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Chapter 14

Overview over regression
modelling

14.1 General setup

Y ('/ f(ﬁ,'J

>
X

'
* y: response variable, also known as outcome or label

® X1,X2,X3,...,%4: predictor variables, also known as covariates or covari-
ables

¢ The relationship between the outcomes and the predictor variables is
assumed to follow

y=flry,xo,...,x5)+¢

where f is the regression function (not a density) and ¢ represents noise.
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14.2 Objectives

1. Understand the relationship between the response y and the predictor
variables x; by learning the regression function f from observed data

(training data). The estimated regression function is .

2. Prediction of outcomes

y = flx1,x2,..., xa)
——
predicted response

using fitted f

If instead of the fitted function f the known regression function f is used
we denote this by

y* :f(xerZI'-‘rxd)

——
predicted response

using known f
3. Variable importance

* which covariates are most relevant in predicting the outcome?

¢ allows to better understand the data and model
— variable selection (to build simpler model with same predictive
capability)

14.3 Regression as a form of supervised learning

Regression modelling is a special case of supervised learning.

In supervised learning we make use of labelled data, i.e. x; has an associated
label y;. Thus, the data is consists of pairs (x1, y1), (X2, ¥2), ..., (Xn, Yn).

The supervision part of in supervised learning refers to the fact that the labels are
given.

In regression typically the label y; is continuous and called the response.

On the other hand, if the label y; is discrete/categorical then supervised learning
is called classification.

— Discrete y — Classification Methods
Supervised Learning
— Continuous y — Regression Methods
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Another important type of statistical learning is unsupervised learning where la-
bels y are inferred from the data x (this is also known as clustering). Furthermore,
there is also semi-supervised learning with labels only partly known.

Note that there are regression models (e.g. logistic regression) with discrete
response that are performing classification, so one may argue that “supervised
learning”="generalised regression”.

14.4 Various regression models used in statistics

In this course we only study linear multiple regression. However, you should
be aware that the linear model is in fact just a special cases of some much more
general regression approaches.

General regression model:
y = f(x1,...,x4) + "noise"

¢ The function f is estimated nonparametrically - splines - Gaussian processes

¢ Generalised Additive Models (GAM): - the function f is assumed to be the
sum of individual functions fi(x;)

* Generalised Linear Models (GLM): - f is a transformed linear predictor
h(3; bix;), noise is assumed from an exponential family

¢ Linear Model (LM): - linear predictor ), b;x;, normal noise

In R the linear model is implemented in the function Im(), and generalised linear
models in the function glm(). Generalised additive models are available in the
package “mgcv”.

In the following we focus on the linear regression model with continuous
response.
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Chapter 15

Linear Regression

15.1 The linear regression model

In this module we assume that f is a linear function:

d
f(xl/---/xd):ﬁ(]‘i‘Zﬁjxj :y*
j=1

In vector notation:
fx)=Bo+pTx=y*
B1 X1
withg=|: landx =| :
Ba X4

Therefore, the linear regression model is

d
y=ﬁ0+2ﬁfx;’+€

i=1
= ﬁg + ﬁTx + €
=y*+¢
where:

* (o is the intercept
* B=(B1,...,Ba) are the regression coefficients
e x=(x1,...,x4)7 is the predictor vector containing the predictor variables
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15.2 Interpretation of regression coefficients and in-
tercept

* The regression coefficient f§; corresponds to the slope (first partial deriva-

tive) of the regression function in the direction of x;. In other words, the

gradient of f(x) are the regression coefficients: Vf(x) =
¢ The intercept B is the offset at the origin (x; = x; = ... = x4 = 0):

Y A

deye

i

>
X
15.3 Different types of linear regression:

¢ Simple linear regression: y = o + fx + ¢ (=single predictor)

® Multiple linear regression: y = o + 27:1 Bjxj + ¢ (= multiple predictor
variables)

* Multivariate regression: multivariate response y

15.4 Distributional assumptions and properties

General assumptions:

* We treat y and x1, ..., x4 as the primary observables that can be described
by random variables.

® fBo, B are parameters to be inferred from the observations on y and
X1,...,X4.

* Specifically, will we assume that response and predictors have a mean and
a (cov)variance:

i. Response:
E(y) = uy
Var(y) = o
The variance of the response Var(y) is also called the total variation .
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ii. Predictors:
B(xi) = py; (or E(x) = )
Var(x;) = ‘7:2@- and Cor(x;, xj) = pjj (or Var(x) = Ey)
The signal variance Var(y*) = Var(Bo + BT x) = BTE,f is also called
the explained variation.

* We assume that i and x are jointly distributed with correlation Cor(y, x;) =
py,x; between each predictor variable x; and the response y.

¢ In contrast to y and x the noise variable ¢ is only indirectly observed via
the difference ¢ = y — y*. We denote the mean and variance of the noise
by E(¢) and Var(e).
The noise variance Var(e¢) is also called the unexplained variation or the
residual variance. The residual standard error is SD(¢).

Identifiability assumptions:

In a statistical analysis we would like to be able to separate signal (y*) from
noise (¢&). To achieve this we require some distributional assumptions to ensure
identifiability and avoid confounding;:

1) Assumption 1: ¢ and y* are are independent. This implies Var(y) =
Var(y*) + Var(e), or equivalently Var(e) = Var(y) — Var(y*).

Thus, this assumption implies the decomposition of variance, i.e. that the
total variation Var(y) equals the sum of the explained variationVar(y*)
and the unexplained variationVar(e).

2) Assumption 2: E(¢) = 0. This allows to identify the intercept fg and
implies E(y) = E(y*).

Optional assumptions (often but not always):

® The noise ¢ is normally distributed
¢ The response y and and the predictor variables x; are continuous variables
* The response and predictor variables are jointly normally distributed

Further properties:

¢ Asaresult of the independence assumption 1) we can only choose two out
of the three variances freely:
i. in a generative perspective we will choose signal variance Var(y*)
(or equivalently the variances Var(x;)) and the noise variance Var(e),
then the variance of the response Var(y) follows.
ii. in an observational perspective we will observe the variance of the
reponse Var(y) and the variances Var(x;), and then the error variance
Var(¢) follows.
* Aswe will see later the regression coefficients f; depend on the correlations
between the response y and and the predictor variables x;. Thus, the choice
of regression coefficients implies a specific correlation pattern, and vice
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versa (in fact, we will use this correlation pattern to infer the regression
coefficients from data!).

15.5 Regression in data matrix notation

We can also write the regression in terms of actual observed data (rather than in
terms of random variables):

Data matrix for the predictors:

X11 ... X4

Xn1 -+ Xpd

Note the statistics convention: the n rows of X contain the samples, and the d
columns contain variables.

Response data vector: (v, ..., yn)T =y

Then the regression equation is written in data matrix notation:

y =160+ X p + €
—_— —_— e -

nx1 nx1 nxd g o nx1
——
residuals
1
where 1, = | : |is a column vector of length n (size n x 1).
1

Note that here the regression coefficients are now multiplied after the data matrix
(compare with the original vector notation where the transpose of regression
coefficients come before the vector of the predictors).

The observed noise values (i.e. realisations of the random variable ¢) are called
the residuals.

15.6 Centering and vanishing of the intercept f

If x and y are centered, i.e. if E(x) = u, = 0 and E(y) = u, = 0, then the intercept
Bo disappears:

The regression equation is
y=PBo+ ﬁTx +¢€
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with E(¢). Taking the expectation on both sides we get i, = fo + ﬁTyx and
therefore

Po=uy - B Tnux
This is zero if the mean of the response 1, and the mean of predictors u vanish.

Conversely, if we assume that the intercept vanishes (8o = 0) this is only possible
for general B if both u, = 0 and p, = 0.

Thus, in the linear model is always possible to transform y and x (or data y and
X)) so that the intercept vanishes. To simplify equations we will therefore often
set po = 0.

15.7 Objectives in data analysis using linear regres-
sion
1. Understand functional relationship: find estimates of the intercept (8o)
and the regression coefficients (3 j), as well as the associated errors.
2. Prediction:
e Known coefficients fo and B: y* = o + BT«
e Estimated coefficients ffy and f (note the “hat”!): § = fio + Z?zl B jXj =
s AT
Po+p x
For each point prediction find the corresponding prediction error!

3. Variable importance: Which predictors x; are most relevant?
— test whether 8; = 0
— find measures of variable importance

Remark: as we will see §; or B j itself is not a measure of variable importance!
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Chapter 16

Estimating regression
coefficients

In this chapter we discuss various ways to estimate the regression coefficients.
First, we discuss estimation by Ordinary Least Squares (OLS) by minimising the
residual sum of squares. This yields the famous Gauss estimator. Second, we
derive estimates of the regression coefficients using the methods of maximum
likelihood assuming normal errors. This also leads to the Gauss estimator. Third,
we show that the coefficients in linear regression can written and interpreted in
terms of two covariance matrices and that the Gauss estimator of the regression
coefficients is a plug-in estimator using the MLEs of these covariance matrices.
Furthermore, we show that the (population version) of the Gauss estimator
can also be derived by finding the best linear predictor and by conditioning.
Finally, we discuss special cases of regression coefficients and their relationship
to marginal correlation.

16.1 Ordinary Least Squares (OLS) estimator of re-
gression coefficients

Now we show the classic way (Gauss 1809; Legendre 1805) to estimate regression
coefficients by the method of ordinary least squares (OLS).

Idea: choose regression coefficients such as to minimise the squared error between
observations and the prediction.
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31

‘-[ P« |

-

/l\D'v""'s PQ}“J‘ xtj

>4
X
In data matrix notation (note we assume Sy = 0 and thus centered data X and y):

RSS(B) = (y - XB)" (y — XP)

RSS is an abbreviation for “Residual Sum of Squares” which is is a function of 5.
Minimising RSS yields the OLS estimate:

EOLS = arg min RSS(f)
B

RSS(B) =y y - 28" X"y + pTXTXpB

Gradient:
VRSS(B) = —2X Ty +2XTXpB

VRSS(B) =0 — X"y = XTXB

= EOLS = (XTX)_l X'y

Note the similarities in the procedure to maximum likelihood (ML) estimation
(with minimisation instead of maximisation)! In fact, as we see next this is not
by chance as OLS is indeed a special case of ML! This also implies that OLS is
generally a good method — but only if sample size # is large!

The above Gauss’ estimator is fundamental in statistics so it is worthwile to
memorise it!
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16.2 Maximum likelihood estimation of regression
coefficients

16.2.1 Normallog-likelihood function for regression coefficients
and noise variance

We now show how to estimate regression coefficients using the method of
maximum likelihood. This is a second method to derive f.

We recall the basic regression equation

y=po+pPlx+e
with independent noise ¢ and observed data y1, ..., y, and x1, ..., x,.

Assuming E(¢) = 0 the intercept is identified as

Po = ty _ﬁTyx

Combining the two above equations we see that noise variable equals
e=(y—py) - p(x—p)

Assuming joint (multivariate) normality for the observed data, the response y
and predictors x, we get as the MLEs for the respective means and (co)variances:

* 0y =E@y) = T2 i
o

Y
© 6% =Var(y) = § T, (yi - iy ?
¢ nax :E(/x\) = %Z?:lxi
® Lix = Var(x) = % ?:1(xi - ﬁx)(xi - ﬁx)T

. ﬁ;xy = a);(x,y) = %Zle(xi ~ )i — fiy)

Note that these are are sufficient statistics and hence summarize perfectly the
observed data for x and y under the normal assumption

Consequently, the residuals (indirect observations of the noise variable) for a
given choice of regression coefficients f and the observed data for x and y are

i = (yi—fy)— B (xi - f1,)

Assuming that the noise ¢ ~ N(0, 2) is normally distributed with mean 0 and
variance Var(e) = 02. we can write down the normal log-likelihood function for
o2 and B:

1 ¢ R )2
log L(B, 07) = —g log o7 ~ 252 Z <(yi —fy) = BT (xi ~ Px))

€ =1



158 CHAPTER 16. ESTIMATING REGRESSION COEFFICIENTS

Maximising this function leads to the MLEs of 2 and B!

Note that the residual sum of squares appears in the log-likelihood function
(with a minus sign), which implies that ML assuming normal distribution will
recover the OLS estimator for the regression coefficients! So OLS is a special case
of ML !

16.2.2 Detailed derivation of the MLEs
The gradient with regard to g is

n

VglogL(B, 02) = % > ((xi = )i = fiy) = (i — ) (xi = ﬁx)Tﬁ)
€ i=1
_ % (ﬁxy - Eﬁ)

&

Setting this equal to zero yields the Gauss estimator

By plugin we the get the MLE of f as

~ AT .

ﬁo = ﬁy - :3 yx
Taking the derivative of log L(8, 02) with regard to o2 yields
2 log L(B,o?) = Z(yl 7i)?
do? 0% 204 — l

with §; = fo + ﬁTxi and the residuals y; — #; resulting from the fitted linear
model. This leads to the MLE of the noise variance

—~ 1 n .
of = P Z(%‘ - i)
i=1

Note that the MLE 0?2 is a biased estimate of 62. The unbiased estimate is
ﬁ > (yi — 9i)*, where d is the dimension of 8 (i.e. the number of predictors).

16.2.3 Asymptotics

The advantage of using maximum likelihood is that we also get the (asympotic)
variance associated with each estimator and typically can also assume asymptotic
normality.
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Specifically, for B we get via the observed Fisher information at the MLE an
asymptotic estimator of its variance

Var(B) =
Similarly, for 3o we have

Var(Bo) = —02(1+ TExxy)

For finite sample size n with known Var(¢) one can show that the variances are

Var(B) = —0?E,

and
Var(,Bo) —02(1 + yzﬁ;iﬂx)

and that the regression coefficients and the intercept are normally distributed
according to

B ~ Na(B, Var(B))

and

Bo ~ N(Bo, Var(Bo))

We may use this to test whether whether f; = 0 and o = 0

16.3 Covariance plug-in estimator of regression co-
efficients

16.3.1 Regression coeffients as product of variances

We now try to understand regression coefficients in terms of covariances (thus
obtaining a third way to compute and estimate them).

We recall that the Gauss regression coefficients are given by

B= (XTX)_l xTy

where X is the n X d data matrix (in statistics convention)
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Note that we assume that the data matrix X is centered (i.e. column sums
XT1, = 0 are zero).

Likewise y = (y1,.-., yn)T is the response data vector (also centered with
T{ _
y'1,=0).

Noting that

A 1
Loy = E(XTX)

is the MLE of covariance matrix among x and
o 1
Exy = ;(X Ty)

is the MLE of the covariance between x and y we see that the OLS estimate of
the regression coefficients can be expressed as

We can write down a population version (with no hats!):

p= E;;ny

Thus, OLS regression coefficients can be interpreted as plugin estimator using
MLEs of covariances! In fact, we may also use the unbiased estimates since the
scale factor (1/n or 1/(n — 1)) cancels out so it does not matter which one you
use!

16.3.2 Importance of positive definiteness of estimated covari-
ance matrix

A

. —~ .o\l
Note that X, is inverted in § = (Exx) Lyy.

¢ Hence, the estimate ﬁ‘.xx needs to be positive definite!

“MLE . o L
e ButX,, isonly positive definite if n > d!

Therefore we can use the ML estimate (empirical estimator) only for large n >
d, otherwise we need to employ a different (regularised) estimation approach
(e.g. Bayes or a penalised ML)!

Remark: writing B explicitly based on covariance estimates has the advantage
that we can construct plug-in estimators of regression coefficients based on
regularised covariance estimators that improve over ML for small sample size.
This leads to the so-called SCOUT method (=covariance-regularized regression
by Witten and Tibshirani, 2008).



16.4. STANDARDISED REGRESSION COEFFICIENTS AND THEIR RELATIONSHIP TC

16.4 Standardised regression coefficients and their
relationship to correlation

We recall the relationship between regression coefficients f and the marginal
covariance L, and the covariances among the predictors Ey,:

-1
:B = Z:xxzxy

We can rewrite the regression coefficients in terms of marginal correlations
P, and correlations P,, among the predictors using the variance-correlation

decompositions Xy, = V}C/szxV}(/z and Ly = V}(/Znyay:
-1/2 -1
p= v PP, o,
S~ ——
(inverse) scale of x; scale of y

_y1/2
=V Pga 0y

Thus the regression coefficients f§ contain the scale of the variables, and take into
account the correlations among the predictors (Pyy) in addition to the marginal
correlations between the response y and the predictors x; (Pyy).

This decomposition allows to understand a number special cases for which the
regression coefficients simplify further:

a) If the response and the predictors are standardised to have variance one,
i.e. Var(y) = 1 and Var(x;) = 1, then 8 becomes equal to the standardised
regression coefficients

— p-1

Bsta = PxxPxy
Note that standardised regression coefficients do not make use of variances
and and thus are scale-independent.

b) If there is no correlation among the predictors , i.e. Py, = I the the
regression coefficients reduce to

p= V;lzxy

where V, is a diagonal matrix containing the variances of the predictors.
This is also called marginal regression. Note that the inversion of V is
trival since you only need to invert each diagonal element individually.

c) If both a) and b) apply simultaneously (i.e. there is no correlation among
predictors and response and predictors and predictors are standardised)
then the regression coefficients simplify even further to

ﬁszy

Thus, in this very special case the regression coefficients are identical to
the correlations between the response and the predictors!
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16.5 Further ways to obtain regression coefficients

16.5.1 Best linear predictor

The best linear predictor is a fourth way to arrive at the linear model. This is
closely related to OLS and minimising squared residual error.

Without assuming normality the above multiple regression model can be shown
to be optimal linear predictor under the minimum mean squared prediction
error:

Assumptions:

¢ y and x are random variables
e we construct a new variable (the linear predictor) y** = by + b'x to
optimally approximate y

Aim:
¢ choose by and b such to minimize the mean squared prediction error
E((y -y
16.5.1.1 Result:
The mean squared prediction error MSPE in dependence of (b, b) is
E((y —y™)?) = Var(y - ™) + E(y - y**)°
= Var(y — bo — b"x) + (E(y) — by - b"B(x))’
= 05 + Var(b'x) + 2Cov(y, —bTx) + (ty —bo - bTyx)2
=07+ b Eexb —2b Eyy + (1) —bo — b )’
= MSPE(by, b)
We look for

(Bo, B) = argmin MSPE(by, b)
bo,b

In order to find the minimum we compute the gradient with regard to (bo, b)

_ _z(yy - bo - bTyx)
VMSPE = (2 Loxb —2Ley — 2 (uy —bo—b'p,)

and setting this equal to zero yields
(ﬁo) _ (uy —f%)
ﬁ E;xzxy

Thus, the optimal values for by and b in the best linear predictor correspond to
the previously derived coefficients o and B!
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16.5.1.2 Irreducible Error

The minimum achieved MSPE (=irreducible error) is
— 2 T —_ -2 -1
MSPE(Bo, B) = 0y = B ExxP = 0y — EyxLipExy
With the abbreviation Q? = P, P;1Py, = a;zzyxZ;;ny we can simplify this to

MSPE(Bo, B) = 0,(1 — Q%) = Var(e)

Writing by = fo + Ag and b = B + A it is easy to see that the mean squared
predictive error is a quadratic function around the minimum:

MSPE(Bo + Ao, B+ A) = Var(e) + A3 + ATZ A

Note that usually y* = o + BT x does not perfectly approximate y so there will
be an irreducible error (= noise variance)

Var(e) = 05(1 -0 >0

which implies Q% < 1.

The quantity Q7 has a further interpretation of the population version of as the
squared multiple correlation coefficient between the response and the predictors
and plays a vital role in decomposition of variance, as discussed later.

16.5.2 Regression by conditioning

Conditioning is a fifth way to arrive at the linear model. This is also the most
general way and can be used to derive many other regression models (not just
the simple linear model).

16.5.2.1 General idea:

* two random variables y (response, scalar) and x (predictor variables,
vector)

* we assume that y and x have a joint distribution F, »

e compute conditional random variable y|x and the corresponding distribu-
tion F |y

16.5.2.2 Multivariate normal assumption

Now we assume that y and x are (jointly) multivariate normal. Then the
conditional distribution F, |, is a univariate normal with the following moments
(you can verify this by looking up the general conditional multivariate normal
distribution):
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a) Conditional expectation:

E(ylx) =y* =Bo+p"x

with coefficients f = E;}CZW and intercept o = py — ﬁTyx .

Note that as y* depends on x it is a random variable itself with mean

E(y*) = Bo+B 1, =ty
and variance
Var(y*) = Var(E(y|x))
= B Lexf = ByxZx Ly
= 0, PyxPiy Py

= aﬁQz
b) Conditional variance:
Var(y|x) = 05 - BTL.p

= 0y = EyxExLay
= of,(l -0?)

Note this is a constant so E(Var(y|x)) = o7(1 — Q?) as well.
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Squared multiple correlation
and variance decomposition in
linear regression

In this chapter we first introduce the (squared) multiple correlation and the
multiple and adjusted R? coefficients as estimators. Subsequently we discuss
variance decomposition.

17.1 Squared multiple correlation Q? and the R? co-
efficient
In the previous chapter we encountered the following quantity:
Q% = Py Py Pry = 0,7y By g
With g = Z;;ny and fo = py — B u . it is straightforward to verify the following:
e the cross-covariance between y and y* is

Cov(y,y*) = Ly = nyE;;ny
= 0, Py P Py = 0,0

e the (signal) variance of y* is

Var(y*) = BT Luxf = EyxEraLay
= 0, Py Py Pyy = 0,0

165
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hence the correlation Cor(y, y*) = % =QwithQ > 0.

This helps to understand the Q and Q? coefficients:
* Qis the linear correlation between the response (y) and prediction y*.

o (% s called the squared multiple correlation between the scalar y and the
vector x.

¢ Note that if we only have one predictor (if x is a scalar) then Py, =1
and Py, = pyx so the multiple squared correlation coefficient reduces to

squared correlation Q% = pj, between two scalar random variables y and
X.

17.1.1 Estimation of Q2 and the multiple R? coefficient

The multiple squared correlation coefficient Q? can be estimated by plug-in of
empirical estimates for the corresponding correlation matrices:

Acln

R* =Py P Py, = 6,755, Ly

This estimator of Q3 is called the multiple R? coefficient.

If the same scale factor 1/# or 1/(n — 1) is used in estimating the variance aﬁ and
the covariances Xy, and L, then this factor will cancel out.

Above we have seen that (2 is directly linked with the noise variance via
Var(e) = 05(1 -Q?%).
so we can express the squared multiple correlation as

Q% =1 - Var(¢)/o,

The maximum likelihood estimate of the noise variance Var(¢) (also called
residual variance) can be computed from the residual sum of squares RSS =
Y (yi — 9i)? as follows:

— RSS
Var(e)mr = W

whereas the unbiased estimate is obtained by

RSS RSS

Var(eun = 1 =

where the degree of freedom is df = n —d — 1 and d is the number of predictors.

Similarly, we can find the maximum likelihood estimate v}'" for o (with factor
1/n) as well as an unbiased estimate v}/? (with scale factor 1/(n — 1))
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The multiple R? coefficient can then be written as
R? =1 - Var(e)y /o)t

Note we use MLEs.

In contrast, the so-called adjusted multiple R? coefficient is given by

Ridj =1- Var(e)ug/v';B

where the unbiased variances are used.
Both R? and Ri 4 are estimates of Q? and are related by

Af

_p2 _ _ p2
1-R*= (1~ Ry —

17.1.2 R commands
In R the command 1m() fits the linear regression model.

In addition to the regression cofficients (and derived quantities) the R function
Im() also lists

the multiple R-squared R?,
the adjusted R-squared R? a7

the degrees of freedom df and

the residual standard error \/\7;1‘(6)113 (computed from the unbiased
variance estimate).

See also Worksheet R3 which provides R code to reproduce the exact output of
the native Im() R function.

17.2 Variance decomposition in regression

The squared multiple correlation coefficient is useful also because it plays an
important role in the decomposition of the total variance:

2
y

¢ unexplained variance (irreducible error): af,(l —0?) = Var(e)

e total variance: Var(y) = o

¢ the explained variance is the complement: onz = Var(y*)

In summary:

Var(y) = Var(y*) + Var(¢)
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becomes
05 = 0502 + 05(1 -0?)
—_—— —_—— ———
total variance  explained variance  unexplained variance

The unexplained variance measures the fit after introducing predictors into
the model (smaller means better fit). The total variance measures the fit of the
model without any predictors. The explained variance is the difference between
total and unexplained variance, it indicates the increase in model fit due to the
predictors.

17.2.1 Law of total variance and variance decomposition

The law of total variance is

Var(y) = Var(E(ylx)) + E(Var(ylx))
—— S——— S——
total variance  explained variance unexplained variance

provides a very general decomposition in explained and unexplained parts of
the variance that is valid regardless of the form of the distributions Fy x and Fy,.

In regression it conncects variance decomposition and conditioning. If you plug-
in the conditional expections for the multivariate normal model (cf. previous
chapter) we recover

05 = 0592 + oﬁ(l -0
S~—— S~—— S————

total variance  explained variance  unexplained variance

17.2.2 Related quantities

Using the above three quantities (total variance, explained variance, and unex-
plained variance) we can construct a number of scores:

1) coefficient of determination, squared multiple correlation:

explained var 0502 ’
total var 05 B

(range 0 to 1, with 1 indicating perfect fit)

2) coefficient of non-determination, coefficient of alienation:

unexplained var _ 05(1 - ) 1o

total var h 0'5
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(range 0 to 1, with 0 indicating perfect fit)
£2

3) F score, - score:
. ZQ2 2 2
explained var 0y 00 F-T
unexplained var B 05(1 -0?) T1-Q2 7 T

(range 0 to oo, with oo indicating perfect fit)

Note that the # and 72 scores are population versions of the F and #? statistics.

Also note that Q% = £ = % links squared correlation with squared ¢-scores

240
and F-scores.

17.3 Sample version of variance decomposition

If Q2 and 05 are replaced by their MLEs this can be written in a sample version
as follows using data points y;, predictions §j; and 7 = 2 7, ;

Zn:(yi -9 = Zn:(ﬁi -9 + Zn:(yi - 9i)
i=1 i=1 i=1

— — —
total sum of squares (TSS)  explained sum of squares (ESS)  residual sum of squares (RSS)

Note that TSS, ESS and RSS all scale with n. Using data vector notation the

sample-based variance decomposition can be written in form of the Pythagorean

theorem:

ly-y1IP = 1§ - 71112 + ly - 9117
———— ——e N——

total sum of squares (TSS)  explained sum of squares (ESS)  residual sum of squares (RSS)

17.3.1 Geometric interpretation of regression as orthogonal
projection:

The above equation can be further simplified to

lyl? = 11917 + |y - 91
|
RSS

Geometrically speaking, this implies j is an orthogonal projection of y, since the
residuals y — # and the predictions jj are orthogonal (by construction!).

This also valid for the centered versions of the vectors, i.e. §f—i/1, is an orthogonal
projection of y — i1, (see Figure).
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Also note that the angle 0 between the two centered vectors is directly related
[1§=71all 2 _
or R* =

to the (estimated) multiple correlation, with R = cos(9) =

lly—g1all”
o0 - R
Observed Y ,
~/ |
/A Lo Residuals
) e=Y-Y

Column space
of X

Source of Figure: Stack Exchange


http://stats.stackexchange.com/questions/123651/geometric-interpretation-of-multiple-correlation-coefficient-r-and-coefficient

Chapter 18

Prediction and variable
selection

In this chapter we discuss how to compute (lower bounds) of the prediction
error and how to select variables relevant for prediction

18.1 Prediction and prediction intervals

Learning the regression function from (training) data is only the first step in
application of regression models.

The next step is to actually make prediction of future outcomes y'* given test
data x'est:

ytest — ]?(xtest) — fﬁg,fi’(xteSt)

Note that i**! is a point estimator. Is it possible also to construct a corresponding
interval estimate?

171
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The answer is yes, and leads back to the conditioning approach:
y* =E(ylx) = po+px

Var(e) = Var(y|x) = 05(1 -?)

We know that the mean squared prediction error for y* is E((y — y*)?) = Var(¢)
and that this is the minimal irreducible error. Hence, we may use Var(¢) as the
minimum variability for the prediction.

The corresponding prediction interval is
[ (x'*) + ¢ x SD(¢) ]

where c is some suitable constant (e.g. 1.96 for symmetric 95% normal intervals).

However, please note that the prediction interval constructed in this fashion will
be an underestimate. The reason is that this assumes that we employ y* = o+ 7 x

. . A5 AT _ .
but in reality we actually use §§ = o + f x for prediction — note the estimated
coefficients! We recall from an earlier chapter (best linear predictor) that this
leads to increase of MSPE compared with using the optimal g and .

Thus, for better prediction intervals we would need to consider the mean squared
prediction error of 7 that can be written as E((y — 7)?) = Var(e) + 6 where 6 is an
additional error term due to using an estimated rather than the true regression
function. 6 typically declines with 1/# but can be substantial for small n (in
particular as it usually depends on the number of predictors d).

For more details on this we refer to later modules on regression.

18.2 Variable importance and prediction

Another key question in regression modelling is to find out predictor variables
X1, X2,...,xq are actually important for predicting the outcome y.

— We need to study variable importance measures (VIM).

18.2.1 How to quantify variable importance?
A variable x; is important if it improves prediction of the response y.

Recall variance decomposition:

Var(y) = 05 = oin + 05(1 -0
—— ————

explained variance  unexplained/residual variance =Var(¢)
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» ()? squared multiple correlation € [0, 1]

e (O? large — 1 predictor variables explain most of 05
e (% small — 0 linear model fails and predictors do not explain variability
increase explained variance

*« = i . .
Ifa predictor helps to decrease unexplained variance

then it is impor-

tant!
e O? =P, P;IP,,% a function of the X!

VIM: which predictors contribute most to Q2

18.2.2 Some candidates for VIMs

1. The regression coefficients §

- -1/2 -

B =L%., = VPP, 0,

Not a good VIM since § contains the scale!

e Large f3; does not indicate that x; is important.

e Small §; does not indicate that x; is not important.

2. Standardised regression coefficients 4

* ﬁstd = P;;ny

implies Var(y) = 1, Var(x;) = 1

These do not contain the scale (so better than f3)

But still unclear how this relates to decomposition of variance

3. Squared marginal correlations pixl.

Consider case of uncorrelated predictors: Py, = I (no correlation among
X;)

d

= Q% = PPy = Z P
i=1

p;xi = Cor(y, x;) is the marginal correlation between y and x;, and O%is
(for uncorrelated predictors) the sum of squared marginal correlations.

¢ If Py, = I, then ranking predictors by Pi,x,' is optimal!

* The predictor with largest marginal correlation reduces the unex-
plained variance most!

* good news: even if there is weak correlation among predictors the
marginal correlations are still good as VIM (but then they will not
perfectly add up to Q?)

¢ Advantage: very simple but often also very effective.

e Caution! If there is strong correlation in Py,, then there is colinearity
(in this case it is oftern best to remove one of the strongly correlated
variables, or to merge the correlated variables).
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Often, ranking predictors by their squared marginal correlations is done as a
prefiltering step (independence screening).

18.3 Regression t-scores.

18.3.1 Wald statistic for regression coefficients

So far, we discussed three obvious candidates for for variable importance
measures (regression coefficients, standardised regression coefficients, marginal
correlations).

In this section we consider a further quantity, the regression t—score:
Recall that ML estimation of the regression coefficients yields

* a point estimate f3
e the (asymptotic) variance Var(ff)
* the asymptotic normal distribution § ~ N4(B, Var())

Corresponding to each predictor x; we can construct from the above a ¢-score

Bi
ti= ———
SD(Bi)
where the standard deviations are computed by §I\)(ﬁi) = Diag(\’/?a\r(ﬁ))i. This

corresponds to the Wald statistic to test that the underlying true regression
coefficient is zero (§; = 0).

Correspondingly, under the null hypthesis that 5; = 0 asymptotically for large n
the regression t-score is standard normal distributed:

t; X N(0,1)

This allows to compute (symmetric) p-values p = 2®(—|t;|) where @ is the
standard normal distribution function.

For finite n, assuming normality of the observation and using the unbiased
estimate for variance when computing t;, the exact distribution of i; is given by
the Student-t distribution:

ti ~ tp—d-1

Regression t-scores can thus be used to test whether a regression coefficient
is zero. A large magnitude of the ¢; score indicates that the hypothesis §; = 0
can be rejected. Thus, a small p-value (say smaller than 0.05) signals that the
regression coefficient is non-zero and hence that the corresponding predictor
variable should be included in the model.

This allows rank predictor variables by |¢;| or the corresponding p-values with
regard to their relevance in the linear model. Typically, in order to simplify a
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model, predictors with the largest p-values (and thus smallest absolute ¢-scores)
may be removed from a model. However, note that having a p-value say larger
than 0.05 by itself is not sufficient to declare a regression coefficient to be zero
(because in classical statistical testing you can only reject the null hypothesis, but
not accept it!).

Note that by construction the regression t-scores do not depend on the scale,
so when the original data are rescaled this will not affect the corresponding

regression ¢-scores. Furthermore, if @(ﬁ ;) is small, then the regression ¢-score
t; can still be large even if ‘3 ; is small!

18.3.2 Computing

When you perform regression analysis in R (or another statistical software
package) the computer will return the following:

Bi @(ﬁi) ti = %‘51) p-values Ir}dic;qtm of
Estimated Error of t-score for t; Significance
repression Bi computed from based on t-distribution :*0.9
coefficient first two columns ***0(')9959

In the 1Im(Q) function in R the standard deviation is the square root of the unbiased
estimate of the variance (but note that it itself is not unbiased!).

18.3.3 Connection with partial correlation

The deeper reason why ranking predictors by regression t-scores and associated
p-values is useful is their link with partial correlation.

In particular, the (squared) regression f-score can be 1:1 transformed into the
(estimated) (squared) partial correlation

t2

R

y,xx\xm tzz + df

with df =n —d -1, and it can be shown that the p-values for testing that 5; = 0

are exactly the same as the p-values for testing that the partial correlation p, .,
vanishes!

|xj¢i

Therefore, ranking the predictors x; by regression ¢-scores leads to exactly the
same ranking and p-values as partial correlation!
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18.3.4 Squared Wald statistic and the F statistic

In the above we looked at individual regression coefficients. However, we can

also construct a Wald test using the complete vector 3. The squared Wald statistic
to test that § = 0 is given by

N ~—1 n a A—1~A
- (z:yxz:xx) (Tz:xx) (zxxz:xy)
2
GE
noa a-le
= Tzzyxzxx xy
Oy
n .
— TUZRZ
> Yy
GE

which is a function of R2. If R? = 0 then F = 0. If R? is large (< 1) then F is large
as well (< oo0) and the null hypothesis f = 0 can be rejected, which implies that at
least one regression coefficient is non-zero. Note that the squared Wald statistic
t2 is asymptotically x3 distributed which is useful to find critical values and to
compute p-values.

18.4 Further approaches for variable selection

In addition to ranking by marginal and partial correlation, there are many other
approaches for variable selection in regression!

a) Search-based methods:

e search through subsets of linear models for d variables, ranging from
full model (including all predictors) to the empty model (includes no
predictor) and everything inbetween.

* Problem: exhaustive search not possible even for relatively small 4 as
space of models is very large!

* Therefore heuristic approaches such as forward selection (adding
predictors), backward selection (removing predictors), or monte-carlo
random search are employed.

* Problem: maximum likelihood cannot be used for choosing among
the models - since ML will always pick the best model. Therefore,
penalised ML criteria such as AIC or Bayesian criteria are often
employed instead.
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Integrative estimation and variable selection:

¢ there are methods that fit the regression model and perform variable
selection simultaneously.

¢ the most well-known approach of this type is “lasso” regression
(Tibshirani 1996)

* This applies a (generalised) linear model with ML plus L1 penalty.

* Alternative: Bayesian variable selection and estimation procedures

Entropy-based variable selection:

As seen above, two of the most popular approaches in linear models are
based on correlation, either marginal correlation or partial correlation (via
regression t-scores).

Correlation measures can be generalised to non-linear settings. One very
popular measure is the mutual information which is computed using
the KL divergence. In case of two variables x and y with joint normal
distribution and correlation p the mutual information is a function of the
correlation:

1
MI(x, y) = 5 log(1 - p?)

In regression he mutual information between the response y and predictor
xi is MI(y, x;), and this widely used for feature selection, in particular in
machine learning.

FDR based variable selection in regression:

Feature selection controling the false discovery rate (FDR) among the
selected features are becoming more popular, in particular a number of
procedures using so-called “knockoffs”, see https://web.stanford.edu/g
roup/candes/knockoffs/ .

Variable importance using Shapley values:

Borrowing a concept from game theory Shapley values have recently
become popular in machine learning to evaluate the variable importance
of predictors in nonlinear models. Their relationship to other statistical
methods for measuring variable importance is the focus of current research.


https://web.stanford.edu/group/candes/knockoffs/
https://web.stanford.edu/group/candes/knockoffs/
https://en.wikipedia.org/wiki/Shapley_value

