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Abstract

Inferring large-scale covariance matrices from sparse genomic data is an ubiquitous
problem in bioinformatics. Clearly, the widely used standard covariance and correlation
estimators are ill-suited for this purpose. As statistically efficient and computationally fast
alternative we propose a novel shrinkage covariance estimator that exploits the Ledoit-Wolf
(2003) lemma for analytic calculation of the optimal shrinkage intensity.

Subsequently, we apply this improved covariance estimator (which has guaranteed mini-
mum mean squared error, is well-conditioned, and is always positive definite even for small
sample sizes) to the problem of inferring large-scale gene association networks. We show
that it performs very favorably compared to competing approaches both in simulations as
well as in application to real expression data.
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Gaussian model (GGM), genetic network, gene expression.
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1. Introduction

Estimation of large-scale covariance matrices is a common though often implicit
task in functional genomics and transcriptome analysis:

• For instance, consider the clustering of genes using data from a microarray
experiment (e.g. Eisen et al., 1998). In order to construct a hierarchical tree
describing the functional grouping of genes an estimate of the similarities
between all pairs of expression profiles is needed. This is typically based on
a distance measure related to the empirical correlation. Thus, ifp genes are
being analyzed (withp perhaps in the order of 1,000 to 10,000), a covariance
matrix of sizep× p has to be calculated.

• Another example is the construction of so-called relevance networks (Butte
et al., 2000). These visually represent the marginal (in)dependence structure
among thep genes. The networks are built by drawing edges between those
pairs of genes whose absolute pairwise correlation coefficients exceed a pre-
specified threshold (say, 0.8).

• Related to gene relevance networks (though conceptually quite different) are
gene association networks. These are graphical models that have recently
been suggested as a means of displaying the conditional dependencies among
the considered genes (e.g., Toh and Horimoto, 2002; Dobra et al., 2004;
Schäfer and Strimmer, 2005a). An essential input to inferring such a network
is thep× p covariance matrix.

• Furthermore, the covariance matrix evidently plays an important role in the
classification of genes.

• In addition, there are numerous bioinformatics algorithms that rely on the
pairwise correlation coefficient as part of an (often rather adhoc) optimality
score.

Thus, a common key problem in all of these examples is as follows: How should
one obtain an accurate and reliable estimate of the population covariance matrix
Σ if presented with a data set that describes a large number of variables but only
contains comparatively few samples (n� p)?

In the vast majority of analysis problems in bioinformatics (specifically exclud-
ing classification) the simple solution is to rely either on the maximum likelihood
estimateSML or on the related unbiased empirical covariance matrixS = n

n−1SML ,
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with entries defined as

si j =
1

n− 1

n∑
k=1

(xki − x̄i)(xk j − x̄j), (1)

where x̄i =
1
n

∑n
k=1 xki and xki is thek-th observation of the variableXi. However,

unfortunately bothS andSML exhibit serious defects in the “smalln, largep” data
setting commonly encountered in functional genomics. Specifically, in this case the
empirical covariance matrix cannot anymore be considered a good approximation
of the true covariance matrix (this is true also for moderately sized data withn ≈ p).

For illustration consider Fig. 1 where the sample covariance estimatorS is com-
pared with an alternative estimatorS? developed in Section 2 of this paper and
summarized in Tab. 1. This figure shows the sorted eigenvalues of the estimated
matrices in comparison with the true eigenvalues for fixedp = 100 and various ra-
tios p

n . It is evident by inspection that for smalln the eigenvalues ofSdiffer greatly
from the true eigenvalues ofΣ. In addition, forn smaller thanp (bottom row in
Fig. 1)S looses its full rank as a growing number of eigenvalues become zero. This
has several undesirable consequences. First,S is not positive definite any more,
and second, it can not be inverted as it becomes singular. For comparison contrast
the poor performance ofS with that ofS? (fat green line in Fig. 1). This improved
estimator exhibits none of the defects ofS, in particular it is more accurate, well
conditioned, and always positive definite. Nevertheless,S? can be computed in only
about twice the time required to calculateS.

With this paper we pursue three aims. First, we argue against the blind use of the
empirical covariance matrixS in data situations where it is not appropriate – not-
ing that this affects many current application areas in bioinformatics. Second, we
describe a route to obtain improved estimates of the covariance matrix via shrink-
age combined with analytic determination of the shrinkage intensity according to
the Ledoit-Wolf theorem (Ledoit and Wolf, 2003). Third, we show that this new
regularized estimator greatly enhances inferences of gene association networks.

The remainder of the paper is organized as follows. In the next section we provide
an overview over shrinkage, the Ledoit-Wolf lemma and its application to shrinkage
of covariance matrices. We discuss several potentially useful lower-dimensional
targets (cf. Tab. 2), with special focus on the “diagonal, unequal variance” model.
In the second part of the paper, we review methodology for inferring large-scale
genetic networks (relevance and association networks). We conduct computer sim-
ulations to show that usingS? in genetic network model selection is highly advan-
tageous in terms of power and other performance criteria. Finally, we illustrate the
described approach by analyzing a real gene expression data set fromE. coli.
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Figure 1: Ordered eigenvalues of the sample covariance matrixS (thin black line) and
that of an alternative estimatorS? (fat green line, for definition see Tab. 1), calculated from
simulated data with underlyingp-variate normal distribution, forp = 100 and various ratios
p/n. The true eigenvalues are indicated by a thin black dashed line.
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“Small n, Large p” Covariance and Correlation Estimators S? and R?:

s?i j =

sii if i = j

r?i j
√

sii sj j if i , j

and

r?i j =

1 if i = j

r i j min(1,max(0,1− λ̂?)) if i , j

with

λ̂? =

∑
i, j V̂ar(r i j )∑

i, j r2
i j

Table 1:Small sample shrinkage estimators of the unrestricted covariance and correlation
matrix suggested in this paper (Section 2.4). The coefficientssii andr i j denote the empirical
variance (unbiased) and correlation, respectively. For details of the computation ofV̂ar(r i j )
see Appendix A. Further variants of these estimators are discussed in Section 2.4.
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2. Shrinkage estimation of covariance matrices in
a “small n, large p” setting

2.1. Strategies for obtaining a more efficient covariance
estimator

It has long been known that the two widely-employed estimators of the covariance
matrix, i.e. the unbiased (S) and the related maximum likelihood (SML ) estimator,
are both statistically inefficient. In a nutshell, this can be explained as a consequence
of the so-called “Stein phenomenon” discovered by Stein (1956) in the context of
estimating the mean vector of a multivariate normal distribution. Stein demon-
strated that in high-dimensional inference problems it is often possible to improve
(sometimes dramatically!) upon the maximum likelihood estimator. This result is
at first counterintuitive, as maximum likelihood can be proven to beasymptotically
optimal, and as such it seems not unreasonable to expect that these favorable proper-
ties of maximum likelihood also extend to the case of finite data. However, further
insight into the Stein effect is provided by Efron (1982) who points out that one
needs to distinguish between two different aspects of maximum likelihood infer-
ence. First, maximum likelihood as a means of summarizing the observed data and
producing amaximum likelihood summary(MLS). Second, maximum likelihood as
a procedure to obtain amaximum likelihood estimate(MLE). The conclusion is that
maximum likelihood is unassailable as a data summarizer but that it has some clear
defects as an estimating procedure.

This applies directly to the estimation of covariance matrices:SML constitutes the
best estimator in terms of actual fit to the data but for medium to small data sizes
it is far from being the optimal estimator for recovering the population covariance
– as is well illustrated by Fig. 1. Fortunately, the Stein theorem also demonstrates
that it is possible to construct a procedure for improved covariance estimation. In
addition to increased efficiency and accuracy, it is desirable for such a method to
exhibit the following characteristicsnot found inS andSML :

1. The estimate should always be positive definite, i.e. all eigenvalues should be
distinct from zero.

2. The estimated covariance matrix should be well-conditioned.

The positive-definiteness requirement is an intrinsic property of the true covariance
matrix that is satisfied as long as the considered random variables have non-zero
variance. If a matrix is well-conditioned, i.e. if the ratio of its maximum and min-
imum singular value is not too large, it has full-rank and can be easily inverted.
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Thus, by producing a well-conditioned covariance estimate one automatically also
obtains an equally well-conditioned estimate of theinverse covariance– a quan-
tity of crucial importance, e.g., in interval estimation, classification, and graphical
models.

A (naive) strategy to obtain a positive definite estimator of the covariance runs
as follows: Take the sample covarianceS and apply, e.g., the algorithm by Higham
(1988). This will adjust all eigenvalues to be larger than some prespecified threshold
ε and thus guarantee positive definiteness. However, the resulting matrix will not
be well conditioned.

Another more general procedure to obtain an improved covariance estimator is
variance reduction. Consider the well-known bias-variance decomposition of the
mean squared error (MSE) for the sample covariance, i.e.

MSE(S) = Bias(S)2 + Var(S). (2)

As Bias(S) = 0 by construction, the only way to decrease the overall accuracy
of S is by reducing its variance. A simple non-parametric approach to variance
reduction is offered, e.g., by bootstrap aggregation (“bagging”) of the empirical co-
variance matrix. This can be done by explicitly approximating the expectationE(S)
via the bootstrap. In previous work (Schäfer and Strimmer, 2005a) we have resorted
to this strategy to produce improved estimates of the correlation matrix and its in-
verse. However, especially for the very large dimensions commonly encountered in
genomics problems (often withp > 1,000) this approach is computationally by far
too demanding.

Instead, in this paper we investigate “shrinking” or more general “biased esti-
mation” (e.g., Hoerl and Kennard, 1970a,b; Efron, 1975; Efron and Morris, 1975,
1977) as a means of variance reduction ofS. In particular, we consider a recent
analytic result from Ledoit and Wolf (2003) that allows to construct an improved
covariance estimator that is not only suitable for small sample sizen and large num-
bers of variablesp but at the same time is also completely inexpensive to compute.

2.2. Shrinkage estimation and the lemma of Ledoit-Wolf

In this section we briefly review the general principles behind shrinkage estimation
and discuss an analytic approach by Ledoit and Wolf (2003) for determining the
optimal shrinkage level. We note that the theory outlined here is not restricted to
covariance estimation but applies generally to large-dimensional estimation prob-
lems.

LetΨ = (ψ1, . . . , ψp) denote the parameters of the unrestricted high-dimensional
model of interest, andΘ = (θi) the matching parameters of a lower dimensional
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restricted submodel. For instance,Ψ could be the mean vector of ap-dimensional
multivariate normal, andΘ the vector of a corresponding constrained submodel
where the means are all assumed to be equal (i.e.θ1 = θ2 = · · · = θp). By fitting
each of the two different models to the observed data associated estimatesU = Ψ̂
and T = Θ̂ are obtained. Clearly, the unconstrained estimateU will exhibit a
comparatively high variance due to the larger number of parameters that need to
be fitted, whereas its low-dimensional counterpartT will have lower variance but
potentially also considerable bias as an estimator of the trueΨ.

Instead of choosing between one of these two extremes, the linear shrinkage
approach suggests tocombineboth estimators in a weighted average

U? = λT + (1− λ)U, (3)

whereλ ∈ [0,1] denotes the shrinkage intensity. Note that forλ = 1 the shrinkage
estimate equals the shrinkage targetT whereas forλ = 0 the unrestricted estimate
U is recovered. The key advantage of this construction is that it offers a systematic
way to obtain a regularized estimateU? that outperforms the individual estimators
U andT both in terms of accuracy and and statistical efficiency.

A key question in this procedure is how to select an optimal value for the shrink-
age parameter. In some instances, it may suffice to fix the intensityλ at some given
value, or to make it depend on the sample size according to a simple function. Often
more appropriate, however, is to choose the parameterλ in a data-driven fashion by
explicitly minimizing a risk function

R(λ) = E(L(λ)) = E(
p∑

i=1

(u?i − ψi)
2), (4)

here for example the mean squared error (MSE).
One common but also computationally very intensive approach to estimate the

minimizing λ is by using cross-validation - for an example see Friedman (1989)
where shrinkage is applied in the context of regularized classification. Another
widely applied route to inferringλ views the shrinkage problem in an empirical
Bayes context. In this case the quantityE(T) is interpreted as prior mean andλ as
a hyper-parameter that may be estimated from the data by optimizing the marginal
likelihood (e.g., Morris, 1983; Greenland, 2000).

It is less well known that the optimal regularization parameterλ may often also
be determinedanalytically. Specifically, Ledoit and Wolf (2003) recently derived
a simple theorem for choosingλ that guarantees minimal MSE without the need
of having to specify any underlying distributions, and without requiring computa-
tionally expensive procedures such as MCMC, the bootstrap, or cross-validation.
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This lemma is obtained in a straightforward fashion. Assuming that the first two
moments of the distributions ofU andT exist, the squared error loss risk function
from Eq. 4 may be expanded as follows:

R(λ) =
p∑

i=1

Var
(
u?i
)
+
[
E(u?i ) − ψi

]2
=

p∑
i=1

Var(λti + (1− λ)ui) +
[
E(λti + (1− λ)ui) − ψi

]2
=

p∑
i=1

λ2 Var(ti) + (1− λ)2 Var(ui) + 2λ(1− λ) Cov(ui , ti)

+ [λE(ti − ui) + Bias(ui)]
2 .

(5)

Analytically minimizing this function with respect toλ gives, after some tedious
algebraic calculations, the following expression for the optimal value

λ? =

∑p
i=1 Var(ui) − Cov(ti ,ui) − Bias(ui) E(ti − ui)∑p

i=1 E[(ti − ui)2]
, (6)

for which minimum MSER(λ?) is achieved. It can be shown thatλ? always exists
and that it is unique. IfU is anunbiasedestimator ofΨwith E(U) = Ψ this equation
reduces to

λ? =

∑p
i=1 Var(ui) − Cov(ti ,ui)∑p

i=1 E[(ti − ui)2]
, (7)

which is – apart from some further algebraic simplification – the expression given
in Ledoit and Wolf (2003).

Closer inspection of Eq. 6 yields a number of insights into how the optimal
shrinkage intensity is chosen:

• First, the smaller the variance of the high-dimensional estimateU, the smaller
becomesλ?. Therefore, with increasing sample size the influence of the target
T diminishes.

• Second,λ? also depends on the correlation between estimation error ofU and
of T. If both are positively correlated then the weight put on the shrinkage
target decreases. Hence, the inclusion of the second term in the numerator of
Eq. 6 adjusts for the fact that the two estimatorsU andT are both inferred
from the same data set. It also takes into account that the “prior” information
associated withT is not independent of the given data.
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• Third, with increasing mean squared difference betweenU andT (in the de-
nominator of Eq. 6) the weightλ? also decreases. Note that this automatically
protects the shrinkage estimateU? against a misspecified targetT.

• Fourth, if the unconstrained estimator is biased, and the bias points already
towards the target, the shrinkage intensity is correspondingly reduced.

Furthermore, it is noteworthy that variables that by design are kept identical in
the constrained and unconstrained estimators (i.e.ti = ui for somei) play no role
in determining the intensityλ?, as their contributions to the various terms in Eq. 6
cancel out.

This can be generalized further by allowingmultiple targets, each with its own
different optimal shrinkage intensity. This is especially appropriate if there exists a
natural grouping of parameters in the investigated high-dimensional model. In this
case one simply computes the individual targets and applies Eq. 6 to each group of
variables separately. As one referee suggests, it may be helpful to cluster variables
according to their variances Var(ui) – typically the predominant term to determine
the shrinkage levelλ?.

Finally, it is important to consider the transformation properties of the shrink-
age procedure. From Eq. 6 it is clear thatλ? is invariant against translations. For
instance, the underlying data may be centered without affecting the estimation of
the optimal shrinkage intensity. However,λ? is notgenerally invariant against scale
transformations. This dependence on the absolute scales of the considered variables
is a general property that shrinkage shares with other approaches to biased estima-
tion, such as ridge regression and partial least squares (e.g. Hastie et al., 2001).

2.3. Estimation of the optimal shrinkage intensity

For practical application of Eq. 6 one needs to obtain an estimateλ̂? of the opti-
mal shrinkage intensity. In their paper Ledoit and Wolf (2003) emphasize that the
parameters of Eq. 6 should be estimated consistently. However, this is only a very
weak requirement, as consistency is an asymptotic property and a basic require-
ment of any sensible estimator. Furthermore, we are interested in small sample
inference. Thus, instead we suggest to computeλ̂? by replacing all expectations,
variances, and covariances in Eq. 6 by theirunbiasedsample counterparts. This
leads to

λ̂? =

∑p
i=1 V̂ar(ui) − Ĉov(ti ,ui) − B̂ias(ui) (ti − ui)∑p

i=1(ti − ui)2
. (8)

In finite sampleŝλ? may exceed the value one, and in some cases it may even be-
come negative. In order to avoid overshrinkage or negative shrinkage we truncate
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the estimated intensity correspondingly, usingλ̂?? = max(0,min(1, λ̂?)) when con-
structing the shrinkage estimator of Eq. 3.

It is also worth noting that Eq. 8 is valid regardless of the sample sizen at hand.
In particular,n may be substantially smaller thanp, a fact we will exploit in our
suggested approach to inferring gene association networks.

2.4. Shrinkage estimation of the covariance matrix

Estimation of the unrestricted covariance matrix requires the determination of (p2+

p)/2 free parameters, and thus constitutes a high-dimensional inference problem.
Consequently, application of shrinkage offers a promising approach to obtain im-
proved estimates.

Daniels and Kass (2001) provide a fairly extensive review of empirical Bayes
shrinkage estimators proposed in recent years. Unfortunately, most of the suggested
estimators appear to suffer from at least one of the following drawbacks, which
renders them unsuitable for the analysis of genomic data:

1. Typically, the application is restricted to data withp < n, in order to en-
sure that the empirical covarianceS can be inverted. However, most current
genomic data sets contain vastly more features than samples (p� n).

2. Many of the suggested estimators are computationally expensive (e.g. those
based on MCMC sampling), or assume specific underlying distributions.

These difficulties are elegantly avoided by resorting to the (almost) distribution-free
Ledoit-Wolf approach to shrinkage.

In a matrix setting the equivalent to the squared error loss function is the squared
Frobenius norm. Thus,

L(λ) = ||S? − Σ||2F
= ||λT + (1− λ)S− Σ||2F

=

p∑
i=1

p∑
j=1

(
λti j + (1− λ)si j − σi j

)2 (9)

is a natural quadratic measure of distance between the true (Σ) and inferred covari-
ance matrix (S?). In this formula the unconstrained unbiased empirical covariance
matrixS replaces the unconstrained estimateU of Eq. 3.

Selecting a suitable estimated covariance targetT = (ti j ) requires some dili-
gence. In general, the choice of a target should be guided by the presumed lower-
dimensional structure in the data set as this determines the increase of efficiency
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Target A: “diagonal, unit variance” Target B: “diagonal, common variance”
0 estimated parameters 1 estimated parameter:v

ti j =

1 if i = j

0 if i , j
ti j =

v = avg(sii ) if i = j

0 if i , j

λ̂? =
∑

i, j V̂ar(si j )+
∑

i V̂ar(sii )∑
i, j s2

i j+
∑

i (sii−1)2
λ̂? =

∑
i, j V̂ar(si j )+

∑
i V̂ar(sii )∑

i, j s2
i j+
∑

i (sii−v)2

Target C: “common (co)variance” Target D: “diagonal, unequal variance”
2 estimated parameters:v, c pestimated parameters:sii

ti j =

v = avg(sii ) if i = j

c = avg(si j ) if i , j
ti j =

sii if i = j

0 if i , j

λ̂? =
∑

i, j V̂ar(si j )+
∑

i V̂ar(sii )∑
i, j (si j−c)2+

∑
i (sii−v)2 λ̂? =

∑
i, j V̂ar(si j )∑

i, j s2
i j

Target E: “perfect positive correlation” Target F: “constant correlation”
p estimated parameters:sii p+ 1 estimated parameters:sii , r̄

ti j =

sii if i = j
√

sii sj j if i , j
ti j =

sii if i = j

r̄
√

sii sj j if i , j

fi j = 1
2{

√
sj j

sii
Ĉov(sii , si j ) +

√
sii

sj j
Ĉov(sj j , si j )}

λ̂? =
∑

i, j V̂ar(si j )− fi j∑
i, j (si j−

√
sii sj j )2 λ̂? =

∑
i, j V̂ar(si j )−r̄ f i j∑

i, j (si j−r̄
√

sii sj j )2

Table 2: Six commonly used shrinkage targets for the covariance matrix and associated
estimators of the optimal shrinkage intensity – see main text for discussion.Abbreviations:
v, average of sample variances;c, average of sample covariances; ¯r, average of sample
correlations.
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over that of the empirical covariance. However, it is also a remarkable consequence
of Eq. 6 that in factany target will lead to a reduction in MSE, albeit only a mi-
nor one in case of a strongly misspecified target (thenS? will simply reduce to the
unconstrained estimateS).

Six commonly used covariance targets are compiled in Tab. 2, along with a brief
description, the dimension of the target, and the resulting estimateλ̂?. In order to
compute the optimal shrinkage intensity it is necessary to estimate the variances
of the individual entries ofS – see Appendix A for the technical details. Note
that the resulting shrinkage estimatorsS? all exhibit the same order of algorithmic
complexity as the standard estimateS.

Probably the most commonly employed shrinking targets are the identity matrix
and its scalar multiple. These are denoted in Tab. 2 “diagonal, unit variance” (target
A) and “diagonal, common variance” (target B). A further extension is provided by
the two parameter covariance model that in addition to the common variance (as
in target B) also maintains a common covariance (“common (co)variance”, tar-
get C). The three targets share several properties. First, they are all extremely
low-dimensional (0 to 2 free parameters), thus they impose a rather strong struc-
ture which in turn requires only little data to fit. Second, the resulting estimators
shrink all componentsof the empirical covariance matrix, i.e. both diagonal and
off-diagonal entries. In the literature it is easy to find examples where one of the
above targets is employed – albeitnot in combination with analytic estimation of
the shrinkage level. For instance, the unit diagonal target A is typically used in
ridge regression and the related Tikhonov regularization (e.g. Hastie et al., 2001).
The target B is utilized, e.g., by Friedman (1989) who estimatesλ by means of
cross-validation, by Leung and Chan (1998) who use a fixedλ = 2

n+2, by Dobra
et al. (2004) as a parameter in an inverse Wishart prior for the covariance matrix,
and finally also by Ledoit and Wolf (2004b). The two-parameter target C appears
not to be widely used.

Another class of covariance targets is given by the “diagonal, unequal variance”
model (target D), the “perfect positive correlation” model (target E) and the “con-
stant correlation” model (target F) of Tab. 2. A shared feature of these three targets
is that they are comparatively parameter-rich, and that they only lead toshrinkage of
the off-diagonal elementsof S. The last two shrinkage targets were introduced with
the purpose of modeling stock returns. These tend – on average – to be strongly
positively correlated (Ledoit and Wolf, 2003, 2004a).

In this paper, we focus on the shrinkage target D for the estimation of covariance
and correlation matrices arising in genomics problems. This “diagonal, unequal
variance” model represents a compromise between the low-dimensional targets A,
B, and C and the correlation models E and F. Like the simpler targets A and B
it shrinks the off-diagonal entries to zero. However, unlike shrinkage targets A
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and B, target D leaves diagonal entries intact, i.e. it doesnot shrink the variances.
Thus, this model assumes that the parameters of the covariance matrix fall into two
classes, and both are treated differently in the shrinkage process.

This clear separation also suggests that for shrinking purposes it may be useful
to parameterize the covariance matrix in terms of variances and correlations (rather
than variances and covariances) so thats?i j = r?i j

√
sii sj j . In this formulation, shrink-

age is applied to the correlations rather than the covariances. This has two distinct
advantages. First, the off-diagonal elements determining the shrinkage intensity are
all on the same scale. Second, the (partial) correlations derived from the resulting
covariance estimatorS? are independent of scale and location transformations of
the underlying data matrix, just as is the case for those computed fromS.

It is this form of target D that we propose for estimating correlation and covari-
ance matrices. For reference, the corresponding formulae are collected in Tab. 1.
Note the remarkably simple expression for the shrinkage intensity

λ̂? =

∑
i, j V̂ar(r i j )∑

i, j r2
i j

(10)

– see also Tab. 2 (Target D). For technical details such as the calculation ofV̂ar(r i j )
we refer to Appendix A. In this formula a concern may be the use of the empirical
correlation coefficientsr i j – after all, these are the ones that we aim to improve.
Thus, it seems we face a circularity problem, namely that for an accurate estimate
of the shrinkage intensity reliable estimates of correlation are needed, and vice
versa. However, it is a remarkable feature of target D that it completely resolves
this “chicken-egg” issue: regardless whether standard or shrinkage estimates of
correlation are substituted into Eq. 10 the resultingλ̂? remains all the same.

Using the target D has another important advantage: the resulting shrinkage co-
variance estimate will automatically be positive definite. The target D itself is al-
ways positive definite, and the convex combination of a positive definite matrix (T)
with another matrix that is positive semidefinite (S) always yields a positive definite
matrix. Note that this is also true for targets A and B butnot for the targets C, E,
and F (consider as counterexample the target E with all variances set equal to one).

Further variants of the proposed estimator (Tab. 1) are easily constructed. One
possible extension is to shrink the diagonal elements as well, using a different in-
tensity for variances and correlations. Shrinking the variances to a common mean
is standard practice in in genomic case-control studies (e.g. Cui et al., 2005). It is
particular helpful if there are so few samples that the gene-specific variances are
difficult to obtain. In such as case, however, it may make no sense at all to consider
estimating the full covariance matrix.
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3. Inference of gene networks from small sample
genomic data

3.1. Methodological background

We consider here two simple approaches for modeling net-like dependency struc-
tures in genome expression data, both of which require as input an estimated large-
scale covariance matrix. The first and conceptually simpler model is that of a “gene
relevance network”. This was introduced by Butte et al. (2000) and is built in the
following simple fashion. First, thep × p correlation matrixP = (ρi j ) is inferred
from the data. Second, for estimated correlation coefficients exceeding a prespec-
ified threshold (sayr > 0.8) an edge is drawn between the two respective genes.
Thus, relevance networks represent themarginal (in)dependence structure among
the p genes. In statistical terminology this type of network model is also known as
“covariance graph”.

Despite the popularity of relevance networks (which stems from the relative ease
of construction) there are many problems connected with their proper interpretation.
For instance, the cut-off value that determines the “significant” edges is typically
chosen in a rather arbitrary fashion – often simply a large value is selected with
the vague aim to exclude “spurious” edges. However, this misses the statistical in-
terpretation of the marginal correlation which takes account of both direct as well
as indirect associations. As a direct consequence, in a reasonably well-connected
genetic network most genes will by construction be correlated with each other (e.g.
see the analysis of theE. coli data below). Thus, in this case even a large observed
degree of correlation will provide only weak evidence for the direct dependency
of any two considered genes. Instead, theabsence of correlation(i.e. r ≈ 0) will
be astrong measure of their independence. Therefore, even ignoring the difficul-
ties of obtaining accurate measures of correlation from small sample data, gene
relevance networks are suitable toolsnot for elucidating the dependence network
among genes but rather for uncovering independence.

In contrast, with the class of graphical Gaussian models (GGMs), also called “co-
variance selection” or “concentration graph” models, a simple statistical approach
exists that allows to detect direct dependence between genes. This “gene associa-
tion network” approach is based on investigating the estimatedpartial correlations
r̃ for all pairs of considered genes. The traditionally developed theory of GGMs
(e.g. Whittaker, 1990) is only applicable forn � p. However, with the increasing
interest in “smalln, largep” inference a number of refinements to the GGM the-
ory have recently been proposed that allow its application also to genomic data –
see Schäfer and Strimmer (2005a,b) for a discussion and a comprehensive list of
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references. In essence, in a small sample setting both the estimation of the partial
correlations as well as the subsequent model selection need to be suitably modified.
In the following we discuss several such approaches, including one based on the
suggested covariance shrinkage estimator.

3.2. Small sample GGM selection using false discovery rate
multiple testing

Standard graphical modeling theory (e.g. Whittaker, 1990) shows that the matrix of
partial correlationsP̃ = (ρ̃i j ) is related to the inverse of the covariance matrixΣ.
This relationship leads to the straightforward estimator

r̃ i j = ˆ̃ρi j = −ω̂i j/
√
ω̂ii ω̂ j j , (11)

where
Ω̂ = (ω̂i j ) = Σ̂

−1. (12)

We note that in the last equation, it is absolutely crucial that the covariance is es-
timated accurately, and thatΣ̂ is well-conditioned – otherwise the above formulae
will result in a rather poor estimate of partial correlation (cf. Schäfer and Strimmer,
2005a).Here, we adopt the shrinkage estimatorS? developed in the first part of this
paper (Tab. 1).As we show below this leads to (sometimes dramatic) improvement
in accuracy over alternative procedures. In this context it is also interesting to note
that the difficulty of obtaining reliable estimates of̃P has led some researchers to
instead consider partial correlations of limited order (e.g., de la Fuente et al., 2004;
Wille et al., 2004; Magwene and Kim, 2004). However, using partial correlations
of first or second order as a measure of dependence amounts to employing a net-
work model that is much more similar to relevance than to association networks,
and hence also inherits their interpretation difficulties.

The second critical part of inferring GGMs is model selection. In Schäfer and
Strimmer (2005a) we have suggested a simple yet quite effective search heuristic
based on large-scale multiple testing of edges. This approach is based on two ratio-
nales. First, it exploits the fact that genetic networks are typically sparse, i.e. that
most of thep(p− 1)/2 partial correlation coefficientsρ̃ vanish. In turn, this allows
to estimate the null distribution from the data, and thus to decide which edges are
present or absent. Second, GGM search by multiple testing implicitly assumes that
for all cliques (i.e. fully connected subset of nodes) of size three and more the
underlying joint distribution is well approximated by the product of the bivariate
densities associated with the respective undirected edges (Cox and Reid, 2004).

Specifically, in the approach of Schäfer and Strimmer (2005a) the distribution of
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the observed partial correlations ˜r across edgesis taken as the mixture

f (r̃) = η0 f0(r̃; κ) + (1− η0) fA(r̃) , (13)

where f0 is the null distribution,η0 is the (unknown) proportion of “null edges”,
and fA the distribution of observed partial correlations assigned to actually existing
edges. The null densityf0 is given in Hotelling (1953) as

f0(r̃; κ) = (1− r̃2)(κ−3)/2
Γ( κ2)

π
1
2Γ( κ−1

2 )

= |r̃ |Be(r̃2;
1
2
,
κ − 1

2
) ,

(14)

where Be(x; a,b) is the Beta distribution andκ is the degree of freedom, equal to
the reciprocal variance of the null ˜r. Fitting this mixture density allowsκ, η0 and
even fA to be determined – for an algorithm to infer the latter see Efron (2004,
2005b). Subsequently, it is straightforward to compute the edge-specific “local
false discovery rate” (fdr) via

Prob(null edge|r̃) = fdr(r̃) =
η̂0 f0(r̃; κ̂)

f̂ (r̃)
, (15)

i.e. the posterior probability that an edge is null given ˜r. Finally, an edge is consid-
ered “present” or “significant” if its local fdr is smaller than 0.2 (Efron, 2005b).

Closely related to the empirical Bayes local “fdr” statistic is the frequentist “Fdr”
(also calledq-value) approach advocated by Storey (2002), and the Benjamini and
Hochberg (1995) “FDR” rule. In our original GGM model selection proposal
(Schäfer and Strimmer, 2005a) we have relied on the FDR method to identify edges
in the network. However, we now suggest to employ the local fdr, as this fits more
naturally with the mixture model setup, and because it takes account of the depen-
dencies among the estimated partial correlation coefficients (Efron, 2005a).

3.3. Small sample GGM selection using lasso regression

Partial correlations may not only be estimated by inversion of the covariance or
correlation matrix (Eq. 11 and Eq. 12). An alternative route is offered by regressing
each genei ∈ {1, . . . , p} in turn against the remaining set ofp − 1 variables. The
partial correlations are then simply

r̃ i j = sign(̂β( j)
i )
√
β̂

( j)
i β̂

(i)
j , (16)

16 Statistical Applications in Genetics and Molecular Biology Vol. 4 [2005], No. 1, Article 32

http://www.bepress.com/sagmb/vol4/iss1/art32



whereβ̂(i)
j denotes the estimated regression coefficient of predictor variableXj for

the responseXi. Note that while in general̂β( j)
i , β̂

(i)
j the signs of these two regres-

sion coefficients are identical.
This opens the way for obtaining small sample estimates of partial correlation and

GGM inference by means of regularized regression. This avenue is pursued, e.g., by
Dobra et al. (2004) who employ Bayesian variable selection. Another possibility to
determine the regression coefficients is by penalized regression, for instance ridge
regression (Hoerl and Kennard, 1970a,b) or the the lasso (Tibshirani, 1996). The
latter approach has the distinct advantage that it will set many of the regression
coefficients (and hence also partial correlations) exactly equal to zero. Thus, for
covariance selection no additional testing is required, and an edge is recovered in
the GGM network if botĥβ( j)

i andβ̂(i)
j differ from zero.

GGM inference using the lasso is investigated in Meinshausen and Bühlmann
(2005) where it is suggested to choose the lasso penaltyλi for regression against
variableXi according to

λ̂i = 2

√
sML

ii

n
Φ−1(1−

α

2p2
), (17)

whereΦ(z) is the cumulative distribution function of the standard normal,α is
a constant (set to 0.05 in our computations below) that controls the probability of
falsely connecting two distinct connectivity components (Meinshausen and Bühlmann,
2005), andsML

ii is the maximum-likelihood estimate of the variance ofXi. Note that
this adaptive choice of penalty ensures that for small sample varianceλ̂i vanishes
and hence in this case no penalization takes place.

3.4. Performance for synthetic data

In an extensive simulation study we compared the shrinkage and lasso approach
to GGM selection in terms of accuracy, power, and positive predictive accuracy.
In addition to those two methods we also investigated two further estimators of
partial correlation denoted̂Π1 andΠ̂2. These are discussed in Schäfer and Strimmer
(2005a).Π̂1 employs the pseudoinverse instead of the matrix inverse in Eq. 12, thus
for n > p it reduces to the classical estimate of partial correlation.Π̂2 uses the
bootstrap to obtain a variance-reduced positive definite estimate of the correlation
matrix. Note that in our previous study we found thatΠ̂2 exhibited the overall best
performance.

Specifically, the simulation setup was as follows:

1. We controlled parameters of interest such as the number of featuresp, the
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fraction of non-zero edgesηA = 1− η0 and the sample sizen of the simulated
data. Specifically, we fixed atp = 100 andηA = 0.04, and variedn =
10,20, . . . ,200.

2. We generatedR = 200 random networks (i.e. partial correlation matrices)
and simulated data of sizen from the corresponding multivariate normal dis-
tribution.

3. From each of theR data sets we estimated the partial correlation coefficients
with the four methods “shrinkage”, “lasso”,̂Π1, and Π̂2. The number of
bootstrap replications required forΠ̂2 was set toB = 500.

4. Subsequently, we computed the mean squared error by comparison with the
known true values.

5. Similarly, we dtermined the average number of edges detected as significant,
the power, and the “positive predictive value” (PPV), i.e. the fraction of cor-
rect edges among all significant edges. The PPV is sometimes also called the
“true discovery rate” (TDR). Note that it is only defined if there is at least one
significant edge. The fdr cut-off was set to 0.2 as suggested in Efron (2005b).

In order to simulate random “true” partial correlation matrices we relied on an
algorithm producing diagonally dominant matrices – see Schäfer and Strimmer
(2005a) for details. This method allows to generate positive definite random corre-
lation matrices of arbitrary sizep×p with an a priori fixed proportionηA of non-null
entries. Unfortunately, further structural and distributional properties are not eas-
ily specified – see for instance Hirschberger et al. (2004). This would be desirable
as the present simulation algorithm produces networks with edges that represent
mostly weak links. Note that this renders their inference disproportionally hard.

In Fig. 2 we compare the accuracy of the four investigated estimators of par-
tial correlation. Both the shrinkage and the lasso GGM estimator outperform the
two others regardless of sample size. The previously recommended estimatorΠ̂2 is
nearly as accurate for small sample size, however, it is much more computer expen-
sive than the shrinkage estimator. The peak atn = 100 associated with the estimator
Π̂1 is a dimension resonance effect due to the use of the pseudoinverse (recall that
p = 100) – see Schäfer and Strimmer (2005a) for a discussion and references.

Fig. 3a and Fig. 3b summarize the results with regard to GGM selection. Fig. 3a
shows the number of edges that were detected as significant using each of the four
methods. ForηA = 0.04 andp = 100 there exist exactly 198 edges in any of the
simulated networks. The number of edges detected as significant for the shrinkage
estimator remains well below this threshold, however in comparison withΠ̂1 and
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Figure 2: Mean squared error of the four investigated small-sample estimators of partial
correlation ( “shrinkage”, “lasso”,̂Π1, andΠ̂2) in dependence of the sample size forp =
100 genes. Note that the curves for “shrinkage” and “lasso” completely overlap.

Π̂2 it typically finds the largest number of edges. In contrast, for simulated data the
lasso GGM network approach recovers even for small sample size many more edges
than are actually present. This indicates that the choice of penalization according to
Eq. 17 may still be too permissive. The large number of significant edges forΠ̂2 for
very small sample sizes is a systematic bias related to the improper fit of the null
model (Eq. 14).

Fig. 3b illustrates the corresponding power (i.e. the proportion of correctly iden-
tified edges) and PPV. The latter quantity is of key practical importance as it is an
estimate of the proportion of true edges among the list of edges returned as sig-
nificant by the algorithm. For the shrinkage estimator the PPV is constant across
the whole range of samples sizes and close to the desired level near 1− Fdr ≈ 0.9
(Efron, 2005b). The lasso GGM estimator exhibits a very low PPV of about 0.2
only. The other two estimators reach the appropriate level of PPV, but only for
n > p. In terms of power the shrinkage and the lasso GGM approach outperform
the other two investigated estimatorsΠ̂1 and Π̂2 which exhibit reasonable power
only for n > p. The power of the lasso regression approach is distinctly higher than
that of the shrinkage estimator. However, this is due to the fact that the former lib-
erally includes many edges in the resulting network without controlling the rate of
false positives. In our simulations the shrinkage estimator has non-zero power only
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Figure 3: Performance of methods for GGM network inference: (a) Average number of
edges detected as significant. Note that there are 198 true edges in the simulated network
(horizontal dashed line). (b) Power and positive predictive value (PPV) for reconstructing
the GGM network topology. Gaps in the curves for the PPV indicate situations in which the
PPV could not be computed (no significant edges).
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from n ≥ 30 (for p = 100). As discussed above this is very likely a consequence
of our simulation setup which produces partial correlation networks that are hard
to infer. Thus, it is deciding to note the high PPV of this estimator: this indicates
that if there is a significant edge then the probability is very high that it actually
corresponds to a true edge.

3.5. Analysis of expression profiles from an E. coli
experiment

For illustration we now apply the above methods for inferring gene networks to a
real data set from a microarray experiment conducted at the Institute of Applied
Microbiology, University of Agricultural Sciences of Vienna (Schmidt-Heck et al.,
2004). This was set up to measure the stress response of the microorganismEs-
cherichia coliduring expression of a recombinant protein. The resulting data moni-
tors all 4,289 protein coding genes ofE. coli8, 15, 22, 45, 68, 90, 150, and 180 min-
utes after induction of the recombinant protein SOD (human superoxide dismutase).
In a comparison with pooled samples before induction 102 genes were identified by
Schmidt-Heck et al. (2004) as differentially expressed in one or more samples after
induction. In the following we try to establish the gene network among these 102
preselected genes.

A first impression of the dependency structure can be obtained by investigat-
ing the estimated correlation coefficients. For the shrinkage approach we obtain
λ̂? = 0.18. The resulting correlation matrix has full rank (102) with condition
number equal to 386.6. In contrast, the standard correlation matrix has rank 8 only
and is ill-conditioned (infinite condition number). Thus, already for calculating the
correlation coefficients the benefits of using the shrinkage estimator are apparent.

Fig. 4a shows the distribution of the estimated correlation coefficients, most of
which differ from zero. This is indicates that essentially all genes are are either
directly or indirectly associated with each other. Thus, constructing a traditional
relevance network (Butte et al., 2000) will – at least for this data –not lead to
uncovering of the dependency structure. This is compared with the corresponding
partial correlation matrix. Fig. 4b shows the distribution of the Fisher-transformed
coefficients (cf. Hotelling, 1953). The contrast with the previous figure is apparent,
as the distribution of partial correlations is unimodal and centered around zero. This
means that most partial correlations vanish, that the number of direct interactions is
small, and hence that the resulting gene association network is sparse.

Fig. 5 shows the corresponding gene association and relevance networks. The
shrinkage GGM network is depicted in Fig. 5a and was derived by fitting the mix-
ture distribution defined in Eq. 13 to the estimated partial correlations with a cut-off
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Figure 4: (a) Histogram of the estimated shrunken correlation coefficients computed for
all 102× 101/2 = 5,151 pairs of genes. (b) Distribution of estimatedpartial correlation
coefficients (green line) after Fisher’s normalizingz-transformation (atanh) was applied for
normalization purposes. Also shown are the fitted null distribution (dashed blue line) and
the alternative distribution (pink) as inferred by thelocfdr algorithm (Efron, 2004, 2005b).
The black squares indicate the 0.2 local fdr cut-off values for the partial correlations.

fdr < 0.2. The network comprises 116 significant edges which amount to about 2%
of the 5,151 possible edges for 102 genes. This shows that for real data – in sharp
contrast to our comparable simulations – the shrinkage estimator is powerful for
small sample size.

Several aspects of the inferred network are interesting. First, we recover the
“hub” connectivity structure for the gene sucA. This gene is involved in the citric
acid cycle. The existence of these hubs is a well-known property of biomolecular
networks (e.g. Barabási and Oltvai, 2004). It is a strength of the present method that
these nodes can be identified without any particular additional effort. Second, the
edges connecting the genes lacA, lacZ and lacY are the strongest in the network,
with the largest absolute values of partial correlation, and correspondingly also with
the smallest local fdr values. Interestingly, these are exactly the genes on which the
experiment was based: lacA, lacY and lacZ are induced by IPTG (isopropyl-beta-D-
thiogalactopyranoside) dosage and initiate recombinant protein synthesis (Schmidt-
Heck et al., 2004).
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(a) Shrinkage GGM network
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(b) Lasso GGM network
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(c) Relevance network

Figure 5: Gene networks inferred from theE. coli data by (a) the shrinkage GGM ap-
proach presented in this paper (Tab. 1), (b) the lasso GGM approach by Meinshausen and
Bühlmann (2005), and (c) the relevance network with abs(r) > 0.8. Black and grey edges
indicate positive and negative (partial) correlation, respectively.
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For comparison, the lasso GGM network is shown in Fig. 5b. It was computed
from the standardizedE. coli data and contains 100 edges. Closer inspection of
this network reveals an interesting structural bias introduced by the lasso regression
for GGM inference. As can clearly be seen in Fig. 5b the lasso limits the number
of edges going in and out of a node. The reason for this is that the lasso imposes
sparsity on the regression coefficientsper nodeso that in each regression only a
few non-zero coefficients exist. As a consequence, the degree distribution of the
E. coli lasso GGM network has an implicit upper bound. Thus, the lasso prevents
the identification of hubs and also excludes power-law-type connectivity patterns.
Note that in contrast in the shrinkage GGM approach sparsity is imposed on the
network level rather than locally at node level.

Finally, Fig. 5c shows the relevance network obtained by applying the conven-
tional 0.8 cut-off on the absolute values of the shrunken correlation coefficients.
The resulting network contains 58 edges and bears no resemblance to the GGM
networks. As is clear from inspecting Fig. 4a there are many more genes that are
strongly correlated, so from this network the direct dependencies among genes can-
not be deduced. Instead, we argue here that correlations should rather be employed
for detectingindependenceamong genes. The corresponding null hypothesis is that
the two gene are dependent. Fur this purpose the mixture model of Eq. 13 is still
applicable, except that the roles off0 and fA are interchanged. Thus any edge with
fdr > 0.8 (defined as in Eq. 15!) would be considered significant.

As a last comment we remark that in our analysis we have plainly ignored the
fact that theE. coli data derive from a time series experiment. This appears not
to be too harmful for the GGM selection process – at least part of the longitudinal
correlation will be accounted for by empirically fitting the null distribution (see also
Efron (2005a)).

4. Discussion and summary

In this paper we draw attention to the problem of the widespread and largely uncrit-
ical use of the standard covariance estimator in the analysis of functional genomics
data. As a quick glance in any recent issue of a journal such asBioinformatics
or BMC Bioinformaticswill reveal, the empirical correlation and covariance esti-
mators are often rather blindly applied by bioinformaticians to large-scale problems
with many variables and few sample points although it is well known that in this set-
ting the standard estimators are not appropriate and may perform extremely poorly.
Here, we strongly advise to refrain from using the empirical covariance in the anal-
ysis of high-dimensional data such as from microarray or proteomics experiments.

We emphasize that alternatives are readily available in the form of shrinkage
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estimators (e.g. Greenland, 2000). Shrinkage formalizes the idea of “borrowing
strength across variables” and has proved beneficial in the problem of differential
expression (e.g., Smyth, 2004; Cui et al., 2005) and classification of transcriptome
data (e.g., Tibshirani et al., 2002; Zhu and Hastie, 2004). In this paper we par-
ticularly highlight the shrinkage approach of Ledoit and Wolf (2003) that allows
fitting of all necessary tuning parameters in a simpleanalytical fashion. While
this method appears to be little known we anticipate that it will be helpful in many
“small n, largep” inference problems.

In Section 2 of this paper we present a novel shrinkage estimator for the covari-
ance and correlation matrix (Tab. 1) with guaranteed minimum MSE and positive
definiteness that is not only perfectly applicable to “smalln, largep” data but can
also be computed in time comparable to that of the conventional estimator. By use
of the theorem of Ledoit and Wolf (2003) to estimate the optimal shrinkage intensity
there is no need to specify any further parameters. Consequently, computationally
expensive procedures such as cross-validation are completely avoided. As an added
bonus, the proposed estimator is also distribution-free and demands only modest
assumptions with regard to the existence of higher moments.

As a specific bioinformatical application we employ this covariance shrinkage
estimator in the search for net-like genetic interactions. In Section 3 we show that
this leads to large overall gains in the accuracy and in the power to recover the true
network structure compared with a precursor approach described in Schäfer and
Strimmer (2005a). In addition, our algorithm also outperforms the lasso approach
to regularized GGM inference in terms of positive predictive accuracy. Further-
more, network inference by using the shrinkage covariance estimator (Section 2)
combined with the heuristic model selection of Section 3 takes only a few minutes
even on a slow computer – thus we offer it as a fast alternative to exhaustive GGM
search procedures, such as the MCMC method of Dobra et al. (2004).

Further possible uses of the proposed shrinkage covariance estimator in bioinfor-
matics include classification of gene expression profiles. For instance, the SCRDA
(“shrunken centroids regularized discriminant analysis”) approach (Guo et al., 2004)
employs regularized covariance and correlation matrices similar to the one de-
scribed in Section 2. Hence, it should be straightforward to apply SCRDA also
in conjunction with our proposed shrinkage covariance estimator.

We end with a note that “smalln, largep” covariance estimation problems have
recently arisen also in computational econometrics. Specifically, the inference and
modeling of large financial networks (Mantegna and Stanley, 2000; Boginski et al.,
2005) requires methods akin to those for gene relevance and association networks.
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A. Estimation of the variance and covariance of
the components of the S and R matrix

In order to compute the optimal estimated shrinkage intensityλ̂? (Eq. 8) for the
various structured covariance targets listed in Tab. 2, it is necessary to obtain unbi-
ased estimates of the variance and the covariance of individual entries in the matrix
S= (si j ).

Let xki be thek-th observation of the variableXi and x̄i =
1
n

∑n
k=1 xki its empirical

mean. Now setwki j = (xki − x̄i)(xk j − x̄j) andw̄i j =
1
n

∑n
k=1 wki j. Then the unbiased

empirical covariance equals

Ĉov(xi , xj) = si j =
n

n− 1
w̄i j

and, correspondingly, the variance is

V̂ar(xi) = sii =
n

n− 1
w̄ii .

The empirical unbiased variances and covariances of theindividual entriesof Sare
computed in a similar fashion.

V̂ar(si j ) =
n2

(n− 1)2
V̂ar(w̄i j ) =

n
(n− 1)2

V̂ar(wi j ) =
n

(n− 1)3

n∑
k=1

(wki j − w̄i j )
2.

Similarly,

Ĉov(si j , slm) =
n

(n− 1)3

n∑
k=1

(wki j − w̄i j )(wklm− w̄lm).

Moments of higher order than̂Var(si j ), in particular variances and covariances of
averagesof si j , are neglected in estimating the optimalλ̂? in Tab. 2.

The variance Var(r i j ) of the empirical correlation coefficients can be estimated in
a similar fashion: simply apply the above formulae to thestandardizeddata matrix.
We note that this procedure treats the estimated variances as constants and hence
introduces a slight but generally negligible error. The same assumption also justifies
to ignore the bias of the empirical correlation coefficients in Eq. 10.
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B. Available computer software

The shrinkage estimator of the covariance matrix described in this paper is im-
plemented in the R package “corpcor”. This package also contains functions for
computing (partial) correlations. The analysis and visualisation of the gene ex-
pression data was performed using the “GeneTS” R package. Both packages are
distributed under the GNU General Public License and are available for down-
load from the CRAN archive athttp://cran.r-project.org. “GeneTS” is
also available from Bioconductor (http://www.bioconductor.org) and from
http://www.statistik.lmu.de/~strimmer/software/genets/.
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