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Abstract

High-dimensional case-control analysis is encountered in many different settings in genomics.
In order to rank genes accordingly, many different scores have been proposed, ranging from ad hoc
modifications of the ordinary t statistic to complicated hierarchical Bayesian models.

Here, we introduce the “shrinkage t” statistic that is based on a novel and model-free shrinkage
estimate of the variance vector across genes. This is derived in a quasi-empirical Bayes setting.
The new rank score is fully automatic and requires no specification of parameters or distributions.
It is computationally inexpensive and can be written analytically in closed form.

Using a series of synthetic and three real expression data we studied the quality of gene rank-
ings produced by the “shrinkage t” statistic. The new score consistently leads to highly accurate
rankings for the complete range of investigated data sets and all considered scenarios for across-
gene variance structures.
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Introduction
High-dimensional case-control analysis is a key problem that has many applications
in computational genomics. The most well-known example is that of ranking genes
according to differential expression, but there are many other instances that warrant
similar statistical methodology, such as the problem of detecting peaks in mass
spectrometric data or finding genomic enrichment sites.

All these problems have in common that they require a variant of a (regularized)
t statistic that is suitable for high-dimensional data and large-scale multiple testing.
For this purpose, in the last few years various test statistics have been suggested,
which may be classified as follows:

i) Simple methods: fold change, classical t statistic.

ii) Ad hoc modifications of ordinary t statistic: Efron’s 90% rule (Efron et al.,
2001), SAM (Tusher et al., 2001).

iii) (Penalized) likelihood methods, e.g.: Ideker et al. (2000), Wright and Simon
(2003), Wu (2005).

iv) Hierarchical Bayes methods, e.g.: Newton et al. (2001), Baldi and Long
(2001), Lönnstedt and Speed (2002), Newton et al. (2004), “moderated t”
(Smyth, 2004), Cui et al. (2005), Fox and Dimmic (2006).

For an introductory review of most of these approaches see, e.g., Cui and Churchill
(2003) and Smyth (2004).

Current good practice in gene expression case-control analysis favors the em-
pirical or full Bayesian approaches (item iv) over other competing methods. The
reason behind this is that Bayesian methods naturally allow for information sharing
across genes, which is essential when the number of sample is as small in typical
genomic experiments. Specifically, the estimation of gene-specific variances profits
substantially from pooling information across genes (e.g., Wright and Simon, 2003;
Smyth, 2004; Delmar et al., 2005; Cui et al., 2005). On the other hand, Bayesian
methods can become computationally quite expensive, and more importantly, typ-
ically rely on a host of very detailed assumptions concerning the underlying data
and parameter generating models.

In this paper we introduce a novel “shrinkage t” approach that is as simple as
the ad hoc rules (item ii) but performs as well as fully Bayesian models (item iv),
even in simulation settings that are favorable to the latter. Moreover, the new gene
ranking statistic is fully analytic, requires no computer-intensive procedures, and
is derived without any specific distributional assumptions. In this sense, it is a
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further development of the quasi-likelihood approach of Strimmer (2003) but with
additional regularization.

The shrinkage t statistic is developed in the framework of James-Stein-type an-
alytic shrinkage (e.g., Gruber, 1998; Schäfer and Strimmer, 2005). This approach
offers a highly efficient means for regularized inference, both in the statistical and
computational sense. It is complementary to more well-known alternatives such as
Bayesian and penalized likelihood inference. Nevertheless, the resulting estimators
are typically very hard to improve (Yi-Shi Shao and Strawderman, 1994). James-
Stein shrinkage estimation may also be understood as a “quasi-empirical Bayes”
method as only information concerning second moments rather than fully specified
distributions are used. In short, analytic shrinkage estimators combine properties
that render them very attractive for analyzing large-dimensional genomic assays.

In the context of differential expression a similar approach was suggested be-
fore only by Cui et al. (2005) who also employ James-Stein estimation to obtain
shrinkage estimates of the gene-specific variances. Our approach shares many as-
pects with that of Cui et al. (2005). However, our estimator for variance shrinking
is different in that absolutely no distributional assumptions are involved (not even
for hyperparameters). Moreover, it is applied on the original data scale and thus
requires no transformations. Finally, it is derived via a rather general route for con-
structing Stein-type estimators, and results in a very compact, fully analytic, and
yet still highly efficient estimator for variance shrinkage (Eq. 10 and Eq. 11).

The remainder of this paper is structured as follows. In the next section we
briefly review analytic shrinkage estimation. Subsequently, we develop an esti-
mator for inference of gene-specific variances and construct the shrinkage t score
for ranking differentially expressed genes. Subsequently, we investigate the perfor-
mance of this statistic in simulations and in extensive data analysis in comparison
relative to a number of competing statistics. The final section contains a discussion
of the results.
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Distribution-Free Shrinkage Estimation
In this section we describe how analytic James-Stein-type shrinkage estimators may
be constructed from an arbitrary unregularized estimator, without assuming any
distributions for data or the model parameters.

James-Stein Shrinkage Rules
Initially, we assume that an unregularized estimation rule

δ0 = θ̂, (1)

is available, e.g., the maximum-likelihood or the minimum variance unbiased es-
timate. It is important here that θ̂ is a vector (θ1, . . . , θk, . . . , θp)T . (In the specific
example of the present article this vector contains all gene-specific empirical vari-
ances.) Then the James-Stein ensemble shrinkage estimation rule may be written
as

δλ = δ0 − λ∆

= θ̂ − λ (θ̂ − θ̂Target).
(2)

In other words, the shrinkage estimate δλ is the linear combination λθ̂Target+ (1−λ)θ̂
of the original estimator θ̂ and a target estimate θ̂Target. The parameter λ determines
the extent to which these estimates are pooled together. If λ = 1 then the target
dominates completely, whereas for λ = 0 no shrinkage occurs.

In James-Stein estimation the search for the optimal shrinkage intensity λ is
considered from a decision theoretic perspective. First, a loss function is selected
(e.g. the squared error). Second, λ is chosen such that the corresponding risk of δλ,
i.e. the expectation of the loss with respect to the data (e.g. the mean squared error,
MSE), is minimized.

Interestingly, it turns out that for squared error loss this can be done without any
reference to the unknown true value θ, as the MSE of δλ may be written as follows:

MSE(δλ) =MSE(θ̂) + λ2
p∑

k=1

{E((θ̂k − θ̂
Target
k )2)}

− 2λ
p∑

k=1

{Var(θ̂k) − Cov(θ̂k, θ̂
Target
k )

+ Bias(θ̂k) E(θ̂k − θ̂
Target
k )}

=: c + λ2 b − 2λ a.

(3)
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Hence, the MSE risk curve has the shape of a parabola whose parameters a, b, and
c are completely determined by only the first two distributional moments of θ̂ and
θ̂Target. This allows a number of further insights concerning the shrinkage rule Eq. 2:

• The risk improvement of δλ compared to MSE of the unregularized estimate
δ0 is determined only by a and b (note that MSE(δ0) = c).

• Any value of λ in the range between 0 and 2a
b leads to a decrease in MSE.

• The optimal shrinkage intensity that results in overall minimum MSE is given
by the simple formula

λ? =
a
b
. (4)

• In this case the savings relative to the unshrunken estimate amount to MSE(θ̂)−
MSE(δλ

?
) = a2

b .

• The factor b, which measures the misspecification of target and estimate,
plays the role of a precision for λ.

Further discussion and interpretation of Eq. 4 may be found in Schäfer and Strim-
mer (2005). We only note here that special versions of the rule λ? = a

b are well
known, see, e.g., Ledoit and Wolf (2003) who describe the multivariate case but
require an unbiased θ̂, or Thompson (1968) who considers only the univariate case
and a non-stochastic target and also restricts to Bias(θ̂) = 0.

Construction of Shrinkage Estimator
In actual application of the shrinkage rule (Eq. 2) the pooling parameter λ needs
to be estimated from the data. Inevitably, this leads to an increase of the total risk
of the resulting shrinkage estimator. However, it is a classic result by Stein that
the cost of estimating the shrinkage intensity is already (and always!) offset by the
savings in total risk when the dimension p is larger than three (e.g. Gruber, 1998).

One straightforward way to estimate the optimal λ? is to replace the variances
and covariances in Eq. 3 by their unbiased empirical counterparts, i.e. λ̂? = â

b̂
. Al-

ternatively, an unbiased estimate for the whole fraction a
b may be sought – but this

will only be possible in some special cases. We would also like to point out that we
do not recommend the suggestion of Thompson (1968) who employ a biased esti-
mate for the denominator (b) to Eq. 4 – this will lead to a potentially very inaccurate
shrinkage estimator.

Despite its simplicity, rule Eq. 2 together with an estimated version of Eq. 4
provides instant access to several classic shrinkage estimators, and offers a simple
and unified framework for their derivation.
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For instance, consider the old problem of Stein (1956, 1981) of inferring the
mean of a p-dimensional multivariate normal distribution with unit-diagonal covari-
ance matrix from a single (n = 1) vector-valued observation – clearly an extreme
example of the “small n, large p” setting. In this case the maximum-likelihood
estimate equals the vector of observations, i.e. θ̂ML

k = xk. However, shrinkage esti-
mators with improved efficiency over the ML estimator are easily constructed. With
the covariance being the identity matrix (Var(xk) = 1 and Cov(xk, xl) = 0) and the
target being set to zero (θ̂Target = 0) one finds a = p and b̂ =

∑p
k=1 x2

k which results
in the shrinkage estimator

θ̂JS
k =

(
1 −

p∑p
k=1 x2

k

)
xk. (5)

If we follow Lindley and Smith (1972) and shrink instead towards the mean across
dimensions x̄ = 1

p

∑p
k=1 xk we get a = p − 1 and b̂ =

∑p
k=1(xk − x̄)2 and obtain

θ̂EM
k = x̄ +

(
1 −

p − 1∑p
k=1(xk − x̄)2

)
(xk − x̄) (6)

It is noteworthy that these are not the original Stein estimators given in James and
Stein (1961) and Efron and Morris (1973) but instead are exactly the shrinkage
estimators of Stigler (1990) derived using a regression approach. We point out that
the Stigler and our versions have the advantage that they are applicable also for
p = 1 and p = 2.

Positive Part Estimator and Component Risk Protection by Lim-
ited Translation
The efficiency of the above shrinkage estimator can be further improved by two
simple measures.

Firstly, by truncating the estimated λ̂ at one,

δλ̂+ = δ0 −min(1, λ̂)∆, (7)

which results in the so-called positive part James-Stein estimator that dominates the
unrestricted shrinkage estimator of Eq. 2 in terms of statistical efficiency (Barach-
nik, 1970).

Secondly, by restricting the translation allowed for individual components. The
original James-Stein procedure is geared, in the terminology of Efron and Morris
(1975), towards producing estimators with good ensemble risk properties. This
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means that it aims at minimizing the total risk accumulated over all parameters.
However, in some instances this may occur at the expense of individual parameters
whose risks may even increase (!). Therefore, in Stein estimation (and indeed also
in hierarchical Bayes estimation) individual components of a parameter vector need
to be protected against too much shrinkage.

“Limited translation” (Efron and Morris, 1972, 1975) is a simple way to con-
struct estimators that exhibit both good ensemble risk as well as favorable compo-
nent risk properties. One example of a protected shrinkage rule is

δλ̂+,Mk = δ0
k −min(1, λ̂) min(1,

M
|∆k|

)∆k, (8)

which ensures that we always have |δλ̂+,Mk − δ0
k | ≤ M, where M is a cutoff parameter

chosen by the user. A convenient selection of M is, e.g., the 99 percent quantile of
the distribution of the absolute values |∆k| of the components of the shrinkage vector
∆. In the terminology of Efron and Morris (1972), the term min(1, M

|∆k |
) constitutes

the relevance function that determines the degree to which any particular component
is affected by the ensemble-wide shrinkage.

Finally, we point out an interesting connection with soft thresholding, as the
above limited translation shrinkage rule may also be written as

δλ̂+,Mk = δλ̂+k +min(1, λ̂)(|∆k| − M)+sgn(∆k), (9)

where the subscript “+” denotes truncation at zero.

Further Remarks
In order to complete the discussion of analytic James-Stein shrinkage estimators we
would like to remark on the following additional points:

• It is interesting to note that many empirical Bayes estimators can be put into
the form of Eq. 2, (e.g. Gruber, 1998). Note that using Eq. 3 allows to derive
these estimators without first going through the full Bayesian formalism!

• Using the above equation leads to an almost automatic procedure for shrink-
age estimation.

• The construction of the estimator assumes at no point a normal or any other
distribution.

• Note that it is possible to allow for multiple shrinkage intensities. For in-
stance, if the model parameters fall into two natural groups, each could have
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its own target and its own associated shrinkage intensity. In the extreme case
each parameter could have its own λ.

The “Shrinkage t” Statistic

Shrinkage Estimation of Variance Vector
Within the above framework for distribution-free shrinkage it is straightforward to
construct an efficient estimator of gene-specific variances.

From given data with p variables (genes) we first compute the usual unbiased
empirical variances v2

1, . . . , v
2
p. These provide the components for the unregularized

vector estimate θ̂ of Eq. 1. Subsequently, we choose a suitable shrinkage target.
For this we suggest using the median value of all vk. In the exploration of possible
other targets we considered also shrinking against zero and towards the mean of
the empirical variances. However, these two alternatives turned out to be either
less efficient (zero target) or less robust (mean target) than shrinking towards the
median.

Following the recipe outlined above, we immediately obtain the shrinkage esti-
mator

v?k = λ̂
?vmedian + (1 − λ̂?)vk (10)

with optimal estimated pooling parameter

λ̂? = min

1, ∑p
k=1 V̂ar(vk)∑p

k=1(vk − vmedian)2

 , (11)

Note that in this formula we have used the approximation Cov(vk, vmedian) ≈ 0.
Eq. 11 has an intuitive interpretation. If the empirical variances vk can be re-

liably determined from the data, and consequently exhibit only a small variance
themselves, there will be little shrinkage, whereas if V̂ar(vk) is comparatively large
pooling across genes will take place. Furthermore, the denominator of Eq. 11 is an
estimate of the misspecification between the target and the vk. Hence, if the target
is incorrectly chosen then no shrinkage will take place either.

The computation of a sample version of V̂ar(vk) is straightforward. Defining
x̄k =

1
n

∑n
i=1 xik, wik = (xik − x̄k)2, and w̄k =

1
n

∑n
i=1 wik, we have vk =

n
n−1w̄k and

V̂ar(vk) = n
(n−1)3

∑n
i=1(wik − w̄k)2. A similar formula can be derived for the variance

of the entries of the empirical covariance matrix (cf. Schäfer and Strimmer (2005)).
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Construction of “Shrinkage t” Statistic
The “shrinkage t” statistic considered in the following is obtained by plugging the
above shrinkage variance estimate (Eq. 10 and Eq. 11) into the ordinary t statistic.
With the sample sizes in groups 1 and 2 denoted as n1 and n2 the shrinkage t statistic
is given by

t?k =
x̄k1 − x̄k2√

v?k1
n1
+

v?k2
n2

. (12)

We consider two variants of this statistic, one where variances are estimated sepa-
rately in each group (hence with two different shrinkage intensities), and the other
one using a pooled estimate (i.e. with one common shrinkage factor).

Note that the shrinkage t statistic essentially provides a compromise between the
standard t statistic (to which it reduces for λ = 0) and the fold change or difference
of means statistic (λ = 1).

Other Regularized t Statistics
Closely related to the shrinkage t statistic are in particular two approaches, “mod-
erated t” (Smyth, 2004) and the Stein-type procedure by Cui et al. (2005). The
essential feature characteristic for both of these methods is, again, variance shrink-
age, albeit done in a different fashion compared to shrinkage t:

1. The moderated t method assumes a scale-inverse-chi-square distribution as
distribution for the variances across genes. The corresponding parameters
are estimated by empirical Bayes, and the resulting variance estimates are
plugged into the t-statistic.

2. The variance shrinking procedure of Cui et al. (2005) is essentially the clas-
sic Stein estimator on the log-scale, complemented by a bias correction and
by an estimation of the variance factor (numerator in the Stein formula) by
simulation from a chi-square distribution whose degrees of freedom depends
on the sample size. The t statistic resulting from using this kind of variance
shrinkage will be called “Cui et al. t” in this paper.

Therefore, both the moderated t and the Cui et al. t rely on some form of distri-
butional assumption, whereas the shrinkage t statistic is derived without any such
consideration.
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Results

Assessment of Quality of Gene Ranking
In this section we describe the results from computer simulations and analysis of
experimental gene expression data that we conducted to assess the quality of gene
ranking provided by the shrinkage t statistic in comparison to other competing
scores.

Setup of Simulations

In the simulations we followed closely the setup specified in Smyth (2004):

• Variances across genes were assumed to follow a scale-inverse-chi-square
distribution Scale-inv-χ2(d0, s2

0) with s2
0 = 4 and three different settings for

the degrees of freedom d0: highly similar variances across genes (d0 = 1000),
balanced variances (d0 = 4), and different variances across genes (d0 = 1).

• In total 2,000 genes were considered, 100 of which were randomly assigned
to be differentially expressed.

• The differences in group means for the 100 differentially expressed genes
were determined by drawing from a Normal distribution with mean zero and
the gene-specific variance, whereas for the non-differentially expressed genes
it was set to zero.

• Finally, synthetic data matrices were obtained by sampling for each gene and
separately for the control and case groups three independent observations
from a Normal distribution with the respective gene-specific variances and
means.

These data formed the basis for computing various gene ranking scores. Specif-
ically, we compared the following statistics: fold change, ordinary t, moderated t
(Smyth, 2004), Cui et al. t statistic (i.e. the unequal variance t statistic regular-
ized by using the variances estimated by the method of Cui et al. (2005)), Efron’s
90% rule (Efron et al., 2001), Wu’s improved SAM statistic (Wu, 2005), and the
shrinkage t statistic (with both equal and unequal variances). As reference we also
included random ordering in the analysis. For these different ways of producing
rankings we computed false positives (FP), true positives (T P), false negatives
(FN), and true negatives (T N) for all possible cut-offs in the gene list (1-2000).

This procedure was repeated 500 times for each test statistic and variance sce-
nario, to obtain estimates of the true discovery rates E( T P

T P+FP ) and ROC curves
describing the dependence of sensitivity E( T P

T P+FN ) and specificity E( T N
T N+FP ).
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Experimental Data Sets

In addition to the simulations we computed the gene ranking for three experimental
case-control data sets with known differentially expressed genes.

The first data set studied is the well-known Affymetrix spike-in study that con-
tains 12,626 genes, 12 replicates in each group, and 16 known differentially ex-
pressed genes (Cope et al., 2004).

The second investigated data is a subset of the “golden spike” Affymetrix ex-
periment of Choe et al. (2005). From the original data we removed the 2,535 probe
sets for spike-ins with ratio 1:1, leaving in total 11,475 genes with 3 replicates per
group, and 1,331 known differentially expressed genes. We note that excluding the
1:1 spike-ins is important as these comprise a severe experimental artifact (Irizarry
et al., 2006). Both the Choe et al. (2005) data and the Affymetrix spike-in data
were calibrated and normalized using the default methods of the “affy” R package
(Gautier et al., 2004).

The third data set is from the HIV-1 infection study of van ’t Wout et al. (2003).
It contains 4 replicates per group, and 13 of the 4,608 genes have been experimen-
tally confirmed to be differentially expressed.

For reproducibility, these three experimental test data sets are available for
download from http://strimmerlab.org/data.html exactly in the form used
in this article, including all preprocessing.

Performance of Gene Ranking Statistics

The results from simulations and data analysis are summarized in Fig. 1 and Fig. 2.
In each figure the first row shows the fraction of correctly identified differentially
expressed genes in relation to the number of included genes (i.e. the true discovery
rate, or positive predictive value), whereas the second row depicts the corresponding
receiver-operator characteristic (ROC).

If the variances are highly similar across genes (Fig. 1, first column) the best
methods are fold change, moderated t, Efron t, Cui et al. t, and shrinkage t, all of
which provide in this case similarly accurate rankings. Only the ordinary t statistics
and Wu’s improved SAM statistic are not efficient in this setting. If variances are
balanced (Fig. 1, second column), the best rankings are given by moderated t, Efron
t and shrinkage t. The gene ranking accuracy of fold-change is dropping to that of
the standard t statistic. If the variances are highly different (Fig. 1, column 3), fold
change ranking is close to random, and Efron’s 90% percent rule also becomes
inefficient. Only moderated t and shrinkage t are offering optimal gene rankings in
this setting. The Cui et al. t and the ordinary t test produce similar and the second
best rankings in this case.
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Figure 1: True discovery rates and ROC curves computed for simulated data under three different scenarios for the
distribution of variances across genes. See main text for details of simulations and analysis procedures.
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Figure 2: True discovery rates and ROC curves for the three investigated experimental data sets.
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In the analysis of the Affymetrix spike-in data the methods with largest true dis-
covery rates independent of the chosen cutoff are the shrinkage t statistic (unequal
variance), Efron t, shrinkage t statistic (equal variance), moderated t, and Cui et al. t.
For the Choe et al. (2005) data the shrinkage t statistic shows the best performance
along with moderated t, Efron t, Cui et al. t, and fold change, whereas the ordinary
t statistic and the improved SAM statistic don’t perform well. Thus, this data set
resembles the situation in the simulations where all variances were highly similar.
Finally, for the van ’t Wout et al. (2003) study all methods except for fold-change
provide optimal rankings, with the Efron t statistic being slightly less accurate than
the remainder of the methods.

This generally confirms earlier findings presented in Smyth (2004). We empha-
size in addition the following points:

• The ordinary t statistic shows average though never optimal performance re-
gardless of the variance structure across genes.

• Using fold change is only a good idea if variances are all fairly similar; the
same is true for Efron t statistic.

• The improved SAM statistic by Wu (2005) generally provides very poor rank-
ings of genes. This is due to the fact that most genes with differential expres-
sion are assigned a zero score, and hence are ordered randomly (i.e. in input
order).

• ROC curves appear to be only of limited help for assessing performance.
Instead, we suggest relying on quality of ranking plots based on estimated
true discovery rates.

• The shrinkage t and the moderated t statistics are the only two methods that
perform optimally in all three simulation settings. However, the Cui et al. t
statistic is nearly as good, showing only a slightly decreased accuracy when
variances are strongly heterogeneous.

• Both moderated t and shrinkage t produce accurate rankings also for the three
experimental data, perhaps with a small edge for shrinkage t in the Affymetrix
spike-in study.

• The shrinkage t statistic with unequal variances performs nearly as well as
shrinkage t with equal variances, even though the former has only half the
sample size available for estimation of variances.

We also note that the moderated t statistic is based exactly on the model employed in
the simulations (i.e. scale-inverse-chi-square distribution for the variance). The Cui
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et al. t statistic also incorporates prior knowledge on the distribution of variances
across genes in its simulation step employing a chi-square distribution.

Therefore, it is easy to understand why moderated t and the Cui et al. t statis-
tic perform well. On the other hand, we point out that it is quite remarkable that
shrinkage t, a simple analytic statistic not specifically tailored to any particular dis-
tributional setting, can fully match the performance of the moderated t approach.

Discussion
In this paper we have introduced a novel gene ranking statistic for genomic case
control studies. This method is based on a James-Stein-type shrinkage approach
that, unlike its Bayesian or empirical Bayes cousins, is fully analytic and does not
rely on explicit priors or other distributional assumptions. Hence, this approach
is potentially more flexible, for instance when variance scenarios differ (e.g. Gel-
man, 2006), the underlying models are misspecified, or when variances are un-
equal. Most importantly, the proposed method provides highly accurate gene rank-
ings both for simulated and real data, on par with much more complicated models,
but without relying on computational expensive procedures such as MCMC or op-
timization.

From our simulations it is also interesting to learn that there seems to exist an
optimality limit with regard to producing accurate rankings. In our comparative
evaluation the moderated t statistic and the shrinkage t statistic were the only two
methods that achieved that limit for all considered scenarios.

In this paper, we haven’t raised at all the issue of (multiple) testing needed to
determine an appropriate cut-off value. This is typically done by controlling the
false discovery rate. Our preferred tools for this task are mixture models (e.g.,
Sapir and Churchill, 2000; Dean and Raftery, 2005) and the “local fdr” approach
(see, e.g. Efron, 2005). The latter procedure has the advantage of being adaptive
with regard to the null hypothesis. This means that it will automatically take account
of correlation among the genes, and also accommodate for the decreased variance
of the null-distribution of the shrinkage t statistic, which by construction is smaller
than that of the standard t statistic. However, with Fig. 1 in mind we caution that it
often is not possible to guarantee a prescribed false discovery rate even in optimal
circumstances - as this crucially depends on the capability of the underlying statistic
to produce an accurate ranking!

In summary, with few exceptions (e.g., Cui et al., 2005; Schäfer and Strimmer,
2005) James-Stein-type estimation appears to have been somewhat overlooked in
the recent efforts for analyzing high-dimensional systems (it is not mentioned in the
reference text by Hastie et al. (2001), for instance). In this respect, the shrinkage
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t approach demonstrates that statistics derived in this fashion may indeed compare
very favorable to penalized ML or Bayesian methods. Indeed, our proposed vari-
ance shrinkage procedure may be useful not only in simple t test situations but also
in more general ANOVA-type analyses (Smyth, 2004; Cui et al., 2005).

A Computer Implementation and Availability
All statistical procedures described have been implemented in computer programs
that are available under the terms of the GNU General Public License.

The “shrinkage t” statistic is implemented in the R package “st” which is avail-
able from the CRAN archive (http://cran.r-project.org) and from web page
http://strimmerlab.org/software/st/. This package also contains wrapper
functions for a number of other regularized t statistics.

The shrinkage variance estimator of Eq. 10 and Eq. 11 is contained in the R
package “corpcor” that is available from http://strimmerlab.org/software/
corpcor/ and also from CRAN.

Note added in proof:
Since writing of this paper a Stein-type approach to variance shrinkage similar to
ours has appeared in Tong and Wang (2007).
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