
Part III

Regression
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Chapter 14

Overview over regression
modelling

14.1 General setup

• 𝑦: response variable, also known as outcome or label

• 𝑥1 , 𝑥2 , 𝑥3 , . . . , 𝑥𝑑: predictor variables, also known as covariates or covari-
ables

• The relationship between the outcomes and the predictor variables is
assumed to follow

𝑦 = 𝑓 (𝑥1 , 𝑥2 , . . . , 𝑥𝑑) + 𝜀

where 𝑓 is the regression function (not a density) and 𝜀 represents noise.
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14.2 Objectives
1. Understand the relationship between the response 𝑦 and the predictor

variables 𝑥𝑖 by learning the regression function 𝑓 from observed data
(training data). The estimated regression function is 𝑓 .

2. Prediction of outcomes

𝑦̂︸︷︷︸
predicted response

using fitted 𝑓

= 𝑓 (𝑥1 , 𝑥2 , . . . , 𝑥𝑑)

If instead of the fitted function 𝑓 the known regression function 𝑓 is used
we denote this by

𝑦★︸︷︷︸
predicted response

using known 𝑓

= 𝑓 (𝑥1 , 𝑥2 , . . . , 𝑥𝑑)

3. Variable importance

• which covariates are most relevant in predicting the outcome?
• allows to better understand the data and model

→ variable selection (to build simpler model with same predictive
capability)

14.3 Regression as a form of supervised learning
Regression modelling is a special case of supervised learning.

In supervised learning we make use of labelled data, i.e. 𝒙 𝑖 has an associated
label 𝑦𝑖 . Thus, the data is consists of pairs (𝒙1 , 𝑦1), (𝒙2 , 𝑦2), . . . , (𝒙𝑛 , 𝑦𝑛).

The supervision part of in supervised learning refers to the fact that the labels are
given.

In regression typically the label 𝑦𝑖 is continuous and called the response.

On the other hand, if the label 𝑦𝑖 is discrete/categorical then supervised learning
is called classification.

Supervised Learning
−→ Discrete 𝑦

−→ Continuous 𝑦

−→ Classification Methods

−→ Regression Methods
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Another important type of statistical learning is unsupervised learning where la-
bels 𝑦 are inferred from the data 𝒙 (this is also known as clustering). Furthermore,
there is also semi-supervised learning with labels only partly known.

Note that there are regression models (e.g. logistic regression) with discrete
response that are performing classification, so one may argue that “supervised
learning”=“generalised regression”.

14.4 Various regression models used in statistics
In this course we only study linear multiple regression. However, you should
be aware that the linear model is in fact just a special cases of some much more
general regression approaches.

General regression model:

𝑦 = 𝑓 (𝑥1 , . . . , 𝑥𝑑) + "noise"

• The function 𝑓 is estimated nonparametrically - splines - Gaussian processes

• Generalised Additive Models (GAM): - the function 𝑓 is assumed to be the
sum of individual functions 𝑓𝑖(𝑥𝑖)

• Generalised Linear Models (GLM): - 𝑓 is a transformed linear predictor
ℎ(∑ 𝑏𝑖𝑥𝑖), noise is assumed from an exponential family

• Linear Model (LM): - linear predictor
∑
𝑏𝑖𝑥𝑖 , normal noise

In R the linear model is implemented in the function lm(), and generalised linear
models in the function glm(). Generalised additive models are available in the
package “mgcv”.

In the following we focus on the linear regression model with continuous
response.
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Chapter 15

Linear Regression

15.1 The linear regression model
In this module we assume that 𝑓 is a linear function:

𝑓 (𝑥1 , . . . , 𝑥𝑑) = 𝛽0 +
𝑑∑
𝑗=1

𝛽 𝑗𝑥 𝑗 = 𝑦★

In vector notation:
𝑓 (𝒙) = 𝛽0 + 𝜷𝑇𝒙 = 𝑦★

with 𝜷 =
©­­«
𝛽1
...
𝛽𝑑

ª®®¬ and 𝒙 =
©­­«
𝑥1
...
𝑥𝑑

ª®®¬
Therefore, the linear regression model is

𝑦 = 𝛽0 +
𝑑∑
𝑗=1

𝛽 𝑗𝑥 𝑗 + 𝜀

= 𝛽0 + 𝜷𝑇𝒙 + 𝜀

= 𝑦★ + 𝜀

where:

• 𝛽0 is the intercept
• 𝜷 = (𝛽1 , . . . , 𝛽𝑑)𝑇 are the regression coefficients
• 𝒙 = (𝑥1 , . . . , 𝑥𝑑)𝑇 is the predictor vector containing the predictor variables
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15.2 Interpretation of regression coefficients and in-
tercept

• The regression coefficient 𝛽𝑖 corresponds to the slope (first partial deriva-
tive) of the regression function in the direction of 𝑥𝑖 . In other words, the
gradient of 𝑓 (𝒙) are the regression coefficients: ∇ 𝑓 (𝒙) = 𝜷

• The intercept 𝛽0 is the offset at the origin (𝑥1 = 𝑥2 = . . . = 𝑥𝑑 = 0):

15.3 Different types of linear regression:
• Simple linear regression: 𝑦 = 𝛽0 + 𝛽𝑥 + 𝜀 (=single predictor)
• Multiple linear regression: 𝑦 = 𝛽0 +

∑𝑑
𝑗=1 𝛽 𝑗𝑥 𝑗 + 𝜀 (= multiple predictor

variables)
• Multivariate regression: multivariate response 𝒚

15.4 Distributional assumptions and properties
General assumptions:

• We treat 𝑦 and 𝑥1 , . . . , 𝑥𝑑 as the primary observables that can be described
by random variables.

• 𝛽0 , 𝜷 are parameters to be inferred from the observations on 𝑦 and
𝑥1 , . . . , 𝑥𝑑.

• Specifically, will we assume that response and predictors have a mean and
a (cov)variance:

i. Response:
E(𝑦) = 𝜇𝑦
Var(𝑦) = 𝜎2

𝑦

The variance of the response Var(𝑦) is also called the total variation .
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ii. Predictors:
E(𝑥𝑖) = 𝜇𝑥𝑖 (or E(𝒙) = 𝝁𝒙)
Var(𝑥𝑖) = 𝜎2

𝑥𝑖
and Cor(𝑥𝑖 , 𝑥 𝑗) = 𝜌𝑖 𝑗 (or Var(𝒙) = 𝚺𝒙)

The signal variance Var(𝑦★) = Var(𝛽0 + 𝜷𝑇𝒙) = 𝜷𝑇𝚺𝒙𝜷 is also called
the explained variation.

• We assume that 𝑦 and 𝒙 are jointly distributed with correlation Cor(𝑦, 𝑥 𝑗) =
𝜌𝑦,𝑥 𝑗 between each predictor variable 𝑥 𝑗 and the response 𝑦.

• In contrast to 𝑦 and 𝒙 the noise variable 𝜀 is only indirectly observed via
the difference 𝜀 = 𝑦 − 𝑦★. We denote the mean and variance of the noise
by E(𝜀) and Var(𝜀).
The noise variance Var(𝜀) is also called the unexplained variation or the
residual variance. The residual standard error is SD(𝜀).

Identifiability assumptions:

In a statistical analysis we would like to be able to separate signal (𝑦★) from
noise (𝜀). To achieve this we require some distributional assumptions to ensure
identifiability and avoid confounding:

1) Assumption 1: 𝜀 and 𝑦★ are are independent. This implies Var(𝑦) =

Var(𝑦★) + Var(𝜀), or equivalently Var(𝜀) = Var(𝑦) − Var(𝑦★).

Thus, this assumption implies the decomposition of variance, i.e. that the
total variation Var(𝑦) equals the sum of the explained variationVar(𝑦★)
and the unexplained variationVar(𝜀).

2) Assumption 2: E(𝜀) = 0. This allows to identify the intercept 𝛽0 and
implies E(𝑦) = E(𝑦★).

Optional assumptions (often but not always):

• The noise 𝜀 is normally distributed
• The response 𝑦 and and the predictor variables 𝑥𝑖 are continuous variables
• The response and predictor variables are jointly normally distributed

Further properties:

• As a result of the independence assumption 1) we can only choose two out
of the three variances freely:

i. in a generative perspective we will choose signal variance Var(𝑦★)
(or equivalently the variances Var(𝑥 𝑗)) and the noise variance Var(𝜀),
then the variance of the response Var(𝑦) follows.

ii. in an observational perspective we will observe the variance of the
reponse Var(𝑦) and the variances Var(𝑥 𝑗), and then the error variance
Var(𝜀) follows.

• As we will see later the regression coefficients 𝛽 𝑗 depend on the correlations
between the response 𝑦 and and the predictor variables 𝑥 𝑗 . Thus, the choice
of regression coefficients implies a specific correlation pattern, and vice
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versa (in fact, we will use this correlation pattern to infer the regression
coefficients from data!).

15.5 Regression in data matrix notation
We can also write the regression in terms of actual observed data (rather than in
terms of random variables):

Data matrix for the predictors:

𝑿 =
©­­«
𝑥11 . . . 𝑥1𝑑
...

. . .
...

𝑥𝑛1 . . . 𝑥𝑛𝑑

ª®®¬
Note the statistics convention: the 𝑛 rows of 𝑿 contain the samples, and the 𝑑
columns contain variables.

Response data vector: (𝑦1 , . . . , 𝑦𝑛)𝑇 = 𝒚

Then the regression equation is written in data matrix notation:

𝒚︸︷︷︸
𝑛×1

= 1𝑛𝛽0︸︷︷︸
𝑛×1

+ 𝑿︸︷︷︸
𝑛×𝑑

𝜷︸︷︷︸
𝑑×1

+ 𝜺︸︷︷︸
𝑛 × 1︸︷︷︸
residuals

where 1𝑛 =
©­­«
1
...
1

ª®®¬ is a column vector of length 𝑛 (size 𝑛 × 1).

Note that here the regression coefficients are now multiplied after the data matrix
(compare with the original vector notation where the transpose of regression
coefficients come before the vector of the predictors).

The observed noise values (i.e. realisations of the random variable 𝜀) are called
the residuals.

15.6 Centering and vanishing of the intercept 𝛽0

If 𝒙 and 𝑦 are centered, i.e. if E(𝒙) = 𝝁𝒙 = 0 and E(𝑦) = 𝜇𝑦 = 0, then the intercept
𝛽0 disappears:

The regression equation is
𝑦 = 𝛽0 + 𝜷𝑇𝒙 + 𝜀



15.7. OBJECTIVES IN DATA ANALYSIS USING LINEAR REGRESSION 153

with 𝐸(𝜀). Taking the expectation on both sides we get 𝜇𝑦 = 𝛽0 + 𝜷𝑇𝝁𝒙 and
therefore

𝛽0 = 𝜇𝑦 − 𝜷𝑇𝝁𝒙

This is zero if the mean of the response 𝜇𝑦 and the mean of predictors 𝝁𝒙 vanish.
Conversely, if we assume that the intercept vanishes (𝛽0 = 0) this is only possible
for general 𝜷 if both 𝝁𝒙 = 0 and 𝜇𝑦 = 0.

Thus, in the linear model is always possible to transform 𝑦 and 𝒙 (or data 𝒚 and
𝑿 ) so that the intercept vanishes. To simplify equations we will therefore often
set 𝛽0 = 0.

15.7 Objectives in data analysis using linear regres-
sion

1. Understand functional relationship: find estimates of the intercept (𝛽̂0)
and the regression coefficients (𝛽̂ 𝑗), as well as the associated errors.

2. Prediction:

• Known coefficients 𝛽0 and 𝜷: 𝑦★ = 𝛽0 + 𝜷𝑇𝒙
• Estimated coefficients 𝛽̂0 and 𝛽̂ (note the “hat”!): 𝑦̂ = 𝛽̂0 +

∑𝑑
𝑗=1 𝛽̂ 𝑗𝑥 𝑗 =

𝛽̂0 + 𝜷̂
𝑇
𝒙

For each point prediction find the corresponding prediction error!

3. Variable importance: Which predictors 𝑥 𝑗 are most relevant?
→ test whether 𝛽 𝑗 = 0
→ find measures of variable importance

Remark: as we will see 𝛽 𝑗 or 𝛽̂ 𝑗 itself is not a measure of variable importance!
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Chapter 16

Estimating regression
coefficients

In this chapter we discuss various ways to estimate the regression coefficients.
First, we discuss estimation by Ordinary Least Squares (OLS) by minimising the
residual sum of squares. This yields the famous Gauss estimator. Second, we
derive estimates of the regression coefficients using the methods of maximum
likelihood assuming normal errors. This also leads to the Gauss estimator. Third,
we show that the coefficients in linear regression can written and interpreted in
terms of two covariance matrices and that the Gauss estimator of the regression
coefficients is a plug-in estimator using the MLEs of these covariance matrices.
Furthermore, we show that the (population version) of the Gauss estimator
can also be derived by finding the best linear predictor and by conditioning.
Finally, we discuss special cases of regression coefficients and their relationship
to marginal correlation.

16.1 Ordinary Least Squares (OLS) estimator of re-
gression coefficients

Now we show the classic way (Gauss 1809; Legendre 1805) to estimate regression
coefficients by the method of ordinary least squares (OLS).

Idea: choose regression coefficients such as to minimise the squared error between
observations and the prediction.
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In data matrix notation (note we assume 𝛽0 = 0 and thus centered data 𝑿 and 𝒚):

RSS(𝜷) = (𝒚 − 𝑿𝜷)𝑇(𝒚 − 𝑿𝜷)

RSS is an abbreviation for “Residual Sum of Squares” which is is a function of 𝜷.
Minimising RSS yields the OLS estimate:

𝜷̂OLS = arg min
𝜷

RSS(𝜷)

RSS(𝜷) = 𝒚𝑇𝒚 − 2𝜷𝑇𝑿𝑇𝒚 + 𝜷𝑇𝑿𝑇𝑿𝜷

Gradient:
∇RSS(𝜷) = −2𝑿𝑇𝒚 + 2𝑿𝑇𝑿𝜷

∇RSS(𝜷̂) = 0 −→ 𝑿𝑇𝒚 = 𝑿𝑇𝑿 𝜷̂

=⇒ 𝜷̂OLS =

(
𝑿𝑇𝑿

)−1
𝑿𝑇𝒚

Note the similarities in the procedure to maximum likelihood (ML) estimation
(with minimisation instead of maximisation)! In fact, as we see next this is not
by chance as OLS is indeed a special case of ML! This also implies that OLS is
generally a good method — but only if sample size 𝑛 is large!

The above Gauss’ estimator is fundamental in statistics so it is worthwile to
memorise it!
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16.2 Maximum likelihood estimation of regression
coefficients

16.2.1 Normal log-likelihood function for regression coefficients
and noise variance

We now show how to estimate regression coefficients using the method of
maximum likelihood. This is a second method to derive 𝜷̂.

We recall the basic regression equation

𝑦 = 𝛽0 + 𝜷𝑇𝒙 + 𝜀

with independent noise 𝜀 and observed data 𝑦1 , . . . , 𝑦𝑛 and 𝒙1 , . . . , 𝒙𝑛 .

Assuming E(𝜀) = 0 the intercept is identified as

𝛽0 = 𝜇𝑦 − 𝜷𝑇𝝁𝒙

Combining the two above equations we see that noise variable equals

𝜀 = (𝑦 − 𝜇𝑦) − 𝜷𝑇(𝒙 − 𝝁𝒙)

Assuming joint (multivariate) normality for the observed data, the response 𝑦
and predictors 𝒙, we get as the MLEs for the respective means and (co)variances:

• 𝜇̂𝑦 = Ê(𝑦) = 1
𝑛

∑𝑛
𝑖=1 𝑦𝑖

• 𝜎̂2
𝑦 = V̂ar(𝑦) = 1

𝑛

∑𝑛
𝑖=1(𝑦𝑖 − 𝜇̂𝑦)2

• 𝝁̂𝒙 = Ê(𝒙) = 1
𝑛

∑𝑛
𝑖=1 𝒙 𝑖

• 𝚺̂𝒙𝒙 = V̂ar(𝒙) = 1
𝑛

∑𝑛
𝑖=1(𝒙 𝑖 − 𝝁̂𝒙)(𝒙 𝑖 − 𝝁̂𝒙)𝑇

• 𝚺̂𝒙𝑦 = Ĉov(𝒙 , 𝑦) = 1
𝑛

∑𝑛
𝑖=1(𝒙 𝑖 − 𝝁̂𝒙)(𝑦𝑖 − 𝜇̂𝑦)

Note that these are are sufficient statistics and hence summarize perfectly the
observed data for 𝒙 and 𝑦 under the normal assumption

Consequently, the residuals (indirect observations of the noise variable) for a
given choice of regression coefficients 𝜷 and the observed data for 𝒙 and 𝑦 are

𝜀𝑖 = (𝑦𝑖 − 𝜇̂𝑦) − 𝜷𝑇(𝒙 𝑖 − 𝝁̂𝒙)

Assuming that the noise 𝜀 ∼ 𝑁(0, 𝜎2
𝜀) is normally distributed with mean 0 and

variance Var(𝜀) = 𝜎2
𝜀. we can write down the normal log-likelihood function for

𝜎2
𝜀 and 𝜷:

log 𝐿(𝜷, 𝜎2
𝜀) = −𝑛2 log 𝜎2

𝜀 −
1

2𝜎2
𝜀

𝑛∑
𝑖=1

(
(𝑦𝑖 − 𝜇̂𝑦) − 𝜷𝑇(𝒙 𝑖 − 𝝁̂𝒙)

)2
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Maximising this function leads to the MLEs of 𝜎2
𝜀 and 𝜷!

Note that the residual sum of squares appears in the log-likelihood function
(with a minus sign), which implies that ML assuming normal distribution will
recover the OLS estimator for the regression coefficients! So OLS is a special case
of ML !

16.2.2 Detailed derivation of the MLEs
The gradient with regard to 𝜷 is

∇𝜷 log 𝐿(𝜷, 𝜎2
𝜀) =

1
𝜎2
𝜀

𝑛∑
𝑖=1

(
(𝒙 𝑖 − 𝝁̂𝒙)(𝑦𝑖 − 𝜇̂𝑦) − (𝒙 𝑖 − 𝝁̂𝒙)(𝒙 𝑖 − 𝝁̂𝒙)

𝑇𝜷
)

=
𝑛

𝜎2
𝜀

(
𝚺̂𝒙𝑦 − 𝚺̂𝒙𝒙𝜷

)
Setting this equal to zero yields the Gauss estimator

𝜷̂ = 𝚺̂
−1
𝒙𝒙𝚺̂𝒙𝑦

By plugin we the get the MLE of 𝛽0 as

𝛽̂0 = 𝜇̂𝑦 − 𝜷̂
𝑇
𝝁̂𝒙

Taking the derivative of log 𝐿(𝜷̂, 𝜎2
𝜀) with regard to 𝜎2

𝜀 yields

𝜕

𝜕𝜎2
𝜀

log 𝐿(𝜷̂, 𝜎2
𝜀) = − 𝑛

2𝜎2
𝜀

+ 1
2𝜎4

𝜀

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2

with 𝑦̂𝑖 = 𝛽̂0 + 𝜷̂
𝑇
𝒙 𝑖 and the residuals 𝑦𝑖 − 𝑦̂𝑖 resulting from the fitted linear

model. This leads to the MLE of the noise variance

𝜎2
𝜀 =

1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2

Note that the MLE 𝜎2
𝜀 is a biased estimate of 𝜎2

𝜀. The unbiased estimate is
1

𝑛−𝑑−1
∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2, where 𝑑 is the dimension of 𝜷 (i.e. the number of predictors).

16.2.3 Asymptotics
The advantage of using maximum likelihood is that we also get the (asympotic)
variance associated with each estimator and typically can also assume asymptotic
normality.
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Specifically, for 𝜷̂ we get via the observed Fisher information at the MLE an
asymptotic estimator of its variance

V̂ar(𝜷̂) = 1
𝑛
𝜎2
𝜀𝚺̂

−1
𝒙𝒙

Similarly, for 𝛽̂0 we have

V̂ar(𝛽̂0) =
1
𝑛
𝜎2
𝜀(1 + 𝝁̂𝑇𝚺̂

−1
𝒙𝒙 𝝁̂)

For finite sample size 𝑛 with known Var(𝜀) one can show that the variances are

Var(𝜷̂) = 1
𝑛
𝜎2
𝜀𝚺̂

−1
𝒙𝒙

and
Var(𝛽̂0) =

1
𝑛
𝜎2
𝜀(1 + 𝝁̂𝑇𝒙 𝚺̂

−1
𝒙𝒙 𝝁̂𝒙)

and that the regression coefficients and the intercept are normally distributed
according to

𝜷̂ ∼ 𝑁𝑑(𝜷,Var(𝜷̂))
and

𝛽̂0 ∼ 𝑁(𝛽0 ,Var(𝛽̂0))

We may use this to test whether whether 𝛽 𝑗 = 0 and 𝛽0 = 0.

16.3 Covariance plug-in estimator of regression co-
efficients

16.3.1 Regression coeffients as product of variances
We now try to understand regression coefficients in terms of covariances (thus
obtaining a third way to compute and estimate them).

We recall that the Gauss regression coefficients are given by

𝜷̂ =

(
𝑿𝑇𝑿

)−1
𝑿𝑇𝒚

where 𝑿 is the 𝑛 × 𝑑 data matrix (in statistics convention)

𝑿 =
©­­«
𝑥11 . . . 𝑥1𝑑
...

. . .
...

𝑥𝑛1 . . . 𝑥𝑛𝑑

ª®®¬
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Note that we assume that the data matrix 𝑿 is centered (i.e. column sums
𝑿𝑇1𝑛 = 0 are zero).

Likewise 𝒚 = (𝑦1 , . . . , 𝑦𝑛)𝑇 is the response data vector (also centered with
𝒚𝑇1𝑛 = 0).

Noting that

𝚺̂𝒙𝒙 =
1
𝑛
(𝑿𝑇𝑿 )

is the MLE of covariance matrix among 𝒙 and

𝚺̂𝒙𝑦 =
1
𝑛
(𝑿𝑇𝒚)

is the MLE of the covariance between 𝒙 and 𝑦 we see that the OLS estimate of
the regression coefficients can be expressed as

𝜷̂ =

(
𝚺̂𝒙𝒙

)−1
𝚺̂𝒙𝑦

We can write down a population version (with no hats!):

𝜷 = 𝚺−1
𝒙𝒙𝚺𝒙𝑦

Thus, OLS regression coefficients can be interpreted as plugin estimator using
MLEs of covariances! In fact, we may also use the unbiased estimates since the
scale factor (1/𝑛 or 1/(𝑛 − 1)) cancels out so it does not matter which one you
use!

16.3.2 Importance of positive definiteness of estimated covari-
ance matrix

Note that 𝚺̂𝒙𝒙 is inverted in 𝜷̂ =

(
𝚺̂𝒙𝒙

)−1
𝚺̂𝒙𝑦 .

• Hence, the estimate 𝚺̂𝒙𝒙 needs to be positive definite!
• But 𝚺̂MLE

𝒙𝒙 is only positive definite if 𝑛 > 𝑑!

Therefore we can use the ML estimate (empirical estimator) only for large 𝑛 >
𝑑, otherwise we need to employ a different (regularised) estimation approach
(e.g. Bayes or a penalised ML)!

Remark: writing 𝜷̂ explicitly based on covariance estimates has the advantage
that we can construct plug-in estimators of regression coefficients based on
regularised covariance estimators that improve over ML for small sample size.
This leads to the so-called SCOUT method (=covariance-regularized regression
by Witten and Tibshirani, 2008).
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16.4 Standardised regression coefficients and their
relationship to correlation

We recall the relationship between regression coefficients 𝜷 and the marginal
covariance 𝚺𝒙𝑦 and the covariances among the predictors 𝚺𝒙𝒙 :

𝜷 = 𝚺−1
𝒙𝒙𝚺𝒙𝑦

We can rewrite the regression coefficients in terms of marginal correlations
𝑷𝒙𝑦 and correlations 𝑷𝒙𝒙 among the predictors using the variance-correlation
decompositions 𝚺𝒙𝒙 = 𝑽 1/2

𝒙 𝑷𝒙𝒙𝑽
1/2
𝒙 and 𝚺𝒙𝑦 = 𝑽 1/2

𝒙 𝑷𝒙𝑦𝜎𝑦 :

𝜷 = 𝑽−1/2
𝒙︸︷︷︸

(inverse) scale of 𝑥𝑖

𝑷−1
𝒙𝒙𝑷𝒙𝑦 𝜎𝑦︸︷︷︸

scale of 𝑦

= 𝑽−1/2
𝒙 𝜷std 𝜎𝑦

Thus the regression coefficients 𝜷 contain the scale of the variables, and take into
account the correlations among the predictors (𝑷𝒙𝒙) in addition to the marginal
correlations between the response 𝑦 and the predictors 𝑥𝑖 (𝑷𝒙𝑦).

This decomposition allows to understand a number special cases for which the
regression coefficients simplify further:

a) If the response and the predictors are standardised to have variance one,
i.e. Var(𝑦) = 1 and Var(𝑥𝑖) = 1, then 𝜷 becomes equal to the standardised
regression coefficients

𝜷std = 𝑷−1
𝒙𝒙𝑷𝒙𝑦

Note that standardised regression coefficients do not make use of variances
and and thus are scale-independent.

b) If there is no correlation among the predictors , i.e. 𝑷𝒙𝒙 = 𝑰 the the
regression coefficients reduce to

𝜷 = 𝑽−1
𝒙 𝚺𝒙𝑦

where 𝑽 𝒙 is a diagonal matrix containing the variances of the predictors.
This is also called marginal regression. Note that the inversion of 𝑽 𝒙 is
trival since you only need to invert each diagonal element individually.

c) If both a) and b) apply simultaneously (i.e. there is no correlation among
predictors and response and predictors and predictors are standardised)
then the regression coefficients simplify even further to

𝜷 = 𝑷𝒙𝑦

Thus, in this very special case the regression coefficients are identical to
the correlations between the response and the predictors!
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16.5 Further ways to obtain regression coefficients

16.5.1 Best linear predictor
The best linear predictor is a fourth way to arrive at the linear model. This is
closely related to OLS and minimising squared residual error.

Without assuming normality the above multiple regression model can be shown
to be optimal linear predictor under the minimum mean squared prediction
error:

Assumptions:

• 𝑦 and 𝒙 are random variables
• we construct a new variable (the linear predictor) 𝑦★★ = 𝑏0 + 𝒃𝑇𝒙 to

optimally approximate 𝑦

Aim:

• choose 𝑏0 and 𝒃 such to minimize the mean squared prediction error
E((𝑦 − 𝑦★★)2)

16.5.1.1 Result:

The mean squared prediction error 𝑀𝑆𝑃𝐸 in dependence of (𝑏0 , 𝒃) is

E((𝑦 − 𝑦★★)2) = Var(𝑦 − 𝑦★★) + E(𝑦 − 𝑦★★)2

= Var(𝑦 − 𝑏0 − 𝒃𝑇𝒙) + (E(𝑦) − 𝑏0 − 𝒃𝑇E(𝒙))2

= 𝜎2
𝑦 + Var(𝒃𝑇𝒙) + 2 Cov(𝑦,−𝒃𝑇𝒙) + (𝜇𝑦 − 𝑏0 − 𝒃𝑇𝝁𝒙)

2

= 𝜎2
𝑦 + 𝒃𝑇𝚺𝒙𝒙𝒃 − 2 𝒃𝑇𝚺𝒙𝑦 + (𝜇𝑦 − 𝑏0 − 𝒃𝑇𝝁𝒙)

2

= 𝑀𝑆𝑃𝐸(𝑏0 , 𝒃)

We look for
(𝛽0 , 𝜷) = arg min

𝑏0 ,𝒃
𝑀𝑆𝑃𝐸(𝑏0 , 𝒃)

In order to find the minimum we compute the gradient with regard to (𝑏0 , 𝒃)

∇𝑀𝑆𝑃𝐸 =

(
−2(𝜇𝑦 − 𝑏0 − 𝒃𝑇𝝁𝒙)

2𝚺𝒙𝒙𝒃 − 2𝚺𝒙𝑦 − 2𝝁𝒙(𝜇𝑦 − 𝑏0 − 𝒃𝑇𝝁𝒙)

)
and setting this equal to zero yields(

𝛽0
𝜷

)
=

(
𝜇𝑦 − 𝜷𝑇𝝁𝒙
𝚺−1
𝒙𝒙𝚺𝒙𝑦

)
Thus, the optimal values for 𝑏0 and 𝒃 in the best linear predictor correspond to
the previously derived coefficients 𝛽0 and 𝜷!
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16.5.1.2 Irreducible Error

The minimum achieved MSPE (=irreducible error) is

𝑀𝑆𝑃𝐸(𝛽0 , 𝜷) = 𝜎2
𝑦 − 𝜷𝑇𝚺𝒙𝒙𝜷 = 𝜎2

𝑦 − 𝚺𝑦𝒙𝚺−1
𝒙𝒙𝚺𝒙𝑦

With the abbreviation Ω2 = 𝑷𝑦𝒙𝑷−1
𝒙𝒙𝑷𝒙𝑦 = 𝜎−2

𝑦 𝚺𝑦𝒙𝚺−1
𝒙𝒙𝚺𝒙𝑦 we can simplify this to

𝑀𝑆𝑃𝐸(𝛽0 , 𝜷) = 𝜎2
𝑦(1 −Ω2) = Var(𝜀)

Writing 𝑏0 = 𝛽0 + Δ0 and 𝒃 = 𝜷 + 𝚫 it is easy to see that the mean squared
predictive error is a quadratic function around the minimum:

𝑀𝑆𝑃𝐸(𝛽0 + Δ0 , 𝜷 + 𝚫) = Var(𝜀) + Δ2
0 + 𝚫𝑇𝚺𝒙𝒙𝚫

Note that usually 𝑦★ = 𝛽0 + 𝜷𝑇𝒙 does not perfectly approximate 𝑦 so there will
be an irreducible error (= noise variance)

Var(𝜀) = 𝜎2
𝑦(1 −Ω2) > 0

which implies Ω2 < 1.

The quantity Ω2 has a further interpretation of the population version of as the
squared multiple correlation coefficient between the response and the predictors
and plays a vital role in decomposition of variance, as discussed later.

16.5.2 Regression by conditioning
Conditioning is a fifth way to arrive at the linear model. This is also the most
general way and can be used to derive many other regression models (not just
the simple linear model).

16.5.2.1 General idea:

• two random variables 𝑦 (response, scalar) and 𝒙 (predictor variables,
vector)

• we assume that 𝑦 and 𝒙 have a joint distribution 𝐹𝑦,𝒙
• compute conditional random variable 𝑦 |𝒙 and the corresponding distribu-

tion 𝐹𝑦 |𝒙

16.5.2.2 Multivariate normal assumption

Now we assume that 𝑦 and 𝒙 are (jointly) multivariate normal. Then the
conditional distribution 𝐹𝑦 |𝒙 is a univariate normal with the following moments
(you can verify this by looking up the general conditional multivariate normal
distribution):
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a) Conditional expectation:

E(𝑦 |𝒙) = 𝑦★ = 𝛽0 + 𝜷𝑇𝒙

with coefficients 𝜷 = 𝚺−1
𝒙𝒙𝚺𝒙𝑦 and intercept 𝛽0 = 𝜇𝑦 − 𝜷𝑇𝝁𝒙 .

Note that as 𝑦★ depends on 𝒙 it is a random variable itself with mean

E(𝑦★) = 𝛽0 + 𝜷𝑇𝝁𝒙 = 𝜇𝑦

and variance

Var(𝑦★) = Var(E(𝑦 |𝒙))
= 𝜷𝑇𝚺𝒙𝒙𝜷 = 𝚺𝑦𝒙𝚺−1

𝒙𝒙𝚺𝒙𝑦

= 𝜎2
𝑦𝑷𝑦𝒙𝑷−1

𝒙𝒙𝑷𝒙𝑦

= 𝜎2
𝑦Ω

2

b) Conditional variance:

Var(𝑦 |𝒙) = 𝜎2
𝑦 − 𝜷𝑇𝚺𝒙𝒙𝜷

= 𝜎2
𝑦 − 𝚺𝑦𝒙𝚺−1

𝒙𝒙𝚺𝒙𝑦

= 𝜎2
𝑦(1 −Ω2)

Note this is a constant so E(Var(𝑦 |𝒙)) = 𝜎2
𝑦(1 −Ω2) as well.



Chapter 17

Squared multiple correlation
and variance decomposition in
linear regression

In this chapter we first introduce the (squared) multiple correlation and the
multiple and adjusted 𝑅2 coefficients as estimators. Subsequently we discuss
variance decomposition.

17.1 Squared multiple correlation Ω2 and the 𝑅2 co-
efficient

In the previous chapter we encountered the following quantity:

Ω2 = 𝑷𝑦𝒙𝑷−1
𝒙𝒙𝑷𝒙𝑦 = 𝜎−2

𝑦 𝚺𝑦𝒙𝚺−1
𝒙𝒙𝚺𝒙𝑦

With 𝜷 = 𝚺−1
𝒙𝒙𝚺𝒙𝑦 and 𝛽0 = 𝜇𝑦 − 𝜷𝑇𝝁𝒙 it is straightforward to verify the following:

• the cross-covariance between 𝑦 and 𝑦★ is

Cov(𝑦, 𝑦★) = 𝚺𝑦𝒙𝜷 = 𝚺𝑦𝒙𝚺−1
𝒙𝒙𝚺𝒙𝑦

= 𝜎2
𝑦𝑷𝑦𝒙𝑷−1

𝒙𝒙𝑷𝒙𝑦 = 𝜎2
𝑦Ω

2

• the (signal) variance of 𝑦★ is

Var(𝑦★) = 𝜷𝑇𝚺𝒙𝒙𝜷 = 𝚺𝑦𝒙𝚺−1
𝒙𝒙𝚺𝒙𝑦

= 𝜎2
𝑦𝑷𝑦𝒙𝑷−1

𝒙𝒙𝑷𝒙𝑦 = 𝜎2
𝑦Ω

2

165
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hence the correlation Cor(𝑦, 𝑦★) = Cov(𝑦,𝑦★)
SD(𝑦)SD(𝑦★) = Ω with Ω ≥ 0.

This helps to understand the Ω and Ω2 coefficients:

• Ω is the linear correlation between the response (𝑦) and prediction 𝑦★.

• Ω2 is called the squared multiple correlation between the scalar 𝑦 and the
vector 𝒙.

• Note that if we only have one predictor (if 𝑥 is a scalar) then 𝑷𝑥𝑥 = 1
and 𝑷𝑦𝑥 = 𝜌𝑦𝑥 so the multiple squared correlation coefficient reduces to
squared correlation Ω2 = 𝜌2

𝑦𝑥 between two scalar random variables 𝑦 and
𝑥.

17.1.1 Estimation of Ω2 and the multiple 𝑅2 coefficient
The multiple squared correlation coefficient Ω2 can be estimated by plug-in of
empirical estimates for the corresponding correlation matrices:

𝑅2 = 𝑷̂𝑦𝒙𝑷̂
−1
𝒙𝒙 𝑷̂𝒙𝑦 = 𝜎̂−2

𝑦 𝚺̂𝑦𝒙𝚺̂
−1
𝒙𝒙𝚺̂𝒙𝑦

This estimator of Ω2 is called the multiple 𝑅2 coefficient.

If the same scale factor 1/𝑛 or 1/(𝑛 − 1) is used in estimating the variance 𝜎2
𝑦 and

the covariances 𝚺𝒙𝒙 and 𝚺𝑦𝒙 then this factor will cancel out.

Above we have seen that Ω2 is directly linked with the noise variance via

Var(𝜀) = 𝜎2
𝑦(1 −Ω2) .

so we can express the squared multiple correlation as

Ω2 = 1 − Var(𝜀)/𝜎2
𝑦

The maximum likelihood estimate of the noise variance Var(𝜀) (also called
residual variance) can be computed from the residual sum of squares 𝑅𝑆𝑆 =∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2 as follows:

V̂ar(𝜀)𝑀𝐿 =
𝑅𝑆𝑆

𝑛

whereas the unbiased estimate is obtained by

V̂ar(𝜀)𝑈𝐵 =
𝑅𝑆𝑆

𝑛 − 𝑑 − 1 =
𝑅𝑆𝑆

𝑑𝑓

where the degree of freedom is 𝑑𝑓 = 𝑛 − 𝑑 − 1 and 𝑑 is the number of predictors.

Similarly, we can find the maximum likelihood estimate 𝑣𝑀𝐿
𝑦 for 𝜎2

𝑦 (with factor
1/𝑛) as well as an unbiased estimate 𝑣𝑈𝐵𝑦 (with scale factor 1/(𝑛 − 1))
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The multiple 𝑅2 coefficient can then be written as

𝑅2 = 1 − V̂ar(𝜀)𝑀𝐿/𝑣𝑀𝐿
𝑦

Note we use MLEs.

In contrast, the so-called adjusted multiple 𝑅2 coefficient is given by

𝑅2
adj = 1 − V̂ar(𝜀)𝑈𝐵/𝑣𝑈𝐵𝑦

where the unbiased variances are used.

Both 𝑅2 and 𝑅2
adj are estimates of Ω2 and are related by

1 − 𝑅2 = (1 − 𝑅2
adj)

𝑑𝑓

𝑛 − 1

17.1.2 R commands
In R the command lm() fits the linear regression model.

In addition to the regression cofficients (and derived quantities) the R function
lm() also lists

• the multiple R-squared 𝑅2,
• the adjusted R-squared 𝑅2

adj,
• the degrees of freedom 𝑑𝑓 and

• the residual standard error
√

V̂ar(𝜀)𝑈𝐵 (computed from the unbiased
variance estimate).

See also Worksheet R3 which provides R code to reproduce the exact output of
the native lm() R function.

17.2 Variance decomposition in regression
The squared multiple correlation coefficient is useful also because it plays an
important role in the decomposition of the total variance:

• total variance: Var(𝑦) = 𝜎2
𝑦

• unexplained variance (irreducible error): 𝜎2
𝑦(1 −Ω2) = Var(𝜀)

• the explained variance is the complement: 𝜎2
𝑦Ω

2 = Var(𝑦★)

In summary:

Var(𝑦) = Var(𝑦★) + Var(𝜀)
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becomes
𝜎2
𝑦︸︷︷︸

total variance

= 𝜎2
𝑦Ω

2︸︷︷︸
explained variance

+ 𝜎2
𝑦(1 −Ω2)︸       ︷︷       ︸

unexplained variance

The unexplained variance measures the fit after introducing predictors into
the model (smaller means better fit). The total variance measures the fit of the
model without any predictors. The explained variance is the difference between
total and unexplained variance, it indicates the increase in model fit due to the
predictors.

17.2.1 Law of total variance and variance decomposition
The law of total variance is

Var(𝑦)︸ ︷︷ ︸
total variance

= Var(E(𝑦 |𝒙))︸        ︷︷        ︸
explained variance

+ E(Var(𝑦 |𝒙))︸        ︷︷        ︸
unexplained variance

provides a very general decomposition in explained and unexplained parts of
the variance that is valid regardless of the form of the distributions 𝐹𝑦,𝒙 and 𝐹𝑦 |𝒙 .

In regression it conncects variance decomposition and conditioning. If you plug-
in the conditional expections for the multivariate normal model (cf. previous
chapter) we recover

𝜎2
𝑦︸︷︷︸

total variance

= 𝜎2
𝑦Ω

2︸︷︷︸
explained variance

+ 𝜎2
𝑦(1 −Ω2)︸       ︷︷       ︸

unexplained variance

17.2.2 Related quantities
Using the above three quantities (total variance, explained variance, and unex-
plained variance) we can construct a number of scores:

1) coefficient of determination, squared multiple correlation:

explained var
total var =

𝜎2
𝑦Ω

2

𝜎2
𝑦

= Ω2

(range 0 to 1, with 1 indicating perfect fit)

2) coefficient of non-determination, coefficient of alienation:

unexplained var
total var =

𝜎2
𝑦(1 −Ω2)

𝜎2
𝑦

= 1 −Ω2
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(range 0 to 1, with 0 indicating perfect fit)

3) 𝐹 score, 𝑡2 score:

explained var
unexplained var =

𝜎2
𝑦Ω

2

𝜎2
𝑦(1 −Ω2)

=
Ω2

1 −Ω2 = ℱ =
𝜏2

𝑛

(range 0 to ∞, with ∞ indicating perfect fit)

Note that the ℱ and 𝜏2 scores are population versions of the 𝐹 and 𝑡2 statistics.

Also note that Ω2 = 𝜏2

𝜏2+𝑛 = ℱ
ℱ +1 links squared correlation with squared 𝑡-scores

and 𝐹-scores.

17.3 Sample version of variance decomposition
If Ω2 and 𝜎2

𝑦 are replaced by their MLEs this can be written in a sample version
as follows using data points 𝑦𝑖 , predictions 𝑦̂𝑖 and 𝑦̄ = 1

𝑛

∑𝑛
𝑖=1 𝑦𝑖

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦̄)2︸        ︷︷        ︸
total sum of squares (TSS)

=

𝑛∑
𝑖=1

(𝑦̂𝑖 − 𝑦̄)2︸        ︷︷        ︸
explained sum of squares (ESS)

+
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2︸         ︷︷         ︸
residual sum of squares (RSS)

Note that TSS, ESS and RSS all scale with 𝑛. Using data vector notation the
sample-based variance decomposition can be written in form of the Pythagorean
theorem:

| |𝒚 − 𝑦̄1 | |2︸       ︷︷       ︸
total sum of squares (TSS)

= | |𝒚̂ − 𝑦̄1| |2︸      ︷︷      ︸
explained sum of squares (ESS)

+ ||𝒚 − 𝒚̂ | |2︸    ︷︷    ︸
residual sum of squares (RSS)

17.3.1 Geometric interpretation of regression as orthogonal
projection:

The above equation can be further simplified to

| |𝒚 | |2 = | |𝒚̂ | |2 + ||𝒚 − 𝒚̂ | |2︸    ︷︷    ︸
RSS

Geometrically speaking, this implies 𝒚̂ is an orthogonal projection of 𝒚, since the
residuals 𝒚 − 𝒚̂ and the predictions 𝒚̂ are orthogonal (by construction!).

This also valid for the centered versions of the vectors, i.e. 𝒚̂− 𝑦̄1𝑛 is an orthogonal
projection of 𝒚 − 𝑦̄1𝑛 (see Figure).
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Also note that the angle 𝜃 between the two centered vectors is directly related
to the (estimated) multiple correlation, with 𝑅 = cos(𝜃) =

| |𝒚̂−𝑦̄1𝑛 | |
| |𝒚−𝑦̄1𝑛 | | , or 𝑅2 =

cos(𝜃)2 =
| |𝒚̂−𝑦̄1𝑛 | |2
| |𝒚−𝑦̄1𝑛 | |2 = ESS

TSS .

Source of Figure: Stack Exchange

http://stats.stackexchange.com/questions/123651/geometric-interpretation-of-multiple-correlation-coefficient-r-and-coefficient


Chapter 18

Prediction and variable
selection

In this chapter we discuss how to compute (lower bounds) of the prediction
error and how to select variables relevant for prediction

18.1 Prediction and prediction intervals
Learning the regression function from (training) data is only the first step in
application of regression models.

The next step is to actually make prediction of future outcomes 𝑦test given test
data 𝒙test:

𝑦test = 𝑦̂(𝒙test) = 𝑓𝛽̂0 ,𝜷̂
(𝒙test)

Note that 𝑦test is a point estimator. Is it possible also to construct a corresponding
interval estimate?

171
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The answer is yes, and leads back to the conditioning approach:

𝑦★ = E(𝑦 |𝒙) = 𝛽0 + 𝜷𝑇𝒙

Var(𝜀) = Var(𝑦 |𝒙) = 𝜎2
𝑦(1 −Ω2)

We know that the mean squared prediction error for 𝑦★ is E((𝑦 − 𝑦★)2) = Var(𝜀)
and that this is the minimal irreducible error. Hence, we may use Var(𝜀) as the
minimum variability for the prediction.

The corresponding prediction interval is[
𝑦★(𝒙test) ± 𝑐 × SD(𝜀)

]
where 𝑐 is some suitable constant (e.g. 1.96 for symmetric 95% normal intervals).

However, please note that the prediction interval constructed in this fashion will
be an underestimate. The reason is that this assumes that we employ 𝑦★ = 𝛽0+𝜷𝑇𝒙

but in reality we actually use 𝑦̂ = 𝛽̂0 + 𝜷̂
𝑇
𝒙 for prediction — note the estimated

coefficients! We recall from an earlier chapter (best linear predictor) that this
leads to increase of MSPE compared with using the optimal 𝛽0 and 𝜷.

Thus, for better prediction intervals we would need to consider the mean squared
prediction error of 𝑦̂ that can be written as E((𝑦 − 𝑦̂)2) = Var(𝜀) + 𝛿 where 𝛿 is an
additional error term due to using an estimated rather than the true regression
function. 𝛿 typically declines with 1/𝑛 but can be substantial for small 𝑛 (in
particular as it usually depends on the number of predictors 𝑑).

For more details on this we refer to later modules on regression.

18.2 Variable importance and prediction
Another key question in regression modelling is to find out predictor variables
𝑥1 , 𝑥2 , . . . , 𝑥𝑑 are actually important for predicting the outcome 𝑦.

→ We need to study variable importance measures (VIM).

18.2.1 How to quantify variable importance?
A variable 𝑥𝑖 is important if it improves prediction of the response 𝑦.

Recall variance decomposition:

Var(𝑦) = 𝜎2
𝑦 = 𝜎2

𝑦Ω
2︸︷︷︸

explained variance

+ 𝜎2
𝑦(1 −Ω2)︸       ︷︷       ︸

unexplained/residual variance =Var(𝜀)
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• Ω2 squared multiple correlation ∈ [0, 1]
• Ω2 large → 1 predictor variables explain most of 𝜎2

𝑦

• Ω2 small → 0 linear model fails and predictors do not explain variability

• ⇒ If a predictor helps to increase explained variance
decrease unexplained variance then it is impor-

tant!
• Ω2 = 𝑷𝑦𝒙𝑷−1

𝒙𝒙𝑷𝒙𝑦=̂ a function of the 𝑋!

VIM: which predictors contribute most to Ω2

18.2.2 Some candidates for VIMs
1. The regression coefficients 𝜷

• 𝜷 = 𝚺−1
𝒙𝒙𝚺𝒙𝑦 = 𝑽−1/2

𝒙 𝑷−1
𝒙𝒙𝑷𝒙𝑦𝜎𝑦

• Not a good VIM since 𝜷 contains the scale!
• Large 𝛽̂𝑖 does not indicate that 𝑥𝑖 is important.
• Small 𝛽̂𝑖 does not indicate that 𝑥𝑖 is not important.

2. Standardised regression coefficients 𝜷std

• 𝜷std = 𝑷−1
𝒙𝒙𝑷𝒙𝑦

• implies Var(𝑦) = 1, Var(𝑥𝑖) = 1
• These do not contain the scale (so better than 𝛽̂)
• But still unclear how this relates to decomposition of variance

3. Squared marginal correlations 𝜌2
𝑦,𝑥𝑖

Consider case of uncorrelated predictors: 𝑷𝒙𝒙 = 𝑰 (no correlation among
𝑥𝑖)

⇒ Ω2 = 𝑷𝑦𝒙𝑷𝒙𝑦 =

𝑑∑
𝑖=1

𝜌2
𝑦,𝑥𝑖

𝜌2
𝑦,𝑥𝑖

= Cor(𝑦, 𝑥𝑖) is the marginal correlation between 𝑦 and 𝑥𝑖 , and Ω2 is
(for uncorrelated predictors) the sum of squared marginal correlations.

• If 𝑷𝒙𝒙 = 𝑰, then ranking predictors by 𝜌2
𝑦,𝑥𝑖

is optimal!
• The predictor with largest marginal correlation reduces the unex-

plained variance most!
• good news: even if there is weak correlation among predictors the

marginal correlations are still good as VIM (but then they will not
perfectly add up to Ω2)

• Advantage: very simple but often also very effective.
• Caution! If there is strong correlation in 𝑷𝒙𝒙 , then there is colinearity

(in this case it is oftern best to remove one of the strongly correlated
variables, or to merge the correlated variables).



174 CHAPTER 18. PREDICTION AND VARIABLE SELECTION

Often, ranking predictors by their squared marginal correlations is done as a
prefiltering step (independence screening).

18.3 Regression 𝑡-scores.

18.3.1 Wald statistic for regression coefficients
So far, we discussed three obvious candidates for for variable importance
measures (regression coefficients, standardised regression coefficients, marginal
correlations).

In this section we consider a further quantity, the regression 𝑡−score:

Recall that ML estimation of the regression coefficients yields

• a point estimate 𝜷̂

• the (asymptotic) variance V̂ar(𝜷̂)
• the asymptotic normal distribution 𝜷̂

𝑎∼ 𝑁𝑑(𝜷, V̂ar(𝜷̂))
Corresponding to each predictor 𝑥𝑖 we can construct from the above a 𝑡-score

𝑡𝑖 =
𝛽̂𝑖

ŜD(𝛽̂𝑖)

where the standard deviations are computed by ŜD(𝛽̂𝑖) = Diag(V̂ar(𝜷̂))𝑖 . This
corresponds to the Wald statistic to test that the underlying true regression
coefficient is zero (𝛽𝑖 = 0).

Correspondingly, under the null hypthesis that 𝛽𝑖 = 0 asymptotically for large 𝑛
the regression 𝑡-score is standard normal distributed:

𝑡𝑖
𝑎∼ 𝑁(0, 1)

This allows to compute (symmetric) 𝑝-values 𝑝 = 2Φ(−|𝑡𝑖 |) where Φ is the
standard normal distribution function.

For finite 𝑛, assuming normality of the observation and using the unbiased
estimate for variance when computing 𝑡𝑖 , the exact distribution of 𝑖𝑖 is given by
the Student-𝑡 distribution:

𝑡𝑖 ∼ 𝑡𝑛−𝑑−1

Regression 𝑡-scores can thus be used to test whether a regression coefficient
is zero. A large magnitude of the 𝑡𝑖 score indicates that the hypothesis 𝛽𝑖 = 0
can be rejected. Thus, a small 𝑝-value (say smaller than 0.05) signals that the
regression coefficient is non-zero and hence that the corresponding predictor
variable should be included in the model.

This allows rank predictor variables by |𝑡𝑖 | or the corresponding 𝑝-values with
regard to their relevance in the linear model. Typically, in order to simplify a
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model, predictors with the largest 𝑝-values (and thus smallest absolute 𝑡-scores)
may be removed from a model. However, note that having a 𝑝-value say larger
than 0.05 by itself is not sufficient to declare a regression coefficient to be zero
(because in classical statistical testing you can only reject the null hypothesis, but
not accept it!).

Note that by construction the regression 𝑡-scores do not depend on the scale,
so when the original data are rescaled this will not affect the corresponding
regression 𝑡-scores. Furthermore, if ŜD(𝛽̂𝑖) is small, then the regression 𝑡-score
𝑡𝑖 can still be large even if 𝛽̂𝑖 is small!

18.3.2 Computing
When you perform regression analysis in R (or another statistical software
package) the computer will return the following:

𝛽̂𝑖
Estimated
repression
coefficient

ŜD(𝛽̂𝑖)
Error of

𝛽̂𝑖

𝑡𝑖 =
𝛽̂𝑖

ŜD(𝛽̂𝑖 )
t-score

computed from
first two columns

p-values
for 𝑡𝑖

based on t-distribution

Indicator of
Significance
* 0.9
** 0.95
*** 0.99

In the lm() function in R the standard deviation is the square root of the unbiased
estimate of the variance (but note that it itself is not unbiased!).

18.3.3 Connection with partial correlation
The deeper reason why ranking predictors by regression 𝑡-scores and associated
𝑝-values is useful is their link with partial correlation.

In particular, the (squared) regression 𝑡-score can be 1:1 transformed into the
(estimated) (squared) partial correlation

𝜌̂2
𝑦,𝑥𝑖 |𝑥 𝑗≠𝑖 =

𝑡2
𝑖

𝑡2
𝑖
+ 𝑑𝑓

with 𝑑𝑓 = 𝑛 − 𝑑 − 1, and it can be shown that the 𝑝-values for testing that 𝛽𝑖 = 0
are exactly the same as the 𝑝-values for testing that the partial correlation 𝜌𝑦,𝑥𝑖 |𝑥 𝑗≠𝑖
vanishes!

Therefore, ranking the predictors 𝑥𝑖 by regression 𝑡-scores leads to exactly the
same ranking and 𝑝-values as partial correlation!
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18.3.4 Squared Wald statistic and the 𝐹 statistic
In the above we looked at individual regression coefficients. However, we can
also construct a Wald test using the complete vector 𝜷̂. The squared Wald statistic
to test that 𝜷 = 0 is given by

𝑡2 = 𝜷̂
𝑇V̂ar(𝜷̂−1)𝜷̂

=

(
𝚺̂𝑦𝒙𝚺̂

−1
𝒙𝒙

) (
𝑛

𝜎2
𝜀

𝚺̂𝒙𝒙

) (
𝚺̂
−1
𝒙𝒙𝚺̂𝒙𝑦

)
=
𝑛

𝜎2
𝜀

𝚺̂𝑦𝒙𝚺̂
−1
𝒙𝒙𝚺̂𝒙𝑦

=
𝑛

𝜎2
𝜀

𝜎̂2
𝑦𝑅

2

With 𝜎2
𝜀/𝜎̂2

𝑦 = 1 − 𝑅2 we finally get the related 𝐹 statistic

𝑡2

𝑛
=

𝑅2

1 − 𝑅2 = 𝐹

which is a function of 𝑅2. If 𝑅2 = 0 then 𝐹 = 0. If 𝑅2 is large (< 1) then 𝐹 is large
as well (< ∞) and the null hypothesis 𝜷 = 0 can be rejected, which implies that at
least one regression coefficient is non-zero. Note that the squared Wald statistic
𝑡2 is asymptotically 𝜒2

𝑑
distributed which is useful to find critical values and to

compute 𝑝-values.

18.4 Further approaches for variable selection
In addition to ranking by marginal and partial correlation, there are many other
approaches for variable selection in regression!

a) Search-based methods:

• search through subsets of linear models for 𝑑 variables, ranging from
full model (including all predictors) to the empty model (includes no
predictor) and everything inbetween.

• Problem: exhaustive search not possible even for relatively small 𝑑 as
space of models is very large!

• Therefore heuristic approaches such as forward selection (adding
predictors), backward selection (removing predictors), or monte-carlo
random search are employed.

• Problem: maximum likelihood cannot be used for choosing among
the models - since ML will always pick the best model. Therefore,
penalised ML criteria such as AIC or Bayesian criteria are often
employed instead.
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b) Integrative estimation and variable selection:

• there are methods that fit the regression model and perform variable
selection simultaneously.

• the most well-known approach of this type is “lasso” regression
(Tibshirani 1996)

• This applies a (generalised) linear model with ML plus L1 penalty.
• Alternative: Bayesian variable selection and estimation procedures

c) Entropy-based variable selection:

As seen above, two of the most popular approaches in linear models are
based on correlation, either marginal correlation or partial correlation (via
regression 𝑡-scores).

Correlation measures can be generalised to non-linear settings. One very
popular measure is the mutual information which is computed using
the KL divergence. In case of two variables 𝑥 and 𝑦 with joint normal
distribution and correlation 𝜌 the mutual information is a function of the
correlation:

MI(𝑥, 𝑦) = 1
2 log(1 − 𝜌2)

In regression he mutual information between the response 𝑦 and predictor
𝑥𝑖 is MI(𝑦, 𝑥𝑖), and this widely used for feature selection, in particular in
machine learning.

d) FDR based variable selection in regression:

Feature selection controling the false discovery rate (FDR) among the
selected features are becoming more popular, in particular a number of
procedures using so-called “knockoffs”, see https://web.stanford.edu/g
roup/candes/knockoffs/ .

e) Variable importance using Shapley values:

Borrowing a concept from game theory Shapley values have recently
become popular in machine learning to evaluate the variable importance
of predictors in nonlinear models. Their relationship to other statistical
methods for measuring variable importance is the focus of current research.

https://web.stanford.edu/group/candes/knockoffs/
https://web.stanford.edu/group/candes/knockoffs/
https://en.wikipedia.org/wiki/Shapley_value

