷std = 𝑷−1
𝒙𝒙𝑷𝒙𝑦

• implies Var(𝑦) = 1, Var(𝑥𝑖) = 1
• These do not contain the scale (so better than �̂�)
• But still unclear how this relates to decomposition of variance

3. Squared marginal correlations 𝜌2
𝑦,𝑥𝑖

Consider case of uncorrelated predictors: 𝑷𝒙𝒙 = 𝑰 (no correlation among
𝑥𝑖)

⇒ Ω2 = 𝑷𝑦𝒙𝑷𝒙𝑦 =

𝑑∑
𝑖=1

𝜌2
𝑦,𝑥𝑖

𝜌2
𝑦,𝑥𝑖

= Cor(𝑦, 𝑥𝑖) is the marginal correlation between 𝑦 and 𝑥𝑖 , and Ω2 is
(for uncorrelated predictors) the sum of squared marginal correlations.

• If 𝑷𝒙𝒙 = 𝑰, then ranking predictors by 𝜌2
𝑦,𝑥𝑖

is optimal!
• The predictor with largest marginal correlation reduces the unex-

plained variance most!
• good news: even if there is weak correlation among predictors the

marginal correlations are still good as VIM (but then they will not
perfectly add up to Ω2)

• Advantage: very simple but often also very effective.
• Caution! If there is strong correlation in 𝑷𝒙𝒙 , then there is colinearity

(in this case it is oftern best to remove one of the strongly correlated
variables, or to merge the correlated variables).
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Often, ranking predictors by their squared marginal correlations is done as a
prefiltering step (independence screening).

18.3 Regression 𝑡-scores.

18.3.1 Wald statistic for regression coefficients
So far, we discussed three obvious candidates for for variable importance
measures (regression coefficients, standardised regression coefficients, marginal
correlations).

In this section we consider a further quantity, the regression 𝑡−score:

Recall that ML estimation of the regression coefficients yields

• a point estimate �̂�

• the (asymptotic) variance V̂ar(�̂�)
• the asymptotic normal distribution �̂�

𝑎∼ 𝑁𝑑(𝜷, V̂ar(�̂�))
Corresponding to each predictor 𝑥𝑖 we can construct from the above a 𝑡-score

𝑡𝑖 =
�̂�𝑖

ŜD(�̂�𝑖)

where the standard deviations are computed by ŜD(�̂�𝑖) = Diag(V̂ar(�̂�))𝑖 . This
corresponds to the Wald statistic to test that the underlying true regression
coefficient is zero (𝛽𝑖 = 0).

Correspondingly, under the null hypthesis that 𝛽𝑖 = 0 asymptotically for large 𝑛
the regression 𝑡-score is standard normal distributed:

𝑡𝑖
𝑎∼ 𝑁(0, 1)

This allows to compute (symmetric) 𝑝-values 𝑝 = 2Φ(−|𝑡𝑖 |) where Φ is the
standard normal distribution function.

For finite 𝑛, assuming normality of the observation and using the unbiased
estimate for variance when computing 𝑡𝑖 , the exact distribution of 𝑖𝑖 is given by
the Student-𝑡 distribution:

𝑡𝑖 ∼ 𝑡𝑛−𝑑−1

Regression 𝑡-scores can thus be used to test whether a regression coefficient
is zero. A large magnitude of the 𝑡𝑖 score indicates that the hypothesis 𝛽𝑖 = 0
can be rejected. Thus, a small 𝑝-value (say smaller than 0.05) signals that the
regression coefficient is non-zero and hence that the corresponding predictor
variable should be included in the model.

This allows rank predictor variables by |𝑡𝑖 | or the corresponding 𝑝-values with
regard to their relevance in the linear model. Typically, in order to simplify a
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model, predictors with the largest 𝑝-values (and thus smallest absolute 𝑡-scores)
may be removed from a model. However, note that having a 𝑝-value say larger
than 0.05 by itself is not sufficient to declare a regression coefficient to be zero
(because in classical statistical testing you can only reject the null hypothesis, but
not accept it!).

Note that by construction the regression 𝑡-scores do not depend on the scale,
so when the original data are rescaled this will not affect the corresponding
regression 𝑡-scores. Furthermore, if ŜD(�̂�𝑖) is small, then the regression 𝑡-score
𝑡𝑖 can still be large even if �̂�𝑖 is small!

18.3.2 Computing
When you perform regression analysis in R (or another statistical software
package) the computer will return the following:

�̂�𝑖
Estimated
repression
coefficient

ŜD(�̂�𝑖)
Error of

�̂�𝑖

𝑡𝑖 =
�̂�𝑖

ŜD(�̂�𝑖 )
t-score

computed from
first two columns

p-values
for 𝑡𝑖

based on t-distribution

Indicator of
Significance
* 0.9
** 0.95
*** 0.99

In the lm() function in R the standard deviation is the square root of the unbiased
estimate of the variance (but note that it itself is not unbiased!).

18.3.3 Connection with partial correlation
The deeper reason why ranking predictors by regression 𝑡-scores and associated
𝑝-values is useful is their link with partial correlation.

In particular, the (squared) regression 𝑡-score can be 1:1 transformed into the
(estimated) (squared) partial correlation

�̂�2
𝑦,𝑥𝑖 |𝑥 𝑗≠𝑖 =

𝑡2
𝑖

𝑡2
𝑖
+ 𝑑𝑓

with 𝑑𝑓 = 𝑛 − 𝑑 − 1, and it can be shown that the 𝑝-values for testing that 𝛽𝑖 = 0
are exactly the same as the 𝑝-values for testing that the partial correlation 𝜌𝑦,𝑥𝑖 |𝑥 𝑗≠𝑖
vanishes!

Therefore, ranking the predictors 𝑥𝑖 by regression 𝑡-scores leads to exactly the
same ranking and 𝑝-values as partial correlation!
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18.3.4 Squared Wald statistic and the 𝐹 statistic
In the above we looked at individual regression coefficients. However, we can
also construct a Wald test using the complete vector �̂�. The squared Wald statistic
to test that 𝜷 = 0 is given by

𝑡2 = �̂�
𝑇V̂ar(�̂�−1)�̂�

=

(
�̂�𝑦𝒙�̂�

−1
𝒙𝒙

) (
𝑛

𝜎2
𝜀

�̂�𝒙𝒙

) (
�̂�
−1
𝒙𝒙�̂�𝒙𝑦

)
=
𝑛

𝜎2
𝜀

�̂�𝑦𝒙�̂�
−1
𝒙𝒙�̂�𝒙𝑦

=
𝑛

𝜎2
𝜀

�̂�2
𝑦𝑅

2

With 𝜎2
𝜀/�̂�2

𝑦 = 1 − 𝑅2 we finally get the related 𝐹 statistic

𝑡2

𝑛
=

𝑅2

1 − 𝑅2 = 𝐹

which is a function of 𝑅2. If 𝑅2 = 0 then 𝐹 = 0. If 𝑅2 is large (< 1) then 𝐹 is large
as well (< ∞) and the null hypothesis 𝜷 = 0 can be rejected, which implies that at
least one regression coefficient is non-zero. Note that the squared Wald statistic
𝑡2 is asymptotically 𝜒2

𝑑
distributed which is useful to find critical values and to

compute 𝑝-values.

18.4 Further approaches for variable selection
In addition to ranking by marginal and partial correlation, there are many other
approaches for variable selection in regression!

a) Search-based methods:

• search through subsets of linear models for 𝑑 variables, ranging from
full model (including all predictors) to the empty model (includes no
predictor) and everything inbetween.

• Problem: exhaustive search not possible even for relatively small 𝑑 as
space of models is very large!

• Therefore heuristic approaches such as forward selection (adding
predictors), backward selection (removing predictors), or monte-carlo
random search are employed.

• Problem: maximum likelihood cannot be used for choosing among
the models - since ML will always pick the best model. Therefore,
penalised ML criteria such as AIC or Bayesian criteria are often
employed instead.
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b) Integrative estimation and variable selection:

• there are methods that fit the regression model and perform variable
selection simultaneously.

• the most well-known approach of this type is “lasso” regression
(Tibshirani 1996)

• This applies a (generalised) linear model with ML plus L1 penalty.
• Alternative: Bayesian variable selection and estimation procedures

c) Entropy-based variable selection:

As seen above, two of the most popular approaches in linear models are
based on correlation, either marginal correlation or partial correlation (via
regression 𝑡-scores).

Correlation measures can be generalised to non-linear settings. One very
popular measure is the mutual information which is computed using
the KL divergence. In case of two variables 𝑥 and 𝑦 with joint normal
distribution and correlation 𝜌 the mutual information is a function of the
correlation:

MI(𝑥, 𝑦) = 1
2 log(1 − 𝜌2)

In regression he mutual information between the response 𝑦 and predictor
𝑥𝑖 is MI(𝑦, 𝑥𝑖), and this widely used for feature selection, in particular in
machine learning.

d) FDR based variable selection in regression:

Feature selection controling the false discovery rate (FDR) among the
selected features are becoming more popular, in particular a number of
procedures using so-called “knockoffs”, see https://web.stanford.edu/g
roup/candes/knockoffs/ .

e) Variable importance using Shapley values:

Borrowing a concept from game theory Shapley values have recently
become popular in machine learning to evaluate the variable importance
of predictors in nonlinear models. Their relationship to other statistical
methods for measuring variable importance is the focus of current research.

https://web.stanford.edu/group/candes/knockoffs/
https://web.stanford.edu/group/candes/knockoffs/
https://en.wikipedia.org/wiki/Shapley_value
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Appendix A

Refresher

Statistics is a mathematical science that requires practical use of tools from
probability, vector and matrices, analysis etc.

Here we briefly list some essentials that are needed for “Statistical Methods”.
Please familiarise yourself (again) with these topics.

A.1 Basic mathematical notation
Summation:

𝑛∑
𝑖=1

𝑥𝑖 = 𝑥1 + 𝑥2 + . . . + 𝑥𝑛

Multiplication:
𝑛∏
𝑖=1

𝑥𝑖 = 𝑥1 × 𝑥2 × . . . × 𝑥𝑛

A.2 Vectors and matrices
Vector and matrix notation.

Vector algebra.

Eigenvectors and eigenvalues for a real symmetric matrix.

Eigenvalue (spectral) decomposition of a real symmetric matrix.

Positive and negative definiteness of a real symmetric matrix (containing only
positive or only negative eigenvalues).

181
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Singularity of a real symmetric matrix (containing one or more eigenvalues
identical to zero).

Singular value decomposition of a real matrix.

Inverse of a matrix.

Trace and determinant of a square matrix.

Connection with eigenvalues (trace = sum of eigenvalues, determinant = product
of eigenvalues).

A.3 Functions

A.3.1 Gradient

The gradient of a scalar-valued function ℎ(𝒙) with vector argument 𝒙 =

(𝑥1 , . . . , 𝑥𝑑)𝑇 is the vector containing the first order partial derivatives of ℎ(𝒙)
with regard to each 𝑥1 , . . . , 𝑥𝑑:

∇ℎ(𝒙) =
©«
𝜕ℎ(𝒙)
𝜕𝑥1
...

𝜕ℎ(𝒙)
𝜕𝑥𝑑

ª®®®¬
=

𝜕ℎ(𝒙)
𝜕𝒙

= grad ℎ(𝒙)

The symbol ∇ is called the nabla operator (also known as del operator).

Note that we write the gradient as a column vector. This is called the denominator
layout convention, see https://en.wikipedia.org/wiki/Matrix_calculus for
details. In contrast, many textbooks (and also earlier versions of these lecture
notes) assume that gradients are row vectors, following the so-called numerator
layout convention.

Example A.1. Examples for the gradient:

• ℎ(𝒙) = 𝒂𝑇𝒙 + 𝑏. Then ∇ℎ(𝒙) = 𝜕ℎ(𝒙)
𝜕𝒙 = 𝒂.

• ℎ(𝒙) = 𝒙𝑇𝒙. Then ∇ℎ(𝒙) = 𝜕ℎ(𝒙)
𝜕𝒙 = 2𝒙.

• ℎ(𝒙) = 𝒙𝑇𝑨𝒙. Then ∇ℎ(𝒙) = 𝜕ℎ(𝒙)
𝜕𝒙 = (𝑨 + 𝑨𝑇)𝒙.

https://en.wikipedia.org/wiki/Matrix_calculus
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A.3.2 Hessian matrix
The matrix of all second order partial derivates of scalar-valued function with
vector-valued argument is called the Hessian matrix:

∇∇𝑇 ℎ(𝒙) =

©«

𝜕2ℎ(𝒙)
𝜕𝑥2

1

𝜕2ℎ(𝒙)
𝜕𝑥1𝜕𝑥2

· · · 𝜕2ℎ(𝒙)
𝜕𝑥1𝜕𝑥𝑑

𝜕2ℎ(𝒙)
𝜕𝑥2𝜕𝑥1

𝜕2ℎ(𝒙)
𝜕𝑥2

2
· · · 𝜕2ℎ(𝒙)

𝜕𝑥2𝜕𝑥𝑑
...

...
. . .

...
𝜕2ℎ(𝒙)
𝜕𝑥𝑑𝜕𝑥1

𝜕2ℎ(𝒙)
𝜕𝑥𝑑𝜕𝑥2

· · · 𝜕2ℎ(𝒙)
𝜕𝑥2

𝑑

ª®®®®®®®¬
=

(
𝜕ℎ(𝒙)
𝜕𝑥𝑖𝜕𝑥 𝑗

)
=

𝜕2ℎ(𝒙)
𝜕𝒙𝜕𝒙𝑇

By construction the Hessian matrix is square and symmetric.

Example A.2. ℎ(𝒙) = 𝒙𝑇𝑨𝒙. Then ∇∇𝑇 ℎ(𝒙) = 𝜕2ℎ(𝒙)
𝜕𝒙𝜕𝒙𝑇

= (𝑨 + 𝑨𝑇).

A.3.3 Convex and concave functions
A function ℎ(𝑥) is convex if the second derivative ℎ′′(𝑥) ≥ 0 for all 𝑥. More
generally, a function ℎ(𝒙), where 𝒙 is a vector, is convex if the Hessian matrix
∇∇𝑇 ℎ(𝒙) is positive definite, i.e. if the eigenvalues of the Hessian matrix are all
positive.

If ℎ(𝒙) is convex, then −ℎ(𝒙) is concave. A function is concave if the Hessian
matrix is negative definite, i.e. if the eigenvalues of the Hessian matrix are all
negative.

Example A.3. The logarithm log(𝑥) is an example of a concave function whereas
𝑥2 is a convex function.

To memorise, a valley is convex.

A.3.4 Linear and quadratic approximation
A linear and quadratic approximation of a function is given by a Taylor series of
first and second order, respectively.

Applied to scalar-valued function of a scalar:

ℎ(𝑥) ≈ ℎ(𝑥0) + ℎ′(𝑥0)(𝑥 − 𝑥0) +
1
2 ℎ

′′(𝑥0)(𝑥 − 𝑥0)2

Note that ℎ′(𝑥0) = ℎ′(𝑥) | 𝑥0 is first derivative of ℎ(𝑥) evaluated at 𝑥0 and
ℎ′′(𝑥0) = ℎ′′(𝑥) | 𝑥0 is the second derivative of ℎ(𝑥) evaluated 𝑥0.
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With 𝑥 = 𝑥0 + 𝜀 the approximation can also be written as

ℎ(𝑥0 + 𝜀) ≈ ℎ(𝑥0) + ℎ′(𝑥0) 𝜀 +
1
2 ℎ

′′(𝑥0) 𝜀2

Applied to scalar-valued function of a vector:

ℎ(𝒙) ≈ ℎ(𝒙0) + ∇ℎ(𝒙0)𝑇(𝒙 − 𝒙0) +
1
2 (𝒙 − 𝒙0)𝑇 ∇∇𝑇 ℎ(𝒙0) (𝒙 − 𝒙0)

Note that ∇ℎ(𝒙0) is the gradient of ℎ(𝒙) evaluated at 𝒙0 and ∇∇𝑇 ℎ(𝒙0) the Hessian
matrix of ℎ(𝒙) evaluated at 𝒙0.

With 𝒙 = 𝒙0 + 𝜺 this approximation can also be written as

ℎ(𝒙0 + 𝜺) ≈ ℎ(𝒙0) + ∇ℎ(𝒙0)𝑇𝜺 +
1
2 𝜺

𝑇 ∇∇𝑇 ℎ(𝒙0) 𝜺

Example A.4. Commonly occurring Taylor series approximations of second
order are for example

log(𝑥0 + 𝜀) ≈ log(𝑥0) +
𝜀
𝑥0

− 𝜀2

2𝑥2
0

and
𝑥0

𝑥0 + 𝜀
≈ 1 − 𝜀

𝑥0
+ 𝜀2

𝑥2
0

A.3.5 Conditions for local optimum of a function
To check if 𝑥0 or 𝒙0 is a local maximum or minimum we can use the following
conditions:

For a function of a single variable:

i) First derivative is zero at optimum ℎ′(𝑥0) = 0.
ii) If the second derivative ℎ′′(𝑥0) < 0 at the optimum is negative the function

is locally concave and the optimum is a maximum.
iii) If the second derivative ℎ′′(𝑥0) > 0 is positive at the optimum the function

is locally convex and the optimum is a minimum.

For a function of several variables:

i) Gradient vanishes at maximum, ∇ℎ(𝒙0) = 0.
ii) If the Hessian ∇∇𝑇 ℎ(𝒙0) is negative definite (= all eigenvalues of Hessian

matrix are negative) then the function is locally concave and the optimum
is a maximum.

iii) If the Hessian is positive definite (= all eigenvalues of Hessian matrix
are positive) then the function is locally convex and the optimum is a
minimum.
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Around the local optimum 𝒙0 we can approximate the function quadratically
using

ℎ(𝒙0 + 𝜺) ≈ ℎ(𝒙0) +
1
2 𝜺

𝑇∇∇𝑇 ℎ(𝒙0)𝜺

Note the linear term is missing due to the gradient being zero at 𝒙0.

A.4 Combinatorics

A.4.1 Number of permutations
The number of possible orderings, or permutations, of 𝑛 distinct items is the
number of ways to put 𝑛 items in 𝑛 bins with exactly one item in each bin. It is
given by the factorial

𝑛! =
𝑛∏
𝑖=1

𝑖 = 1 × 2 × . . . × 𝑛

where 𝑛 is a positive integer. For 𝑛 = 0 the factorial is defined as

0! = 1

as there is exactly one permutation of zero objects.

The factorial can also be obtained using the gamma function

Γ(𝑥) =
∫ ∞

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡

which can be viewed as continuous version of the factorial with Γ(𝑥) = (𝑥 − 1)!
for any positive integer 𝑥.

A.4.2 Multinomial and binomial coefficient
The number of possible permutation of 𝑛 items of 𝐾 distinct types, with 𝑛1 of
type 1, 𝑛2 of type 2 and so on, equals the number of ways to put 𝑛 items into 𝐾
bins with 𝑛1 items in the first bin, 𝑛2 in the second and so on. It is given by the
multinomial coefficient(

𝑛

𝑛1 , . . . , 𝑛𝐾

)
=

𝑛!
𝑛1! × 𝑛2! × . . . × 𝑛𝐾 !

with
∑𝐾
𝑘=1 𝑛𝑘 = 𝑛 and 𝐾 ≤ 𝑛. Note that it equals the number of permutation of

all items divided by the number of permutations of the items in each bin (or of
each type).

If all 𝑛𝑘 = 1 and hence 𝐾 = 𝑛 the multinomial coefficient reduces to the factorial.

https://en.wikipedia.org/wiki/Gamma_function
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If there are only two bins / types (𝐾 = 2) the multinomial coefficients becomes
the binomial coefficient(

𝑛

𝑛1

)
=

(
𝑛

𝑛1 , 𝑛 − 𝑛1

)
=

𝑛!
𝑛1!(𝑛 − 𝑛1)!

which counts the number of ways to choose 𝑛1 elements from a set of 𝑛 elements.

A.4.3 De Moivre-Sterling approximation of the factorial
The factorial is frequently approximated by the following formula derived by
Abraham de Moivre (1667–1754) and James Stirling (1692-1770)

𝑛! ≈
√

2𝜋𝑛𝑛+
1
2 𝑒−𝑛

or equivalently on logarithmic scale

log 𝑛! ≈
(
𝑛 + 1

2

)
log 𝑛 − 𝑛 + 1

2 log (2𝜋)

The approximation is good for small 𝑛 (but fails for 𝑛 = 0) and becomes more
and more accurate with increasing 𝑛. For large 𝑛 the approximation can be
simplified to

log 𝑛! ≈ 𝑛 log 𝑛 − 𝑛

A.5 Probability

A.5.1 Random variables
A random variable describes a random experiment. The set of possible outcomes
is the sample space or state space and is denoted by Ω = {𝜔1 , 𝜔2 , . . .}. The
outcomes 𝜔𝑖 are the elementary events. The sample space Ω can be finite or
infinite. Depending on type of outcomes the random variable is discrete or
continuous.

An event 𝐴 ⊆ Ω is subset of Ω and thus itself a set of elementary events
𝐴 = {𝑎1 , 𝑎2 , . . .}. This includes as special cases the full set 𝐴 = Ω, the empty set
𝐴 = ∅, and the elementary events 𝐴 = 𝜔𝑖 . The complementary event 𝐴𝐶 is the
complement of the set 𝐴 in the set Ω so that 𝐴𝐶 = Ω \ 𝐴 = {𝜔𝑖 ∈ Ω : 𝜔𝑖 ∉ 𝐴}.
The probability of an event is denoted by Pr(𝐴). We assume that

• Pr(𝐴) ≥ 0, probabilities are positive,
• Pr(Ω) = 1, the certain event has probability 1, and
• Pr(𝐴) =

∑
𝑎𝑖∈𝐴 Pr(𝑎𝑖), the probability of an event equals the sum of its

constituting elementary events 𝑎𝑖 .

This implies

https://en.wikipedia.org/wiki/Abraham_de_Moivre
https://en.wikipedia.org/wiki/James_Stirling_(mathematician)
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• Pr(𝐴) ≤ 1, i.e. probabilities all lie in the interval [0, 1]
• Pr(𝐴𝐶) = 1 − Pr(𝐴), and
• Pr(∅) = 0

Assume now we have two events 𝐴 and 𝐵. The probability of the event “𝐴 and
𝐵” is then given by the probability of the set intersection Pr(𝐴 ∩ 𝐵). Likewise
the probability of the event “𝐴 or 𝐵” is given by the probability of the set union
Pr(𝐴 ∪ 𝐵).
From the above it is clear that probability theory is closely linked to set theory,
and in particular to measure theory. This allows for an unified treatment of
discrete and continuous random variables (an elegant framework but not needed
for this module).

A.5.2 Probability mass and density function and distribution
and quantile function

To describe a random variable 𝑥 we need to assign probabilities to the corre-
sponding elementary outcomes 𝑥 ∈ Ω. For convenience we use the same name
to denote the random variable and the elementary outcomes.

For a discrete random variable we employ a probability mass function (PMF). We
denote the it by a lower case 𝑓 but occasionally we also use 𝑝 or 𝑞. In the discrete
case we can define the event 𝐴 = {𝑥 : 𝑥 = 𝑎} = {𝑎} and obtain the probability
directly from the PMF:

Pr(𝐴) = Pr(𝑥 = 𝑎) = 𝑓 (𝑎) .

The PMF has the property that
∑
𝑥∈Ω 𝑓 (𝑥) = 1 and that 𝑓 (𝑥) ∈ [0, 1].

For continuous random variables we need to use a probability density function
(PDF) instead. We define the event 𝐴 = {𝑥 : 𝑎 < 𝑥 ≤ 𝑎 + 𝑑𝑎} as an infinitesimal
interval and then assign the probability

Pr(𝐴) = Pr(𝑎 < 𝑥 ≤ 𝑎 + 𝑑𝑎) = 𝑓 (𝑎)𝑑𝑎 .

The PDF has the property that
∫
𝑥∈Ω 𝑓 (𝑥)𝑑𝑥 = 1 but in contrast to a PMF the

density 𝑓 (𝑥) ≥ 0 may take on values larger than 1.

Assuming an ordering we can define the event 𝐴 = {𝑥 : 𝑥 ≤ 𝑎} and compute its
probability

𝐹(𝑎) = Pr(𝐴) = Pr(𝑥 ≤ 𝑎) =
{∑

𝑥∈𝐴 𝑓 (𝑥) discrete case∫
𝑥∈𝐴 𝑓 (𝑥)𝑑𝑥 continuous case

This is known as the distribution function, or cumulative distribution function
(CDF) and is denoted by upper case 𝐹 if the corresponding PDF/PMF is 𝑓 (or
𝑃 and 𝑄 if the corresponding PDF/PMF are 𝑝 and 𝑞). By construction the
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distribution function is monotonically increasing and its value ranges from 0 to
1. With its help we can compute the probability of general interval sets such as

Pr(𝑎 < 𝑥 ≤ 𝑏) = 𝐹(𝑏) − 𝐹(𝑎) .

The inverse of the distribution function 𝑦 = 𝐹(𝑥) is the quantile function
𝑥 = 𝐹−1(𝑦). The 50% quantile 𝐹−1 ( 1

2
)

is the median.

If the random variable 𝑥 has distribution function 𝐹 we write 𝑥 ∼ 𝐹.

A.5.3 Expection and variance of a random variable
The expected value E(𝑥) of a random variable is defined as the weighted average
over all possible outcomes, with the weight given by the PMF / PDF 𝑓 (𝑥):

E(𝑥) =
{∑

𝑥∈Ω 𝑓 (𝑥)𝑥 discrete case∫
𝑥∈Ω 𝑓 (𝑥)𝑥𝑑𝑥 continuous case

To emphasise that the expecation is taken with regard to the distribution 𝐹 we
write E𝐹(𝑥)with the distribution 𝐹 as subscript. The expectation is not necessarily
always defined for a continuous random variable as the integral may diverge.

The expected value of a function of a random variable ℎ(𝑥) is obtained similarly:

E(ℎ(𝑥)) =
{∑

𝑥∈Ω 𝑓 (𝑥)ℎ(𝑥) discrete case∫
𝑥∈Ω 𝑓 (𝑥)ℎ(𝑥)𝑑𝑥 continuous case

This is called the “law of the unconscious statistician”, or short LOTUS. Again,
to highlight that the random variable 𝑥 has distribution 𝐹 we write E𝐹(ℎ(𝑥)).
For an event 𝐴 we can define a corresponding indicator function

1𝐴(𝑥) =
{

1 𝑥 ∈ 𝐴
0 𝑥 ∉ 𝐴

Intriguingly,
E(1𝐴(𝑥)) = Pr(𝐴)

https://en.wikipedia.org/wiki/Law_of_the_unconscious_statistician
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i.e. the expectation of the indicator variable for 𝐴 is the probability of 𝐴.

The moments of random variables are also defined by expectation:

• Zeroth moment: E(𝑥0) = 1 by definition of PDF and PMF,
• First moment: E(𝑥1) = E(𝑥) = 𝜇 , the mean,
• Second moment: E(𝑥2)
• The variance is the second momented centered about the mean 𝜇:

Var(𝑥) = E((𝑥 − 𝜇)2) = 𝜎2

• The variance can also be computed by Var(𝑥) = E(𝑥2) − E(𝑥)2.

A distribution does not necessarily need to have any finite first or higher moments.
An example is the Cauchy distribution that does not have a mean or variance (or
any other higher moment).

A.5.4 Transformation of random variables
Linear transformation of random variables: if 𝑎 and 𝑏 are constants and 𝑥 is a
random variable, then the random variable 𝑦 = 𝑎 + 𝑏𝑥 has mean E(𝑦) = 𝑎 + 𝑏E(𝑥)
and variance Var(𝑦) = 𝑏2Var(𝑥).
For a general invertible coordinate transformation 𝑦 = ℎ(𝑥) = 𝑦(𝑥) the backtrans-
formation is 𝑥 = ℎ−1(𝑦) = 𝑥(𝑦).

The transformation of the infinitesimal volume element is 𝑑𝑦 = | 𝑑𝑦
𝑑𝑥
|𝑑𝑥.

The transformation of the density is 𝑓𝑦(𝑦) =
��� 𝑑𝑥𝑑𝑦 ��� 𝑓𝑥(𝑥(𝑦)).

Note that
��� 𝑑𝑥𝑑𝑦 ��� = ��� 𝑑𝑦𝑑𝑥 ���−1

.

A.5.5 Law of large numbers:
Suppose we observe data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} with each 𝑥𝑖 ∼ 𝐹.

• By the strong law of large numbers the empirical distribution �̂�𝑛 based on
data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} converges to the true underlying distribution 𝐹 as
𝑛 → ∞ almost surely:

�̂�𝑛
𝑎.𝑠.→ 𝐹

The Glivenko–Cantelli theorem asserts that the convergence is uniform.
Since the strong law implies the weak law we also have convergence in
probability:

�̂�𝑛
𝑃→ 𝐹

• Correspondingly, for 𝑛 → ∞ the average E�̂�𝑛 (ℎ(𝑥)) = 1
𝑛

∑𝑛
𝑖=1 ℎ(𝑥𝑖) con-

verges to the expectation E𝐹(ℎ(𝑥)).

https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem
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A.5.6 Jensen’s inequality
E(ℎ(𝒙)) ≥ ℎ(E(𝒙))

for a convex function ℎ(𝒙).
Recall: a convex function (such as 𝑥2) has the shape of a “valley”.

A.6 Distributions

A.6.1 Bernoulli distribution and binomial distribution
The Bernoulli distribution Ber(𝜃) is simplest distribution possible. It is named
after Jacob Bernoulli (1655-1705) who also invented the law of large numbers.

It describes a discrete binary random variable with two states 𝑥 = 0 (“failure”)
and 𝑥 = 1 (“success”), where the parameter 𝜃 ∈ [0, 1] is the probability of
“success”. Often the Bernoulli distribution is also referred to as “coin tossing”
model with the two outcomes “heads” and “tails”.

Correspondingly, the probability mass function of Ber(𝜃) is

𝑝(𝑥 = 0) = Pr("failure") = 1 − 𝜃

and
𝑝(𝑥 = 1) = Pr("success") = 𝜃

A compact way to write the PMF of the Bernoulli distribution is

𝑝(𝑥 |𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥

If a random variable 𝑥 follows the Bernoulli distribution we write

𝑥 ∼ Ber(𝜃) .

The expected value is E(𝑥) = 𝜃 and the variance is Var(𝑥) = 𝜃(1 − 𝜃).
Closely related to the Bernoulli distribution is the binomial distribution Bin(𝑛, 𝜃)
which results from repeating a Bernoulli experiment 𝑛 times and counting the
number of successes among the 𝑛 trials (without keeping track of the ordering of
the experiments). Thus, if 𝑥1 , . . . , 𝑥𝑛 are 𝑛 independent Ber(𝜃) random variables
then 𝑦 =

∑𝑛
𝑖=1 is distributed as Bin(𝑛, 𝜃).

Its probability mass function is:

𝑝(𝑦 |𝑛, 𝜃) =
(
𝑛

𝑦

)
𝜃𝑦(1 − 𝜃)𝑛−𝑦

for 𝑦 ∈ {0, 1, 2, . . . , 𝑛}. The binomial coefficient
(𝑛
𝑥

)
is needed to account for the

multiplicity of ways (orderings of samples) in which we can observe 𝑦 sucesses.

https://en.wikipedia.org/wiki/Jacob_Bernoulli
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The expected value is E(𝑦) = 𝑛𝜃 and the variance is Var(𝑦) = 𝑛𝜃(1 − 𝜃).

If a random variable 𝑦 follows the binomial distribution we write

𝑦 ∼ Bin(𝑛, 𝜃)

For 𝑛 = 1 it reduces to the Bernoulli distribution Ber(𝜃).

In R the PMF of the binomial distribution is called dbinom(). The binomial
coefficient itself is computed by choose().

A.6.2 Normal distribution

The normal distribution is the most important continuous probability distribution.
It is also called Gaussian distribution named after Carl Friedrich Gauss (1777–
1855).

The univariate normal distribution 𝑁(𝜇, 𝜎2) has two parameters 𝜇 (location) and
𝜎2 (scale):

𝑥 ∼ 𝑁(𝜇, 𝜎2)

with mean

E(𝑥) = 𝜇

and variance

Var(𝑥) = 𝜎2

Probability density function (PDF):

𝑝(𝑥 |𝜇, 𝜎2) = (2𝜋𝜎2)− 1
2 exp

(
−(𝑥 − 𝜇)2

2𝜎2

)

In R the density function is called dnorm().

The standard normal distribution is 𝑁(0, 1) with mean 0 and variance 1.

Plot of the PDF of the standard normal:

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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The cumulative distribution function (CDF) of the standard normal 𝑁(0, 1) is

Φ(𝑥) =
∫ 𝑥

−∞
𝑓 (𝑥′ |𝜇 = 0, 𝜎2 = 1)𝑑𝑥′

There is no analytic expression for Φ(𝑥). In R the function is called pnorm().

Plot of the CDF of the standard normal:
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The inverse Φ−1(𝑝) is called the quantile function of the standard normal. In R
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the function is called qnorm().
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The sum of two normal random variables is also normal (with the appropriate
mean and variance).

The central limit theorem (first postulated by Abraham de Moivre (1667–1754))
asserts that in many cases the distribution of the mean of identically distributed
independent random variables converges to a normal distribution, even if the
individual random variables are not normal.

A.6.3 Gamma distribution
A.6.3.1 Standard parameterisation

Another important continous distribution is the gamma distribution Gam(𝛼, 𝜃).
It has two parameters 𝛼 > 0 (shape) and 𝜃 > 0 (scale):

𝑥 ∼ Gam(𝛼, 𝜃)

with mean
E(𝑥) = 𝛼𝜃

and variance
Var(𝑥) = 𝛼𝜃2

The gamma distribution is also often used with a rate parameter 𝛽 = 1/𝜃 (so one
needs to pay attention which parameterisation is used).

https://en.wikipedia.org/wiki/Abraham_de_Moivre
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Probability density function (PDF):

𝑝(𝑥 |𝛼, 𝜃) = 1
Γ(𝛼)𝜃𝛼

𝑥𝛼−1𝑒−𝑥/𝜃

The density of the gamma distribution is available in the R functiondgamma(). The
cumulative density function is pgamma() and the quantile function is qgamma().

A.6.3.2 Wishart parameterisation and scaled chi-squared distribution

The gamma distribution is often used with a different set of parameters 𝑘 = 2𝛼
and 𝑠2 = 𝜃/2 (hence conversely 𝛼 = 𝑘/2 and 𝜃 = 2𝑠2). In this form it is known
as one-dimensional Wishart distribution

𝑊1

(
𝑠2 , 𝑘

)
named after John Wishart (1898–1954). In the Wishart parameterisation the
mean is

E(𝑥) = 𝑘𝑠2

and the variance
Var(𝑥) = 2𝑘𝑠4

Another name for the one-dimensional Wishart distribution with exactly the
same parameterisation is scaled chi-squared distribution denoted as

𝑠2𝜒2
𝑘

Finally, note we often employ the Wishart distribution in mean parameterisation
𝑊1

(
𝑠2 = 𝜇/𝑘, 𝑘

)
with 𝜇 = 𝑘𝑠2 and 𝑘 (and thus 𝜃 = 2𝜇/𝑘). It has mean

E(𝑥) = 𝜇

and variance

Var(𝑥) =
2𝜇2

𝑘

A.6.3.3 Construction as sum of squared normals

A gamma distributed variable can be constructed as follows. Assume 𝑘 indepen-
dent normal random variables with mean 0 and variance 𝑠2:

𝑧1 , 𝑧2 , . . . , 𝑧𝑘 ∼ 𝑁(0, 𝑠2)

Then the sum of the squares

𝑥 =

𝑘∑
𝑖=1

𝑧2
𝑖

https://en.wikipedia.org/wiki/John_Wishart_(statistician)
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follows
𝑥 ∼ 𝜎2𝜒2

𝑘
=𝑊1

(
𝑠2 , 𝑘

)
or equivalently

𝑥 ∼ Gam
(
𝛼 =

𝑘

2 , 𝜃 = 2𝑠2
)

A.6.4 Special cases of the gamma distribution
A.6.4.1 Chi-squared distribution

The chi-squared distribution 𝜒2
𝑘

is a special one-parameter restriction of the
gamma resp. Wishart distribution obtained when setting 𝑠2 = 1 or, equivalently,
𝜃 = 2 or 𝜇 = 𝑘.

It has mean E(𝑥) = 𝑘 and variance Var(𝑥) = 2𝑘. The chi-squared distribution 𝜒2
𝑘

equals Gam(𝛼 = 𝑘/2, 𝜃 = 2) =𝑊1 (1, 𝑘).

Here is a plot of the density of the chi-squared distribution for degrees of freedom
𝑘 = 1 and 𝑘 = 3:
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In R the density of the chi-squared distribution is given by dchisq(). The
cumulative density function is pchisq() and the quantile function is qchisq().

A.6.4.2 Exponential distribution

The exponential distribution Exp(𝜃) with scale parameter 𝜃 is another special
one-parameter restriction of the gamma distribution with shape parameter set
to 𝛼 = 1 (or equivalently 𝑘 = 2).
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It thus equals Gam(𝛼 = 1, 𝜃) =𝑊1(𝑠2 = 𝜃/2, 𝑘 = 2). It has mean 𝜃 and variance
𝜃2.

Just like the gamma distribution the exponential distribution is also often
specified using a rate parameter 𝛽 = 1/𝜃 instead of a scale parameter 𝜃.

In R the command dexp() returns the density of the exponential distribution,
pexp() is the corresponding cumulative density function and qexp() is the
quantile function.

A.6.5 Location-scale 𝑡-distribution, Student’s 𝑡-distribution and
Cauchy distribution

A.6.5.1 Location-scale 𝑡-distribution

The location-scale 𝑡-distribution lst(𝜇, 𝜏2 , 𝜈) is a generalisation of the normal
distribution. It has an additional parameter 𝜈 > 0 (degrees of freedom) that
controls the probability mass in the tails. For small values of 𝜈 the distribution is
heavy-tailed — indeed so heavy that for 𝜈 ≤ 1 even the mean is not defined and
for 𝜈 ≤ 2 the variance is undefined.

The probability density of lst(𝜇, 𝜏2 , 𝜈) is

𝑝(𝑥 |𝜇, 𝜏2 , 𝜈) =
Γ( 𝜈+1

2 )
√
𝜋𝜈𝜏2 Γ( 𝜈2 )

(
1 + (𝑥 − 𝜇)2

𝜈𝜏2

)−(𝜈+1)/2

The mean is (for 𝜈 > 1)
E(𝑥) = 𝜇

and the variance (for 𝜈 > 2)

Var(𝑥) = 𝜏2 𝜈
𝜈 − 2

For 𝜈 → ∞ the location-scale 𝑡-distribution lst(𝜇, 𝜏2 , 𝜈) becomes the normal
distribution 𝑁(𝜇, 𝜏2).
For 𝜈 = 1 the location-scale 𝑡-distribution becomes the Cauchy distribution
Cau(𝜇, 𝜏) with density 𝑝(𝑥 |𝜇, 𝜏) = 𝜏

𝜋(𝜏2+(𝑥−𝜇)2) .

In the R extraDistr package the command dlst() returns the density of the
location-scale 𝑡-distribution, plst() is the corresponding cumulative density
function and qlst() is the quantile function.

A.6.5.2 Student’s 𝑡-distribution

For 𝜇 = 0 and 𝜏2 = 1 the location-scale 𝑡-distribution becomes the Student’s
𝑡-distribution 𝑡𝜈 with mean 0 (for 𝜈 > 1) and variance 𝜈

𝜈−2 (for 𝜈 > 2).

If 𝑦 ∼ 𝑡𝜈 then 𝑥 = 𝜇 + 𝜏𝑦 is distributed as 𝑥 ∼ lst(𝜇, 𝜏2 , 𝜈).

https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
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For 𝜈 → ∞ the 𝑡-distribution becomes equal to 𝑁(0, 1).
For 𝜈 = 1 the 𝑡-distribution becomes the standard Cauchy distribution Cau(0, 1)
with density 𝑝(𝑥) = 1

𝜋(1+𝑥2) .

In R the command dt() returns the density of the 𝑡-distribution, pt() is the
corresponding cumulative density function and qt() is the quantile function.

A.7 Statistics

A.7.1 Statistical learning
The aim in statistics — data science — machine learning is to use data (from
experiments, observations, measurements) to learn about and understand the
world.

Specifically, the aim is to identify the best model(s) for the data in order to

• to explain the current data, and
• to enable good prediction of future data

Note that it is easy to find models that explain the data but do not predict well!

Typically, one would like to avoid overfitting the data and prefers models that are
appropriate for the data at hand (i.e. not too simple but also not too complex).

Specifically, data are denoted 𝐷 = {𝑥1 , . . . , 𝑥𝑛} and models 𝑝(𝑥 |𝜃) that are
indexed the parameter 𝜃.

Often (but not always) 𝜃 can be interpreted and/or is associated with some
property of the model.

If there is only a single parameter we write 𝜃 (scalar parameter). For a parameter
vector we write 𝜽 (in bold type).

A.7.2 Point and interval estimation
• There is a parameter 𝜃 of interest in a model
• we are uncertain about this parameter (i.e. we don’t know the exact value)
• we would like to learn about this parameter by observing data 𝑥1 , . . . , 𝑥𝑛

from the model

Often the parameter(s) of interest are related to moments (such as mean and
variance) or to quantiles of the distribution representing the model.

Estimation:

• An estimator for 𝜃 is a function �̂�(𝑥1 , . . . , 𝑥𝑛) that maps the data (input) to
a “guess” (output) about 𝜃.

• A point estimator provides a single number for each parameter
• An interval estimator provides a set of possible values for each parameter.
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Simple estimators of mean and variance:

Suppose we have data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} all sampled independently from a
distribution 𝐹.

• The average (also known as empirical mean) �̂� = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 is an estimate

of the mean of 𝐹.
• The empirical variance 𝜎2ML = 1

𝑛

∑𝑛
𝑖=1(𝑥𝑖− �̂�)2 is an estimate of the variance

of 𝐹. Note the factor 1/𝑛. It is the maximum likelihood estimate assuming
a normal model.

• The unbiased sample variance 𝜎2UB = 1
𝑛−1

∑𝑛
𝑖=1(𝑥𝑖 − �̂�)2 is another estimate

of the variance of 𝐹. Note the factor 1/(𝑛 − 1) therefore 𝑛 ≥ 2 is required
for this estimator.

A.7.3 Sampling properties of a point estimator �̂�

A point estimator �̂� depends on the data, hence it has sampling variation
(i.e. estimate will be different for a new set of observations)

Thus �̂� can be seen as a random variable, and its distribution is called sampling
distribution (across different experiments).

Properties of this distribution can be used to evaluate how far the estimator
deviates (on average across different experiments) from the true value:

Bias:
Variance:

Mean squared error:

Bias(�̂�)
Var(�̂�)

MSE(�̂�)

= E(�̂�) − 𝜃

= E
(
(�̂� − E(�̂�))2

)
= E((�̂� − 𝜃)2)
= Var(�̂�) + Bias(�̂�)2

The last identity about MSE follows from E(𝑥2) = Var(𝑥) + E(𝑥)2.

At first sight it seems desirable to focus on unbiased (for finite 𝑛) estimators.
However, requiring strict unbiasedness is not always a good idea!

In many situations it is better to allow for some small bias and in order to achieve
a smaller variance and an overall total smaller MSE. This is called bias-variance
tradeoff — as more bias is traded for smaller variance (or, conversely, less bias is
traded for higher variance)

A.7.4 Consistency
Typically, Bias, Var and MSE all decrease with increasing sample size so that
with more data 𝑛 → ∞ the errors become smaller and smaller.
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The typical rate of decrease of variance of a good estimator is 1
𝑛 . Thus, when

sample size is doubled the variance is divided by 2 (and the standard deviation
is divided by

√
2).

Consistency: �̂� is called consistent if

MSE(�̂�) −→ 0 with 𝑛 → ∞

The three estimators discussed above (empirical mean, empirical variance,
unbiased variance) are all consistent as their MSE goes to zero with large sample
size 𝑛.

Consistency is a minimum essential requirement for any reasonable estimator!
Of all consistent estimators we typically prefer the estimator that is most efficient
(i.e. with fasted decrease in MSE) and that therefore has smallest variance and/or
MSE for given finite 𝑛.

Consistency implies we recover the true model in the limit of infinite data if the
model class contains the true data generating model.

If the model class does not contain the true model then strict consistency cannot
be achived but we still wish to get as close as possible to the true model when
choosing model parameters.

A.7.5 Sampling distribution of mean and variance estimators
for normal data

Suppose we have data 𝑥1 , . . . , 𝑥𝑛 all sampled from a normal distribution𝑁(𝜇, 𝜎2).
• The empirical estimator of the mean parameter 𝜇 is given by �̂� = 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖 .

Under the normal assumption the distribution of �̂� is

�̂� ∼ 𝑁

(
𝜇,

𝜎2

𝑛

)
Thus E(�̂�) = 𝜇 and Var(�̂�) = 𝜎2

𝑛 . The estimate �̂� is unbiased since E(�̂�)−𝜇 = 0
The mean squared error of �̂� is MSE(�̂�) = 𝜎2

𝑛 .

• The empirical variance 𝜎2ML = 1
𝑛

∑𝑛
𝑖=1(𝑥𝑖 − �̂�)2 for normal data follows a

one-dimensional Wishart distribution

𝜎2ML ∼𝑊1

(
𝑠2 =

𝜎2

𝑛
, 𝑘 = 𝑛 − 1

)
Thus, E(𝜎2ML) = 𝑛−1

𝑛 𝜎2 and Var(𝜎2ML) = 2(𝑛−1)
𝑛2 𝜎4. The estimate 𝜎2ML is

biased since E(𝜎2ML)−𝜎2 = − 1
𝑛 𝜎

2. The mean squared error is MSE(𝜎2ML) =
2(𝑛−1)
𝑛2 𝜎4 + 1

𝑛2 𝜎
4 = 2𝑛−1

𝑛2 𝜎4.
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• The unbiased variance estimate 𝜎2UB = 1
𝑛−1

∑𝑛
𝑖=1(𝑥𝑖 − �̂�)2 for normal data

follows a one-dimensional Wishart distribution

𝜎2UB ∼𝑊1

(
𝑠2 =

𝜎2

𝑛 − 1 , 𝑘 = 𝑛 − 1
)

Thus, E(𝜎2UB) = 𝜎2 and Var(𝜎2UB) = 2
𝑛−1𝜎

4. The estimate 𝜎2ML is unbiased
since E(𝜎2UB) − 𝜎2 = 0. The mean squared error is MSE(𝜎2UB) = 2

𝑛−1𝜎
4.

Interestingly, for any 𝑛 > 1 we find that Var(𝜎2UB) > Var(𝜎2ML) and
MSE(𝜎2UB) > MSE(𝜎2ML) so that the biased empirical estimator has both
lower variance and lower mean squared error than the unbiased estimator.

A.7.6 One sample 𝑡-statistic
Supppose we observe 𝑛 independent data points 𝑥1 , . . . , 𝑥𝑛 ∼ 𝑁(𝜇, 𝜎2). Then
the average �̄� =

∑𝑛
𝑖=1 𝑥𝑖 is distributed as �̄� ∼ 𝑁(𝜇, 𝜎2/𝑛) and correspondingly

𝑧 =
�̄� − 𝜇√
𝜎2/𝑛

∼ 𝑁(0, 1)

Note that 𝑧 uses the known variance 𝜎2. If instead the variance is estimated by
𝑠2

UB = 1
𝑛−1

∑𝑛
𝑖=1(𝑥𝑖 − �̄�)2 then the one sample 𝑡-statistic

𝑡 =
�̄� − 𝜇√
𝑠2

UB/𝑛
∼ 𝑡𝑛−1

is obtained. It is distributed according to a Student’s 𝑡-distribution with 𝑛 − 1
degrees of freedom, with mean 0 for 𝑛 > 2 and variance (𝑛 − 1)/(𝑛 − 3) for 𝑛 > 3.

If instead of the unbiased estimate the empirical (ML) estimate of the variance
𝑠2

ML = 1
𝑛

∑𝑛
𝑖=1(𝑥𝑖 − �̄�)2 = 𝑛−1

𝑛 𝑠2
UB is used then this leads to a slightly different

statistic

𝑡ML =
�̄� − 𝜇√
𝑠2

ML/𝑛
=

√
𝑛

𝑛 − 1 𝑡

with
𝑡ML ∼ lst

(
0, 𝜏2 =

𝑛

𝑛 − 1 , 𝑛 − 1
)

Thus, 𝑡ML follows a location-scale 𝑡-distribution, with mean 0 for 𝑛 > 2 and
variance 𝑛/(𝑛 − 3) for 𝑛 > 3.



A.7. STATISTICS 201

A.7.7 Two sample 𝑡-statistic with common variance
Now suppose we observe normal data 𝐷 = {𝑥1 , . . . , 𝑥𝑛} from two groups with
sample size 𝑛1 and 𝑛2 (and 𝑛 = 𝑛1 + 𝑛2) with two different means 𝜇1 and 𝜇2 and
common variance 𝜎2:

𝑥1 , . . . , 𝑥𝑛1 ∼ 𝑁(𝜇1 , 𝜎
2)

and
𝑥𝑛1+1 , . . . , 𝑥𝑛 ∼ 𝑁(𝜇2 , 𝜎

2)
Then �̂�1 = 1

𝑛1

∑𝑛1
𝑖=1 𝑥𝑖 and �̂�2 = 1

𝑛2

∑𝑛
𝑖=𝑛1+1 𝑥𝑖 are the sample averages with each

group.

The common variance 𝜎2 may be estimated either by the unbiased estimate
𝑠2

UB = 1
𝑛−2

(∑𝑛1
𝑖=1(𝑥𝑖 − �̂�1)2 +

∑𝑛
𝑖=𝑛1+1(𝑥𝑖 − �̂�2)2

)
(note the factor 𝑛 − 2) or the

empirical (ML) estimate 𝑠2
ML = 1

𝑛

(∑𝑛1
𝑖=1(𝑥𝑖 − �̂�1)2 +

∑𝑛
𝑖=𝑛1+1(𝑥𝑖 − �̂�2)2

)
= 𝑛−2

𝑛 𝑠2
UB.

These two estimators for the common variance are a often referred to as pooled
variance estimate as information is pooled from two groups to obtain the estimate.

This gives rise to the two sample 𝑡-statistic

𝑡 =
�̂�1 − �̂�2√

𝑠2
UB

(
1
𝑛1

+ 1
𝑛2

) ∼ 𝑡𝑛−2

that is distributed according to a Student’s 𝑡-distribution with 𝑛 − 2 degrees of
freedom, with mean 0 for 𝑛 > 3 and variance (𝑛 − 2)/(𝑛 − 4) for 𝑛 > 4. Large
values of the two sample 𝑡-statistic indicates that there are indeed two groups
rather than just one.

The two sample 𝑡-statistic using the empirical (ML) estimate of the common
variance is

𝑡ML =
�̂�1 − �̂�2√

𝑠2
ML

(
1
𝑛1

+ 1
𝑛2

) =

√
𝑛

𝑛 − 2 𝑡

with
𝑡ML ∼ lst

(
0, 𝜏2 =

𝑛

𝑛 − 2 , 𝑛 − 2
)

Thus, 𝑡ML follows a location-scale 𝑡-distribution, with mean 0 for 𝑛 > 3 and
variance 𝑛/(𝑛 − 4) for 𝑛 > 4.

A.7.8 Confidence intervals
• A confidence interval (CI) is an interval estimate with a frequentist

interpretation.
• Definition of coverage𝜅 of a CI: how often (in repeated identical experiment)

does the estimated CI overlap the true parameter value 𝜃
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– Eg.: Coverage 𝜅 = 0.95 (95%) means that in 95 out of 100 case the
estimated CI will contain the (unknown) true value (i.e. it will “cover”
𝜃).

Illustration of the repeated construction of a CI for 𝜃:

• Note that a CI is actually an estimate: ĈI(𝑥1 , . . . , 𝑥𝑛), i.e. it depends on
data and has a random (sampling) variation.

• A good CI has high coverage and is compact.

Note: the coverage probability is not the probability that the true value is
contained in a given estimated interval (that would be the Bayesian credible
interval).

A.7.9 Symmetric normal confidence interval
For a normally distributed univariate random variable it is straightforward to
construct a symmetric two-sided CI with a given desired coverage 𝜅.
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For a normal random variable 𝑋 ∼ 𝑁(𝜇, 𝜎2) with mean 𝜇 and variance 𝜎2 and
density function 𝑓 (𝑥) we can compute the probability

Pr(𝑥 ≤ 𝜇 + 𝑐𝜎) =
∫ 𝜇+𝑐𝜎

−∞
𝑓 (𝑥)𝑑𝑥 = Φ(𝑐) = 1 + 𝜅

2

Note Φ(𝑐) is the cumulative distribution function (CDF) of the standard normal
𝑁(0, 1):

From the above we obtain the critical point 𝑐 from the quantile function, i.e. by
inversion of Φ:

𝑐 = Φ−1
(
1 + 𝜅

2

)

The following table lists 𝑐 for the three most commonly used values of 𝜅 - it is
useful to memorise these values!

Coverage 𝜅 Critical value 𝑐
0.9 1.64
0.95 1.96
0.99 2.58

A symmetric standard normal CI with nominal coverage 𝜅 for

• a scalar parameter 𝜃
• with normally distributed estimate �̂� and
• with estimated standard deviation ˆSD(�̂�) = �̂�

is then given by

ĈI = [�̂� ± 𝑐�̂�]

where 𝑐 is chosen for desired coverage level 𝜅.
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A.7.10 Confidence interval based on the chi-squared distribu-
tion

As for the normal CI we can compute critical values but for the chi-squared
distribution we use a one-sided interval:

Pr(𝑥 ≤ 𝑐) = 𝜅

As before we get 𝑐 by the quantile function, i.e. by inverting the CDF of the
chi-squared distribution.

The following list the critical values for the three most common choice of 𝜅 for
𝑚 = 1 (one degree of freedom):

Coverage 𝜅 Critical value 𝑐 (𝑚 = 1)
0.9 2.71
0.95 3.84
0.99 6.63

A one-sided CI with nominal coverage 𝜅 is then given by [0, 𝑐].



Appendix B

Distributions used in Bayesian
analysis

This appendix introduces a number of distributions essential for Bayesian
analysis.

See in particular the Chapter “Bayesian learning in practise”.

B.1 Beta distribution

B.1.1 Standard parameterisation
The density of the beta distribution Beta(𝛼, 𝛽) is

𝑝(𝑥 |𝛼, 𝛽) = 1
𝐵(𝛼, 𝛽)𝑥

𝛼−1(1 − 𝑥)𝛽−1

with 𝑥 ∈ [0, 1] and 𝛼 > 0 and 𝛽 > 0. The density depends on the beta function
𝐵(𝑧1 , 𝑧1) = Γ(𝑧1)Γ(𝑧2)

Γ(𝑧1+𝑧2) which in turn is defined via Euler’s gamma function Γ(𝑥).
Note that Γ(𝑥) = (𝑥 − 1)! for any positive integer 𝑥.

The mean of the beta distribution is

E(𝑥) = 𝛼
𝛼 + 𝛽

and its variance is
Var(𝑥) =

𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)

The beta distribution is very flexible and can assume a number of different
shapes, depending on the value of 𝛼 and 𝛽:

205
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B.1.2 Mean parameterisation
A useful reparameterisation Beta(𝜇, 𝑘) of the beta distribution is in terms of a
mean parameter 𝜇 ∈ [0, 1] and a concentration parameter 𝑘 > 0. These are given
by

𝑘 = 𝛼 + 𝛽

and
𝜇 =

𝛼
𝛼 + 𝛽

The original parameters can be recovered by

𝛼 = 𝜇𝑘

and
𝛽 = (1 − 𝜇)𝑘

The mean and variance of the beta distribution expressed in terms of 𝜇 and 𝑘 are

E(𝑥) = 𝜇

and
Var(𝑥) = 𝜇(1 − 𝜇)

𝑘 + 1
With increasing concentration parameter 𝑘 the variance decreases and thus the
probability mass becomes more concentrated around the mean.
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B.2 Inverse gamma (inverse Wishart) distribution

B.2.1 Standard parameterisation
The inverse gamma (IG) distribution Inv-Gam(𝛼, 𝛽) has density

𝛽𝛼

Γ(𝛼) (1/𝑥)
𝛼+1𝑒−𝛽/𝑥

with two parameters 𝛼 > 0 (shape parameter) and 𝛽 > 0 (scale parameter) and
support 𝑥 > 0.

The mean of the inverse gamma distribution is

E(𝑥) = 𝛽

𝛼 − 1

and the variance

Var(𝑥) = 𝛽2

(𝛼 − 1)2(𝛼 − 2)

Thus, for the mean to exist we have the restriction 𝛼 > 1 and for the variance to
exist 𝛼 > 2.

The IG distribution is closely linked with the gamma distribution. If 𝑥 ∼
Inv-Gam(𝛼, 𝛽) is IG-distributed then the inverse of 𝑥 is gamma distributed:

1
𝑥
∼ Gam(𝛼, 𝜃 = 𝛽−1)

where 𝛼 is the shared shape parameter and 𝜃 the scale parameter of the gamma
distribution.

B.2.2 Wishart parameterisation
The inverse gamma distribution is frequently used with a different set of
parameters𝜓 = 2𝛽 (scale parameter) and 𝜈 = 2𝛼 (shape parameter), or conversely
𝛼 = 𝜈/2 and 𝛽 = 𝜓/2. In this form it is called one-dimensional inverse Wishart
distribution𝑊−1

1 (𝜓, 𝜈) with mean and variance given by

E(𝑥) = 𝜓

𝜈 − 2 = 𝜇

for 𝜈 > 2 and

Var(𝑥) = 2𝜓2

(𝜈 − 4)(𝜈 − 2)2 =
2𝜇2

𝜈 − 4

for 𝜈 > 4.
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Instead of 𝜓 and 𝜈 we may also equivalently use 𝜇 and 𝜅 = 𝜈 − 2 as parameters
for the inverse Wishart distribution, so that𝑊−1

1 (𝜓 = 𝜅𝜇, 𝜈 = 𝜅 + 2) has mean

E(𝑥) = 𝜇

with 𝜅 > 0 and the variance is

Var(𝑥) = 2𝜇2

𝜅 − 2
with 𝜅 > 2. This mean parameterisation is useful when employing the IG
distribution as prior and posterior.

Finally, with𝑊−1
1 (𝜓 = 𝜈𝜏2 , 𝜈), where 𝜏2 = 𝜇 𝜅

𝜅+2 =
𝜓
𝜈 is a biased mean parameter,

we get the scaled inverse chi-squared distribution 𝜏2Inv-𝜒2
𝜈 with

E(𝑥) = 𝜏2 𝜈
𝜈 − 2

for 𝜈 > 2 and
Var(𝑥) = 2𝜏4

𝜈 − 4
𝜈2

(𝜈 − 2)2
for 𝜈 > 4.

The inverse Wishart and Wishart distributions are linked. If 𝑥 ∼ 𝑊−1
1 (𝜓, 𝜈) is

inverse-Wishart distributed then the inverse of 𝑥 is Wishart distributed with
inverted scale parameter:

1
𝑥
∼𝑊1(𝑠2 = 𝜓−1 , 𝑘 = 𝜈)

where 𝑘 is the shape parameter and 𝑠2 the scale parameter of the Wishart
distribution.

B.3 Location-scale 𝑡-distribution as compound dis-
tribution

Suppose that
𝑥 |𝑠2 ∼ 𝑁(𝜇, 𝑠2)

with corresponding density 𝑝(𝑥 |𝑠2) and mean E(𝑥 |𝑠2) = 𝜇 and variance
Var(𝑥 |𝑠2) = 𝑠2.

Now let the variance 𝑠2 be distributed as inverse gamma / inverse Wishart

𝑠2 ∼𝑊−1(𝜓 = 𝜅𝜎2 , 𝜈 = 𝜅 + 2) =𝑊−1(𝜓 = 𝜏2𝜈, 𝜈)

with corresponding density 𝑝(𝑠2) and mean E(𝑠2) = 𝜎2 = 𝜏2𝜈/(𝜈 − 2). Note we
use here both the mean parameterisation (𝜎2 , 𝜅) and the inverse chi-squared
parameterisation (𝜏2 , 𝜈).
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The joint density for 𝑥 and 𝑠2 is 𝑝(𝑥, 𝑠2) = 𝑝(𝑥 |𝑠2)𝑝(𝑠2). We are interested in the
marginal density for 𝑥:

𝑝(𝑥) =
∫

𝑝(𝑥, 𝑠2)𝑑𝑠2 =

∫
𝑝(𝑠2)𝑝(𝑥 |𝑠2)𝑑𝑠2

This is a compound distribution of a normal with fixed mean 𝜇 and variance
𝑠2 varying according the inverse gamma distribution. Calculating the integral
results in the location-scale 𝑡-distribution with parameters

𝑥 ∼ lst
(
𝜇, 𝜎2 𝜅

𝜅 + 2 , 𝜅 + 2
)
= lst

(
𝜇, 𝜏2 , 𝜈

)
with mean

E(𝑥) = 𝜇

and variance
Var(𝑥) = 𝜎2 = 𝜏2 𝜈

𝜈 − 2

From the law of total expectation and variance we can also directly verify that

E(𝑥) = E(E(𝑥 |𝑠2)) = 𝜇

and
Var(𝑥) = E(Var(𝑥 |𝑠2)) + Var(E(𝑥 |𝑠2)) = E(𝑠2) = 𝜎2 = 𝜏2 𝜈

𝜈 − 2
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Appendix C

Further study

In this module we can only touch the surface of likelihood and Bayes inference.
As a starting point for further reading the following text books are recommended.

C.1 Recommended reading
• Faraway (2015) Linear Models with R (second edition). Chapman and

Hall/CRC.

• Held and Bové (2020) Applied Statistical Inference: Likelihood and Bayes (2nd
edition). Springer.

• Agresti and Kateri (2022) Foundations of Statistics for Data Scientists. Chap-
man and Hall/CRC.

C.2 Additional references
• Heard (2021) An Introduction to Bayesian Inference, Methods and Computation.

Springer.

• Gelman et al. (2014) Bayesian data analysis (3rd edition). CRC Press.

• Wood (2015) Core Statistics. Cambridge University Press. PDF available
from https://www.maths.ed.ac.uk/~swood34/core-statistics-nup.pdf
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https://people.bath.ac.uk/jjf23/LMR/
https://doi.org/10.1007/978-3-662-60792-3
https://doi.org/10.1007/978-3-662-60792-3
https://doi.org/10.1201/9781003159834
https://doi.org/10.1007/978-3-030-82808-0
http://www.stat.columbia.edu/~gelman/book/
https://doi.org/10.1017/CBO9781107741973
https://www.maths.ed.ac.uk/~swood34/core-statistics-nup.pdf
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