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PREFACE 

 

 

 

 

The Workshop on Computational Systems Biology has been organized annually by the 

Computational Systems Biology research group in the Department of Signal Processing at 

Tampere University of Technology (TUT). The history of the workshop traces back to 

2003, when it was organized for the first time as an internal meeting with some invited 

international collaborators. Since then the meeting has grown each year witnessing a rapid 

development in experimental biosciences and growth in the research of computational 

methods in systems biology. 

 

This year the program committee set the target to making the event more international, as 

well as emphasizing the quality and significance of the research papers published in this 

proceedings book. Therefore in 2008 the workshop is organized in Leipzig, Institute for 

Medical Informatics, Statistics and Epidemiology (IMISE), Germany, together with 

collaborators from University of Leipzig and Dortmund University of Technology. The 

joint organization has proved to be smooth and successful - we are having a record 

number of international participants. We have brought together the various communities 

involved in the different aspects of computational systems biology research, e.g. 

experimental biology, machine learning, signal processing, statistics and theoretical 

physics. The workshop program together with the range of published papers demonstrate 

an increasing sphere of influence of WCSB. 

 

This volume is the collection of the research papers and short abstracts submitted to 

WCSB2008. We would like to thank the authors and the reviewers for their contribution 

to this workshop. We are also grateful for the contribution of organizers in Finland and 

Germany for their efforts. We would also like to thank Finnish Academy of Sciences, 

Tampere Graduate School in Information Science and Engineering (TISE), Tampere 

International Center for Signal Processing (TICSP), Research Training Group "Statistical 

Modelling", Department of Statistics, Dortmund University of Technology, and Max 

Planck Institute for Evolutionary Anthropology for their support. 

 

 

On behalf of the WCSB 2008 Scientific committee, 

 

Olli Yli-Harja 
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Qualitative Modeling and Simulation of Bacterial
Regulatory Networks

Hidde de Jong

INRIA Grenoble-Rhône-Alpes, France
Hidde.de-Jong@inrialpes.fr

The adaptation of living organisms to their environment is controlled at the molec-
ular level by large and complex networks of genes, mRNAs, proteins, metabolites, and
their mutual interactions. We have analyzed the network of global transcription reg-
ulators controlling the adaptation of the bacterium Escherichia coli to environmental
stress conditions. Even though E. coli is one of the best studied model organisms, it
is currently little understood how a stress signal is sensed and propagated through the
network of global regulators, and leads the cell to respond in an adequateway. We have
modeled the carbon starvation network of E. coli and applied various model reduction
methods in order to overcome the current lack of quantitative data on kinetic parame-
ters. The qualitative dynamics of the resulting simplified piecewise-affine differential
equation model can be studied using discrete abstraction approaches from hybrid sys-
tems theory. This has allowed us to identify essential features of the transition between
exponential and stationary phase of the bacteria and to make new predictions on the
qualitative system behavior following a carbon upshift.





EVOLUTION OF MOLECULAR NETWORKS

Martin Lercher

Heinrich-Heine-Universität, Düsseldorf, Germany
lercher@cs.uni-duesseldorf.de

How do complex molecular systems evolve? Which types of genes are gained
and lost in response to environmental changes? How are such new genes integrated
into the regulatory circuits of an organism? Horizontal gene transfer among bacteria
provides a rich data source for the study of these phenomena. Genes gained by (or lost
from) metabolic networks act mostly at the cell´s interface to the environment, and are
generally environment specific. Constraining evolution to gene losses, as has happened
in endosymbionts, even allows the model-based prediction of evolutionary outcomes.
While newly added components need to be active immediately to provide selective
advantages, their regulatory fine-tuning proceeds surprisingly slowly, often spanning
millions of years.





UNCOVERING STRUCTURE AND MOTIFS
IN BIOLOGICAL NETWORKS

Stéphane Robin

UMR 518 AgroParisTech / INRA Appl. Math. Comput. Sc., France
Stephane.Robin@agroparistech.fr

Getting and analysing biological interaction networks is at the core of systems bi-
ology. To help understanding these complex networks, many recent works have sug-
gested to focus (i) the global topology of the network and (ii) on motifs which occur
more frequently than expected in random.

Looking for a latent structure is one of the many strategies used to better under-
stand the behaviour of a network. Several methods already exist for the binary case.
We present a model-based strategy to uncover groups of nodes in both binary and val-
ued graphs. This framework can be used for a wide span of parametric random graphs
models. Variational tools allow us to achieve approximate maximum likelihood esti-
mation of the parameters of these models. We provide several examples, showing that
the proposed methodology can be applied to a broad range of biological networks.

To identify exceptional motifs in a given network, we propose a statistical and an-
alytical method which does not require any simulation. For this, we first provide an
analytical expression of the mean and variance of the count under any stationary ran-
dom graph model. Then we approximate the motif count distribution by a compound
Poisson distribution whose parameters are derived from the mean and variance of the
count. Thanks to simulations, we show that the quality of our compound Poisson ap-
proximation is very good and highly better than a Gaussian or a Poisson one. The
compound Poisson distribution can then be used to get an approximate p-value and to
decide if an observed count is significantly high or not.

We compare our method to the Mfinder software on PPI data and discuss the choice
of a relevant random graph model to detect over-represented motifs.

Joint work with J.-J. Daudin, M. Koskas, M. Mariadassou, F. Picard and S. Schbath.





BAYESIAN INFERENCE FOR STOCHASTIC
MODELS OF INTRACELLULAR REACTION

NETWORKS

Darren Wilkinson

School of Mathematics and Statistics, Newcastle University, UK
d.j.wilkinson@ncl.ac.uk

This talk will provide an overview of computationally intensive methods for con-
ducting Bayesian inference for the rate constants of stochastic kinetic models of reac-
tion networks using single-cell time course data. Inference for the true Markov jump
process is extremely challenging in realistic scenarios, so it is sometimes useful to re-
place the "true" model with a diffusion approximation, known in this context as the
Chemical Langevin Equation (CLE). Inference for the CLE is also challenging, but the
development of effective algorithms is possible, and turns out to be extremely effective,
even in scenarios where one would expect the diffusion approximation to break down.
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ABSTRACT 

In bioprocesses, bacteria can be used as cell factories for 
producing small molecules. In order to maximize the 
yield of the product of interest, cultivation conditions 
can be optimized and bacteria can be genetically mod-
ified. Metabolic capabilities of a bacterium can be com-
putationally approximated using a reconstruction of its 
metabolic network. Here, we present a computational 
tool called Bioptima which predicts metabolic modifica-
tions needed to improve the yield of a user-defined 
compound. The tool uses optimization algorithms that 
inactivate reactions in the given metabolic reconstruc-
tion and, on the other hand, insert new reactions from 
the KEGG metabolic database. The metabolic yields are 
calculated using flux balance analysis implemented in 
COBRAToolbox, and the KEGG database is accessed 
using Medicel Integrator platform. 

1. INTRODUCTION 

During evolution, micro-organisms have specialized to 
grow in their specific environment. They maintain me-
tabolism that produces specific metabolites which they 
need for growth and survival. The ability of a cell to 
produce various substances can be exploited in biopro-
cesses which aim at producing a specific compound for 
the needs within medicine, bioenergy production, etc. 
Because the cell adjusts its metabolic fluxes on the basis 
of its own needs, it may not produce the desired com-
pound as much as it could. Therefore, the metabolic 
fluxes may need to be redirected in order to maximize 
the yield of the compound of interest. 

Metabolic processes of a cell may be controlled to a 
certain degree using various factors during cultivation, 
such as pH, nutrients, oxygen, and loading rate of a bio-
reactor. In addition to these environmental factors, ge-
netic modifications can be used to direct metabolic flux-
es towards the desired pathways. New metabolic routes 

can be introduced by addition of genes which products 
are metabolic enzymes. On the other hand, gene knock-
outs can block the production of the respective metabol-
ic enzymes and, therefore, result to inactivation of me-
tabolic pathways. 

A central issue in genetic modifications is their tar-
geting. One choice is not to address this question at all. 
In that case, genetic mutations are produced randomly, 
and the best mutations are chosen by a screening me-
thod. Another choice is to design modifications rational-
ly. The advances in high-throughput genome sequenc-
ing techniques, efficient database-based annotation 
tools, and the wealth of biochemical and cell physiolog-
ical literature have made it possible to produce genome-
scale metabolic reconstructions for several micro-
organisms (see, e.g., [1, 2, 3, 4, 5]). These reconstruc-
tions can be used in system-level modeling approaches 
to facilitate strain design where the effects of genetic 
modifications are predicted in silico. 

This work presents a computational tool for rational 
strain design. The approach has similarities with [6] 
and [7] since it includes a bi-level optimization strategy, 
and it uses a large reaction repository. The main differ-
ences are in the optimization methods, in the use of the 
computational platform, and in the data import me-
thods. The Bioptima tool is provided for public use un-
der GNU GPL license. It can be downloaded from 
http://www.cs.tut.fi/sgn/csb/. 

2. MATERIALS AND METHODS 

Figure 1 illustrates the main steps of the computational 
strain design procedure: import of a metabolic model, 
modifying the model using a reaction repository, and 
two optimization tasks. These steps are discussed next. 

2.1. Metabolic network model 

Systems biology markup language (SBML) [8] is a 
widely used exchange format for biochemical network 



models. A network model is imported to the tool as an 
SBML file that contains lower and upper bounds for 
reaction rates together with structural information of the 
network. 

2.2. Additional metabolic reactions 

During the optimization procedure, the tool is able to 
add such metabolic reactions to the model which do not 
exist there originally. These reactions are chosen from a 
reaction repository which is built using Medicel Integra-
tor platform [9]. The repository contains all those meta-
bolic reactions from Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [10] which conserve matter. The 
total number of different biochemical transformations in 
the repository is about 5000. 

2.3. Bi-level optimization strategy 

The optimization contains two nested optimization 
problems, as presented in Figure 1. 

The outer optimization introduces additions and de-
letions of metabolic reactions into the model, checks the 
production of a user-defined compound, and aims to 
improve its yield. The first option to resolve this optimi-
zation problem is a greedy algorithm. The greedy algo-
rithm tests different reaction additions and deletions, 
and accepts only those modifications which improve the 
value of the objective function (i.e., the production of 
the compound of interest). The second option to resolve 
the outer optimization problem is a simulated annealing 
algorithm [11]. In this case, the algorithm tests addi-
tions and deletions, but their acceptance is based on a 
probability function. In the beginning, the algorithm 
may accept such modifications which worsen the value 
of the objective function. During its execution, the prob-
ability to accept these modifications gets gradually 
smaller and, finally, the algorithm becomes greedy. 
Both optimization methods are iterative. Their execu-
tion is stopped if the maximum number of iterations is 
obtained, the maximum number of modifications is im-
plemented, or if the theoretical maximum yield for the 
compound of interest is obtained. 

The inner optimization procedure predicts the re-
sponse of a cell to the modifications in its metabolic 
network. A common assumption in metabolic modeling 
is that micro-organisms aim at maximizing their bio-
mass production and, when the metabolic model is ac-
curate enough, the respective metabolic flux distribution 
can be estimated using flux balance analysis (FBA) [1]. 
In FBA, the fluxes through reactions are resolved with 
the help of linear programming optimization. An opti-
mization task is set up using the knowledge of the struc-
ture of the metabolic network, stoichiometric coeffi-
cients of reactions, lower and upper bounds of reaction 
rates, and a steady-state assumption for compounds 
which cannot be freely exchanged with the extra- 

 
 
Figure 1: Overview to the optimization procedure. 
Compound X is a user-defined compound which yield is 
to be maximized. 

 
cellular environment. Bioptima uses COBRAToolbox 
[12] which implements the needed functionality related 
to FBA. The optimization procedures of Bioptima are 
implemented using Matlab programming environment 
[13]. 

3. RESULTS 

As a usage example of the tool, we searched for such 
reaction deletions and additions which predict improved 
hydrogen production for Escherichia coli. 

The model of the metabolic network of E. coli was 
obtained from [4]. The rate constraints of the exchange 
reactions of the model were set to simulate anaerobic 
cultivation conditions. In order to make hydrogen pro-
duction possible by the model, the rate constraints of 
one reaction had to be loosened. Maximization of hy-
drogen secretion was set as the objective of the outer 
optimization procedure, and maximization of biomass 
production was set as the cellular objective in the inner 
optimization. 

Simulated annealing algorithm was set to perform at 
most 2000 iterations, to make at most 50 modifications 
to the network, and to keep biomass production rate 
always greater than 0.1 1/h. After 26 implemented dele-
tions and 24 implemented additions the initial hydrogen 
production rate 14.1 mmol/gDW/h was improved to the 
rate 17.2 mmol/gDW/h. Because of the nature of the 
simulated annealing algorithm, all the made modifica-
tions did not improve the value of the objective function. 
After the algorithm stopped, these modifications were  



Figure 2. Hydrogen production limits for wild-type and 
mutant strains of E. coli under anaerobic conditions. In 
both cases, a line limits an area that describes the possi-
bilities of a cell to produce hydrogen while maintaining 
different growing rates. The upper right corners are the 
points where the wild-type and mutant cells meet their 

growth objectives. 
 

searched and removed from the list of modifications. 
The final mutant network, containing three additions 
and three deletions, had hydrogen production rate of 
17.3 mmol/gDW/h. Figure 2 illustrates the characteris-
tics of the wild-type E. coli metabolic network and the 
mutated network. The mutant is unable to grow as fast 
as the wild-type, but it produces more hydrogen when it 
maximizes its biomass production. This indicates that 
the mutations were able to redirect the metabolic fluxes 
to the desired direction where the cell overproduces hy-
drogen while pursuing its own objective. 

4. CONCLUSION 

The number of metabolic reconstructions increases 
along with the advances in molecular and cellular biol-
ogy and information technology infrastructure. In addi-
tion, the sizes of the reconstructions grow, and they be-
come more detailed. The reconstructions can be used to 
facilitate rational strain design where microbes are used 
as cell factories, and their cultivation conditions and 
metabolic capabilities are optimized for this purpose. 

In this work a computational tool Bioptima was de-
veloped. Given a metabolic reconstruction, the tool sug-
gests modifications which are needed to improve the 
yield of a user-defined compound. The use of the tool 
was demonstrated using hydrogen production in E. coli 
as an example. 
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ABSTRACT

As remote homology detection remains a challenging task,
even for powerful methods like Support Vector Machines
(SVMs), we suggest adding biological information to im-
prove classification performances. Contrary to SVMs in-
volving large feature spaces, an expert focuses only on a
specific clue. Following a Bayesian approach, an expert
associates to each candidate a membership probability es-
timate that can be combined to an SVM classifier. This
hybrid machine learning system is composed of an SVM
classifier and experts has been tested on a particular fam-
ily, namely the cytokines. Our use of four SVM methods
and four different experts demonstrated that this technique
greatly improves the classification performances.

1. INTRODUCTION

Homologs are proteins which arise from a common ances-
tor. This definition leads to the notion of protein family
where each member is homolog to the others. The re-
search of all its members is a primary step to understand
a protein family, and many methods of homolog detection
have been developed to this purpose. Common strategies
include similarity-search [1], structure-based alignments
[2] or supervised classification methods [3]. Among them,
machine learning approaches and especially the Support
Vector Machine (SVM) [4] outperform the others. Sev-
eral SVM classifiers , [5], , [6] were developed, but de-
spite their efficiency, the research of homologs remains a
challenge for some families. An example of such a family
is the four-helix bundle cytokines (refered to as the four-
helix cytokines in the following). These proteins are in-
volved in intercellular signal transmission and are partic-
ulary known for their roles in inflammation and immune
response.
To solve this problem, we propose a new strategy of ho-
molog detection, based on an SVM classifier combined
with the specific knowledge of the family studied. This
approach associates the efficiency of a generic classifier
with the specificity of particular features selected by the
biologist to characterize the family.
In this paper, we will first describe how to design experts
based on specific criteria and show four examples of ex-
perts for the four-helix cytokines. Then, we will demon-

strate that the association of these experts with an SVM
classifier taken from the literature can improve the identi-
fication capacity of the latter.

2. EXPERTS

2.1. What is an expert ?

An expert can be defined as a tool which adds a biological
knowledge to a classification system. An expert does not
need to have its own discriminating power, but consistute
an auxiliary support to impove the classification perfor-
mances. Multiple experts can be designed for the same
problem, and combined to provide more information to
the system.

Practically, an expert uses a criterionc to estimate the
probabilityp that a candidate belongs to the investigated
family. Let F represent the classification variable. In our
case, there are only two classes:f (the positive class, i.e.
the four-helix cytokines) or¬f (the negative class). A
Naive Bayes classifier is a function that assigns a class
label to an examplee. According to Bayes’rule, the prob-
ability of an examplee being classf is :

p(f |e) =
p(e|f)p(f)

p(e)
(1)

e is classified as the classF = f if and only if

B(e) =
p(F = f |e)

p(F = ¬f |e)
≥ 1

In our approach, we only use the probability estimate given
by Eq.1, since the expert is designed to be associated with
another classifier and different experts.

2.2. Exemple of experts

To illustrate this concept, four automated experts where
designed for the four-helix cytokines using the criteria de-
scribed below.

2.2.1. Length of sequence

Most of the four-helix cytokines have a length between
76 and 232 amino acids, which is a narrow range in com-
parison with that of the human genome proteins. Thus,



length-based expert (L-expert) can partially discriminate
candidates, especially those with an irrelevant length.

2.2.2. Molecular weight

The molecular weight of a substance is defined as the mass
of one molecule of that substance, relative to the unified
atomic mass unitu (equal to1/12th the mass of one atom
of C12). This feature is commonly used by biologists to
characterize the size of a protein and is easy to compute
from the protein sequence, using tools like the BIOJAVA
API. [7]. Four-helix cytokines often use the same cellular
components, suggesting they share physico-chemical fea-
tures to interact with them. Following this idea, a molec-
ular weight expert (MW-expert) can underline candidates
having comparable features with the four-helix cytokines.

2.2.3. Isoelectrical point

The isoelectrical point is the pH where a given molecule
is in a zwitterionic state,i.e. it carries no net electrical
charge. Conveniently, isoelectrical point can be computed
from the protein sequence itself using the BIOJAVA API.
Like with the molecular weight, an isoelectrical point ex-
pert (IP-expert) may be used to highlight candidates dis-
playing physico-chemical features common with the four-
helix cytokine.

2.2.4. Secondary structure

More than the sequence, the protein structure (or tertiary
structure) is a well conserved feature in protein families.
Due to the low number of tertiary structures resolved and
the difficulty to predict them, it is impossible to directly
use this criterion to evaluate candidates. The secondary
structure defined as the sequencial chaining of local struc-
tures of amino acids is, in the case of the four-helix cy-
tokines, as well conserved and far more computationally
tractable than the tertiary one. The secondary structure
can be predicted from the protein sequence by using soft-
ware like PSIPRED [8]. To compare the secondary struc-
ture of a candidate with that of four-helix cytokines ones,
we propose to use the SOV criterion [9]. The SOV com-
putes a similarity score between two structures. This score
ranges from 0 to 1. A score of 0 means that the struc-
tures have no residue in the same local structure state and a
score of 1 means that the two structures are identical. Thus
the secondary structure expert (SS-expert) can reveal can-
didates sharing structural similarities with the four-helix
cytokines, which is a strong evidence that they may be-
long to that family.

3. EXPERT EVALUATION AND DISCUSSION

To demonstrate the interest of the experts, we have ana-
lyzed the combination of the four experts described above
with an SVM classifier for the detection of four-helix cy-
tokines.

3.1. SVM classifier

Our approach involves a classifier associated with experts.
As noted above, SVM classifiers [4] are the most efficient
classifiers for homolog detection.

SVMs operate a mapping of a training set into a high di-
mensional feature space. A hyperplane boundary is de-
fined between the positive and the negative classes so that
the separation plane maximizes a margin from any point
of the training set. An unlabelled point can then be pre-
dicted by simply considering the space region where it
lies. The SVM technique has been applied with the LIB-
SVM API [10] allowing to compute a membership proba-
bility instead of a simple boolean value.
As SVM requires that the input be fixed-length numeric
vectors, a feature extraction technique is generally used
to transcribe the variable-length strings representing the
sequences into real vectors. Several SVM classifiers were
developed especially for biomedical data. They differ only
by their feature extraction technique.
The SVM classifier, we used, called LA kernel[6], is known
to be very efficient at detecting remote homologs. The
classifier compares a sequences with a collection of known
proteins. This learning set is composed ofk positive and
negative examples. The sequence is transformed into a
numeric vector of lengthk for which theith component
represents a similarity measure betweens and theith se-
quence of the learning set. This value is given by the
Smith-Waterman algorithm (SW ), which is a widely-used
local alignment method. Yet, instead of considering only
the best local alignment, LA kernel performs a summation
over all the possible ones. The classifier is trained by con-
sidering each sequence of the training set like an unknown
sequence and using thek − 1 other to compute the SW-
score. The highest score obtained this way is also used as
thekth score to avoid bias due to alignment of a sequence
against itself.

3.1.1. Methods

To combined LA kernel with the experts, we used the un-
weighted arithmetic mean. Although this choice of agre-
gation operator seems naive, it can be justified by the fact
that this operator gives each of its components the same
weight, allowing us to equally appreciate the contribu-
tion of each expert. Combination of the expert member-
ship probabilities into the SVM classifier together with
the sequence-based features was tested. This aggregation
method gives classification results similar to LA kernel
alone, probably because of a low influence of the experts
in the choice of the support vectors due to their weak dis-
criminating power.
To classify the sequence, we have ranked them according
to their average membership probability over LA kernel
(see 3.1) and the experts used in the agregation. As a mea-
sure of performance, we used the Area Under ROC Curve
(AUC)[11]. An example of ROC curve is given in fig.1
TheAUC is defined as:

AUC =
Σn+

i=1Σ
n−

j=11g(x+

i
)>g(x−

j
)

n+n−
(2)

whereg(.) is the scoring function used for the ranking (in
our case, the natural ordering),x+ (resp. x−) represents
a positive (resp. negative) example,n+ (resp. n−) their



number, and1π is the indicator function (equals to 1 if the
predicateπ holds and 0 otherwise). This indice returns
a score between 0 and 1 which can be interpreted as the
probability that a positive example (i.e. a cytokine) will
achieve a higher score than a negative one (i.e. a negative
example), when both examples are selected at random. An
AUC of 1 means that all positives are ranked before the
negatives, anAUC of 0 means the contrary and anAUC
of 0.5 means that the positives and the negatives are ran-
domly ranked.
This approach is more interesting than assigning a label
to each sequence and calculating the accuracy of classi-
fication because we are directly working on rank without
having to define an arbitrary threshold.

3.1.2. Dataset

We have used a dataset of 30 four-helix cytokines and
6493 negative examples from the data base SCOP [12].
This dataset was split into two subsets : a learning set
and an evaluation set. Experiments demonstrate that clas-
sification accuracy saturates when using more than 100
negative examples in the learning set (data not shown).
Thus, we have designed learning sets with 15 four-helix
cytokines and 100 negative examples, randomly drawn
from the dataset. From the remaining data (15 four-helix
cytokine and 6393 negative examples), we kept the four-
helix cytokine and the 200 negative examples with the
highest membership probability obtained from LA kernel.
This selection was performed in order to keep only the
highest-ranked candidates, as would do a human expert.
These 215 candidates consitute the evaluation set. This
operation was repeated 100 times to obtain 100 learning
set/evaluation set couples. LA kernel and the experts were
trained on learning sets and are used to classify the asso-
ciated evaluation sets.
For each candidate, the unweighted mean of the member-
ship probabilities given by LA kernel and the four experts
was taken and used to rank the candidates, then theAUC
was computed to assess the quality of the final ranking.

3.2. Results

Table 1 summarizes results from 100 different data sets.
The ∆AUC indicates the gain of performance achieved
by using experts. The gain is the difference ofAUC be-
tween LA kernel alone and the agregation of LA kernel
and various combinations of experts.

The averageAUC of LA kernel alone over the 100
trials is 0.695 with a standard deviation of 0.02.

These results show that all combination of experts, except
one, have a positive∆AUC, indicating that the associ-
ations of LA kernel with experts outperforms LA kernel
alone. Furthermore, it must be noted that, in general, the
more experts we add, the more the classification perfor-
mance increases, suggesting that all experts have a posi-
tive influence on the classification accuracy.
In fact, all combinations of experts are not equivalent. The
IP-expert seems less efficient than the others as demon-

L SS IP MW ∆AUC
⋆ 0.043

⋆ 0.068
⋆ -0.019

⋆ 0.05

⋆ ⋆ 0.132
⋆ ⋆ 0.067
⋆ ⋆ 0.107

⋆ ⋆ 0.092
⋆ ⋆ 0.134

⋆ ⋆ 0.062

⋆ ⋆ ⋆ 0.156
⋆ ⋆ ⋆ 0.169
⋆ ⋆ ⋆ 0.117

⋆ ⋆ ⋆ 0.146

⋆ ⋆ ⋆ ⋆ 0.174

Table 1.∆AUC obtained by the association of LA kernel
with different combination of experts LA = LA kernel, L
= length (L-) expert, SS = Secondary Structure (SS-) ex-
pert, IP = Isolectrical Point (IP-) expert, MW = Molecular
Weight (MW-) expert

strate the negative∆AUC when associated with LA ker-
nel alone. Likewise, associations containing the IP-experts
have the lowest∆AUC among the associations with the
same number of experts. For example, when considering
the association of two experts with LA kernel, the asso-
ciations LA+L+IP, LA+SS+IP and LA+IP+MW have the
lowest∆AUC. The same observation can be made for the
association of three experts with LA kernel. This strongly
suggests that the isoelectrical point adds less information
than the other experts to the classification. Yet, in the four-
expert combination,∆AUC is higher than in every three-
experts ones, suggesting that the IP-expert adds a useful
information to the classification.
Combinations involving either L-expert or the MW-expert
show comparable∆AUC. However, the L-expert seems
to slightly outperform the MW-expert in the three-expert
association (0.146 for the LA+SS+PI+MW association vs
0.156 for the LA+L+SS+IP one). Like with the IP-expert,
the comparison between the four-expert association and
every three-expert associations shows that the combina-
tion of the two is required to achieve the highest∆AUC.
Finally these results demonstrate that the SS-expert adds
the most useful information, as all combination contain-
ing it have the highest∆AUC among the combinations
with the same number of experts.
Figure 1 shows a representative example of ROC curve

of LA kernel alone (dashed line) and LA kernel combined
with the four experts (plain line). One can note a signif-
icant increase of the ROC curve. This is especially true
for the results of fig.1 : one observes that LA kernel has
placed a set of negative candidates at the middle of the
ranking (at true positive rate 0.6 on the curve). The agre-
gation of experts clearly correct this misranking.
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Figure 1. An example of ROC curves. A binary clas-
sifier defines a membership estimate and uses a decision
value to separate two classes. This cut point determines
the individuals considered as positives. Among these, ac-
tual positives are called true positives (TPs) whereas ac-
tual negatives are called false positives (FPs). Each point
of the ROC curve depicts a cut point which determines the
rate of TPs and FPs. The closer the curve follows the left-
hand border and then the top border of the ROC space, the
more accurate the classifier is.

3.3. Discussion

In this article, we have proposed a new strategy of ho-
molog detection, based on a standard classifier of the lit-
erature, combined with information specific to the fam-
ily studied. We have explained how this information can
be exploited through experts and shown four examples of
experts in the case of the four-helix cytokines. We have
tested this strategy by combining the experts previously
discribed with LA kernel, an SVM classifier known to be
one of the best for homolog detection. Our results allow
us to draw several conclusions.
First, the experiments clearly demonstrate the validity of
our approach, as almost every combination of experts with
LA kernel achieve better performances than LA kernel
alone. The results also point out that some experts are
more interesting than others. This is especially true for
the SS-expert, which is not surprising as secondary struc-
ture is a well conserved feature among the four-helix cy-
tokines. However, all the experts bring valuable informa-
tion and thus are needed to obtain the best performances.
Although this work was dedicated to the four-helix cy-
tokines, the strategy of combining classifiers with spe-
cific experts, can be generalized to any homolog detection
problem.

Perspectives of this work are two-fold. First, the possi-
bility of adding other experts and classifiers can be inves-
tigated, in order to determine the optimal association that
maximize the classification performances. Secondly, our
agregation strategy is very simple. The combination of
classifiers has long been proposed as a method to improve
the accuracy achieved in isolation by a single classifer. An
evaluation of other agregation methods can be conducted

to suggest different means of combining experts and clas-
sifiers. A comparison of different approaches, based on
metaheuristics, fuzzy techniques and meta-classification
are currently investigated.
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ABSTRACT

Nonlinear models based on systems of ordinary differ-
ential equations have been successfully employed to de-
scribe the behaviour of a wide range of complex biologi-
cal processes. The main challenge when using such mod-
els lies in finding values for the free parameters which al-
low the model to reproduce the observed behaviour, and it
has recently been shown [1] that often there are multiple
sets of parameters which fulfil this requirement. Free pa-
rameters which admit a wide range of plausible values are
termed to be “sloppy”. In this paper we adopt a Bayesian
inference framework to examine the Repressilator model
[2]. In particular, we investigate how the number and
choice of observed species affects the “sloppiness” of the
inferred free parameters, which we measure in terms of
the difference between the prior and the posterior distri-
butions as measured by the Kullback-Leibler divergence.
We observe that different species may have varying infor-
mation content, which raises important questions regard-
ing the optimisation of experimental protocol.

1. INTRODUCTION

The use of mechanistic models based on systems of or-
dinary differential equations (ODEs) is of great impor-
tance in systems biology and they have been successfully
used to accurately describe the behaviour of a wide range
of biological systems. Such models can be considered
a codification of the underlying structure of the system,
and individual terms in the equations correspond directly
to the reactions believed to be taking place. This makes
it relatively straightforward to develop and encode new
hypotheses about complex biological systems in terms of
(often nonlinear) systems of ODEs. The main challenge
with this approach, however, lies in finding the parame-
ter values and initial conditions for each system of ODEs
that allow the model to reproduce the observed behaviour.
This becomes especially challenging as the complexity of
models increases, incorporating sometimes even hundreds
of free parameters.

It is difficult to accurately measure the biochemical
parameters directly as these are often reaction rates which
may potentially take on a range of values according to the
experimental conditions. Indeed, it has been observed that
for a particular model, there are often multiple sets of pa-
rameters that yield an accurate fit to the observed data.

This has been investigated recently in [1], where the au-
thors have shown that many published models in the area
of systems biology have “sloppy” parameter sensitivities.
Even though individual rate parameters were often poorly
constrained, it was found that tight uncertainties on the
model responses were still possible. The authors suggest
that uncertainty estimates should therefore be based on
sampling from all parameter sets which produce model re-
sponses consistent with the available data. It makes sense
then to adopt the Bayesian framework, which also allows
model comparison through Bayes factors, which can be
estimated using the inferred posterior distributions [3].

In reality not all chemical species may be measurable,
due to either technical or cost issues, and it is often there-
fore necessary to infer parameter values and initial condi-
tions based on observing only a subset of all the chemical
species present in the model. In this paper we investigate
the effect the number of observed species has on the “slop-
piness” of the inferred free parameters, which we measure
in terms of the difference between the prior and the pos-
terior distributions as measured by the Kullback-Leibler
divergence. This allows us to attempt to quantify the in-
formation content of particular observed species, which
could potentially enable us to guide experimental proto-
col in the most efficient manner.

We examine the Repressilator model, a synthetic net-
work of transcriptional regulators based on a cycle of re-
pressors. This symmetrical mathematical model, although
relatively simple may reproduce complex nonlinear oscil-
latory dynamics, and allows us to clearly see the extent to
which information content varies depending on the num-
ber and choice of species observed for the purpose of pa-
rameter inference. Such oscillatory systems are of partic-
ular interest, since many fundamental biological processes
exhibit this type of behaviour. Examples include the cell
cycle, photosynthesis in plants and many other processes
associated with circadian rhythms [4], the underlying de-
sign principles of which are still poorly understood despite
attempts to characterise their behaviour through the use
of complex ODE-based mathematical descriptions based
on the underlying biology [5]. In contrast, the Repressi-
lator was constructed with the emphasis on reproducing
function, and can then be compared to naturally occurring
networks to improve our understanding of them.
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Figure 1. A circuit diagram of the synthetic Repressilator
network. mRNA is represented by a rectangle and a pro-
tein by an oval. This loop of repressor proteins is capable
of exhibiting oscillatory responses.

2. THE REPRESSILATOR

The Repressilator is a synthetic network which was cre-
ated in Escherichia coli using a chain of three repressor
genes and their corresponding proteins [2]. The system
is capable of producing oscillatory responses, and is de-
scribed by the following equations

dml

dt
= −ml +

α

(1 + pn
c )

+ α0

dpl

dt
= −β(pl −ml)

dmt

dt
= −mt +

α

(1 + pn
l )

+ α0

dpt

dt
= −β(pt −mt)

dmc

dt
= −mc +

α

(1 + pn
t )

+ α0

dpc

dt
= −β(pc −mc)

where pl,t,c are the protein levels for LacI, TetR and CI
respectively, ml,t,c are the corresponding mRNA levels,
α and α0 are promoter strength parameters, β represents
the ratio of protein decay to mRNA decay and n is a Hill
coefficient, which is taken to be constant, n = 2, for this
paper. There are therefore 3 rate parameters and 6 ini-
tial conditions which must be inferred. Stability analysis
in [2] shows the sets of parameter values for which the
Repressilator system exhibits stable and unstable steady
states.

3. INFERENCE METHODS

The Bayesian framework is adopted, whereby parameter
samples are generated from the posterior distribution of
likely solutions. In addition to allowing for uncertainty

over “sloppy” parameters to be taken into account, the
Bayesian approach enables us to easily incorporate prior
information or beliefs about the system under study in a
principled and consistent manner. The posterior distribu-
tion provides us with an updated measure of our beliefs.
This distribution can be calculated from the likelihood and
prior distributions using Bayes’ Theorem

p(θ | Y, S) =

Likelihood︷ ︸︸ ︷
p(Y | θ, S)

Prior︷︸︸︷
p(θ)∫

p(Y | θ, S)p(θ)dθ︸ ︷︷ ︸
MarginalLikelihood

(1)

where θ is the set of model parameters, Y is the experi-
mental data, and S is the model, in this case defined by a
system of differential equations.

The likelihood probability distribution provides a mea-
sure of mismatch between the experimental data and the
model response given a set of parameter values, and ac-
counts for the many different types of error, both inherent
and experimental. We assume independent normally dis-
tributed errors across our experimental data, with variance
σm inferred for species m. In order to avoid numerical
problems when dealing with the products of small prob-
abilities, we work in log space when calculating likeli-
hoods, and the overall log likelihood is therefore the sum
of the logs of the likelihoods over all N data points for
each of the M observed species

log(p(Y | θ, S)) =
M∑

m=1

N∑
n=1

log(NYm,n
(ϕm,n(θ), σm))

(2)
where ϕm,n(θ) is the solution to the system of ODEs
defining the model S.

We place gamma priors with large variance over the
model parameters and the initial conditions of unobserved
species to reflect our lack of knowledge regarding their
“true” values. We employ lower variance Gaussian priors
over the initial values of observed chemical species cen-
tered on the first experimental data point measured.

3.1. Markov Chain Monte Carlo

We obtain independent samples from the posterior distri-
bution, p(θ|Y, S), by running Markov chains to conver-
gence over a product target density indexed by a tempera-
ture parameter t such that

p̃(θ|Y, S, t) =
N∏

n=1

p(θ|Y, S, tn) (3)

where tn ∈ [0, 1] and p(θ|tN ) = p(θ | Y, S). A time ho-
mogeneous Markov transition kernel which has p(θ|tN )
as its stationary distribution can be constructed from both
local Metropolis-Hastings proposal moves and global ex-
change moves between the tempered chains [6] thus al-
lowing freer movement within the parameter space. This



is important when investigating models with nonlinear re-
sponses since they often induce correspondingly nonlin-
ear likelihood surfaces, which are very uneven and diffi-
cult to sample from using conventional methods. 3 popu-
lations of 10 Markov chains were run simultaneously for
25,000 iterations and their convergence was monitored us-
ing Gelman’s R̂ statistic, which compares within-chain
and between-chain variance.

4. INFORMATION CONTENT ANALYSIS

We wish to investigate the effect the number of observed
species has on the “sloppiness” of the inferred free pa-
rameters. Sharper posterior distributions across the free
parameters mean a greater information content in the ob-
served data used for the inference procedure, since the
system has been better identified. We therefore use KL
divergence, measuring the difference between priors and
posteriors, to assess the “sloppiness” induced by the ob-
served data used. KL divergence between a prior, P , and
posterior, Ppost, is given by

KL(P ||Ppost) = EP

[
log

P

Ppost

]
= EP [logP ]− EP [logPpost] (4)

whereEP is the expectation with respect to the prior. Con-
veniently, the first term in Equation 4 can be calculated
analytically for the gamma priors employed in this paper,
since this is just the information entropy of a gamma dis-
tribution.

The second term in Equation 4 must be estimated since
the distribution of the posterior is not known analytically.
Given S samples drawn from the posterior, Ppost, using a
Markov chain, we may estimate the probability that some
value θ is drawn from the posterior by using a kernel den-
sity estimator. An approximation for Ppost(θ) is given by

P̂post(θ) =
1
S

S∑
s=1

Kh(θ, θs) (5)

where θs ∼ Ppost and Kh is some kernel density function
with positive support and width h. Substituting this into
Equation 4, written as an integral, we obtain the estimator

ÊP [logPpost] =
∫
P (θ) log

[
1
S

S∑
s=1

Kh(θ, θs)

]
dθ

≈ 1
N

N∑
n=1

log

[
1
S

S∑
s=1

Kh(θn, θs)

]
(6)

where θn ∼ P .

5. EXPERIMENTS AND RESULTS

For the Repressilator model in section 2, we sample from a
10 dimensional space consisting of 3 free rate parameters,
6 initial values and a variance parameter estimating the
noise present in the data.

Oscillatory experimental data is generated by allow-
ing the system to reach a limit cycle using the parameters
α = 50, α0 = 0.05 and β = 5, and then taking the initial
conditions at the time when LacI mRNA is at its maxi-
mum value in its cycle. 49 data points are observed for
each species from t = 0 to t = 24 at intervals of 0.5.
Gaussian noise is then added with variance set to 1 per-
cent of the standard deviation of all the data points for
each observed species.

All unknown parameters are inferred using the meth-
ods in section 3 based on the set of observed species. 5000
samples are drawn after convergence of the chains and
these are used to approximate the posterior distribution.
The KL divergence is estimated 10 times, each time using
100,000 samples drawn from the prior.

5.1. Experiment 1 - Number of Observed Species

We start with all 6 species observed and perform inference
over the 10 unknown values, although it is mainly the 3
free rate parameters, α, α0 and β, that we are interested
in. We repeat this inference step 5 more times, each time
reducing the number of observed species by 1. Figure 2
shows boxplots of the KL divergence estimates for each
of the 3 free rate parameters.

We note that the information content, as quantified by
the KL divergence, is least when observing just 1 species
and increases monotonically as the number of observed
species increases. The most drastic change in informa-
tion content occurs when the number of species being ob-
served is increased from 1 to 2.

5.2. Experiment 2 - Choice of Observed Species

We now perform inference with only 1 species observed
at a time. Figure 3 shows a boxplot of the KL divergence
estimates for parameter 1. We see that the information
content changes depending on which species is observed.

The Repressilator is a symmetric system with the 3
mRNA and protein pairs forming a loop. However, the
observed data used in the experiments is not symmetric
in that it was generated with LacI mRNA at the maxi-
mum level in its oscillatory cycle. We observe that the
information content decreases as the observed species be-
comes further separated from the LacI mRNA in the cir-
cuit. Since the genetic network forms a loop, the TetR
protein is the furthest distance away from theLacI mRNA.
It is interesting to note that it also has the lowest KL di-
vergence, and therefore the most “sloppiness” in the in-
ferred parameters. As we progress round the loop in both
directions towards the LacI mRNA we observe that the
information content increases to a maximum level, which
is when the level of LacI mRNA itself is measured.

6. CONCLUSIONS

We have shown how both the number and choice of species
observed affects the accuracy or “sloppiness” of the in-
ferred parameter distributions, as measured by the KL di-
vergence between the prior and posterior distributions over
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Figure 2. The boxplots in these figures show the KL di-
vergence estimates given the number of species observed
for the parameters α (top), α0 (middle) and β (bottom).
At first only the LacI mRNA level is measured. Addi-
tional species are then added sequentially, following the
loop round anticlockwise, until all species are observed.
So for 2 observed species, measurements of LacI protein
are also used. For 3 observed species, measurements of
TetR mRNA are added etc.

each parameter. This has important implications regard-
ing the design of experiments in which only limited mea-
surements may be taken due to perhaps technical or cost
issues, and raises important questions regarding the opti-
misation of experimental protocol.

Our results suggest that the structure of the proposed
model could be first analysed to determine the impact of
each species on the “sloppiness” of the parameters being
inferred. In our experiments we employed the symmet-
ric and relatively simple Repressilator model. Since cur-
rent working hypotheses of genetic networks describing,
for example, circadian rhythms typically consist of 10 or
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Figure 3. The boxplots in this figure show the KL diver-
gence for parameter αwhen observations from each of the
individual species are used one at a time. It is clear to see
that as the species used gets further away from the LacI
mRNA, which is at the start of its oscillatory cycle in the
experimental data, the KL divergence decreases. It then
increases again as the species used gets closer to the LacI
mRNA in the loop.

more species with upwards of 30 free rate parameters to be
inferred, further work is needed to examine how the infor-
mation content of species varies in larger, more complex
computational models.
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ABSTRACT

This paper presents a novel Beta-Gaussian mixture model,
BGMM, for clustering genes based on gene expression
data and protein-DNA binding data. An expectation max-
imization (EM) type of algorithm for Beta mixture model
is first developed and then combined with that of Gaus-
sian mixture model. This combined algorithm can jointly
estimate the parameters for both Beta and Gaussian dis-
tributions and is used as the core in the BGMM method.
Four well-studied model selection methods, Akaike infor-
mation criterion (AIC), modified AIC (AIC3), Bayesian
information criterion (BIC), and integrated classification
likelihood-BIC (ICL-BIC) are applied to estimate the num-
ber of clusters, and AIC3 works best for BGMM in our
simulations. Simulations also indicate that combining two
different data sources into a single mixture model can grea-
tly improve the clustering accuracy and stability. The pro-
posed BGMM method differs from other mixture model
based methods in its integration of two different data types
into a single and unified probabilistic modeling frame-
work, which provides a more efficient use of multiple data
sources than methods that analyze different data sources
separately.

1. INTRODUCTION

It has become more and more acknowledged that differ-
ent data sources offer information from different aspects,
and their combination can make the prediction more ro-
bust. Thus how to integrate different data types to make
the results more accurate has become one of the most chal-
lenging problems in the field of system biology. In the
context of gene clustering, gene expression data has been
widely used with the assumption that genes which have
similar expression pattern under different conditions have
similar cellular functions, are likely to be involved in the
same cellular processes [6]. This assumption might be too
ideal considering the complexity of real biological sys-
tems. However, if we could incorporate physical binding
information, such as the probabilities of certain binding
events occurring among gene products and genes (protein-
DNA binding data), into expression data based clustering
framework, the clustering results might be more trustable
with respect to similar cellular functions, processes and
co-regulation. In this study, we developed a clustering al-

gorithm which can cluster genes based on their expression
data and protein-DNA binding data.

Many unsupervised methods have been developed and
widely used in gene clustering. They can be roughly clas-
sified into three categories, which are heuristic, iterative
relocation and model-based methods [4]. The first two
approaches have problems with solving some basic prac-
tical issues such as ‘how to define the number of clusters’
and ‘how to handle outliers’. In model-based methods,
the first question can be recasted as the model selection
problem. For the second problem, the outliers can be han-
dled by adding one or more components which represent
a different distribution for them [4, 5]. Moreover, model-
based clustering methods outweigh approaches within the
other two categories in their statistical nature [4]. So in
this study, we choose model-based clustering as the frame-
work for unsupervised data fusion.

Expectation maximization (EM) algorithm is gener-
ally used to solve the problem of maximum likelihood
estimation with incomplete data, and thus is commonly
adopted in model-based clustering. Although EM algo-
rithm for Gaussian distribution is well-known, less infor-
mation is available about EM algorithm for other distri-
butions, not mentioning combinations of different distri-
butions. In our study, gene expression data and protein-
DNA binding data are integrated into a combined mix-
ture model. We first developed an EM type of algorithm
for beta distribution, and then combined it with that for
Gaussian distribution. Simulation results show that our
joint mixture model can yield better results compared with
either of its component models, which demonstrates the
idea that the more data that are integrated the better the
result turns out to be.

Criteria for model selection can be classified into likeli-
hood-based methods and approximation-based methods,
of which approximation-based methods are widely pre-
ferred by its simplicity and less computational cost [10].
These methods include penalized likelihood, closed-form
approximations to the Bayesian solution, and Monte Carlo
sampling of the Bayesian solution, among which penal-
ized likelihood method is most prevalent. Four well-known
penalized likelihood criteria, Akaike information criterion
(AIC), modified AIC (AIC3), Bayesian information cri-
terion (BIC), and integrated classification likelihood-BIC



(ICL-BIC) were tested in BGMM and its component mod-
els (Beta mixture model ‘BMM’, Gaussian mixture model
‘GMM’) in this study. AIC and BIC are commonly used
as the criterion for GMM [2, 5], and ICL-BIC is reported
to work better for BMM according to [5]. Our simulation
results suggest using AIC and AIC3 in BMM and BGMM
respectively and embrace the tradition of employing BIC
in GMM.

The following sections are organized as ‘Methods’,
‘Results’, and ‘Conclusions’. Section ‘Methods’ is di-
vided into two parts. In the first part, mixture model based
clustering and EM algorithm are discussed, where the clas-
sic EM for GMM, our EM for BMM, and the joint EM for
BGMM are all introduced. The second part of this section
introduces the formulation of four tested model selection
criteria (AIC, AIC3, BIC, ICL-BIC), and how the optimal
criteria for each model was chosen. In section ‘Results’,
we evaluated and compared the performance of BGMM
with BMM and GMM. In section ‘Conclusions’, we sum-
marized this study and discuss its possible extension and
applications to other problems, and mentioned the possi-
ble future work that is related to the proposed BGMM.

2. METHODS

2.1. Mixture model based clustering and EM algorithm

In model-based clustering method, each observation x is
drawn from a finite mixture distributions with the prior
probability πi, component-specific distribution fi and its
parameters θi. The formula is given as

f(x; Θ) =
g∑

i=1

πifi(x; θi), (1)

where Θ = {(πi, θi) : i = 1, . . . , g} is used to denote all
unknown parameters, with the restriction that 0 ≤ πi ≤ 1
for any i and that

∑g
i=1 πi = 1. Note that g is the number

of components in this model.
EM algorithm is then derived for the above model-

based clustering. The data log-likelihood can be written
as

log L(Θ) =
n∑

j=1

log(

[
g∑

i=1

πifi(xj ; θi)

]
), (2)

given X = {xj : j = 1, ..., n}, whose direct maximiza-
tion, however, is difficult.

In order to make the maximization of Equation 2 tracta-
ble, the problem is casted in the framework of incomplete
data. Define zji as the indicator of whether xj is from
component i, i.e., zji = 1 if xj is indeed from compo-
nent i, and zji = 0 otherwise. Then the complete data
log-likelihood becomes

log Lc(Θ) =
n∑

j=1

g∑

i=1

zji log (πifi(xj ; θi)). (3)

In the EM algorithm, E step computes the expectation

of the complete data log-likelihood which is denoted as Q

Q(Θ;Θ(m)) = EΘ(m)(log Lc|X)

=
n∑

j=1

g∑

i=1

τ
(m)
ji log (πifi(xj ; θi)), (4)

where Θ(m) represents the parameter estimates at iteration
m. M step updates the parameter estimates to maximize
Q. The algorithm is iterated until convergence. Note that
zs in Equation 3 are replaced with τs in Equation 4, and
the relationship between these two parameters is τji =
E[zji|xj , θ̂1, ..., θ̂g; π̂1, ..., π̂g]. The set of parameter es-

timates
{

θ̂1, ..., θ̂g; π̂1, ..., π̂g

}
is a maximizer of the ex-

pected log-likelihood for given τjis, and we can assign
each xj to its component based on {i0|τji0 = maxi τji}.

2.1.1. GMM and its EM algorithm

The most widely used and well known model-based clus-
tering method is finite GMM, in which each component
is assumed to follow a Gaussian distribution. In this study
we use the standard p dimensional normal distribution with
mean µi and unconstrained covariance matrix Vi for each
component in GMM [7]. We run the EM algorithm mul-
tiple times with different initial values, where fuzzy c-
means clustering algorithm is used for initialization, to
avoid possible local maxima.

2.1.2. BMM and its EM algorithm

In order to make the model-based method to work for data
within boundaries [0, 1], we developed a BMM with the
assumption that each component is a product of indepen-
dent beta distributions. The probability density function is
defined as

fi(x; αi, βi) =
p∏

j=1

xαij−1(1− x)βij−1

B(αij , βij)
. (5)

The details of our EM type of algorithm for BMM is
described below. First, initialize the parameters. αs and
βs for each component beta distribution k (k ∈ {1, . . . , p})
are initialized by method-of-moments so that their means
are randomly distributed within the range of x1k, . . . , xnk

and variances are equal for all clusters (g); and for πis,
they are initialized with the uniform probability 1/g. Sec-
ond, run E-step. Calculate τji with current parameters, ac-
cording to which xjs are clustered to their corresponding
clusters using zji0s (where {i0|τji0 = maxi τji}). Third,
run M-step to maximize Equation 3. Given the hard clus-
ters obtained in E-step, numerically estimate the new pa-
rameters α̂s and β̂s using the maximum likelihood prin-
ciple (matlab function ‘betafit’ is used here for this pur-
pose), and calculate the new π̂s by

π̂
(m+1)
i =

n∑

j=1

τ
(m)
ji /n, (6)

τ
(m)
ji =

π
(m)
i fi(xj ; α

(m)
i , β

(m)
i )

∑g
i=1 π

(m)
i fi(xj ;α

(m)
i , β

(m)
i )

. (7)



2.1.3. BGMM and its EM algorithm

EMs for BMM and GMM are combined into a single fram-
ework in BGMM with the assumption that, for each com-
ponent i, the expression and binding data are independent.
The procedures of parameter maximization for both data
types are the same as those for BMM and GMM, except
that the calculation of τs is the product of two distribu-
tions

τ
(m)
ji =

π
(m)
i fG

i (xj ; µ
(m)
i , V

(m)
i )fB

i (xj ;α
(m)
i , β

(m)
i )

∑g
i=1 π

(m)
i fG

i (xj ;µ
(m)
i , V

(m)
i )fB

i (xj ; α
(m)
i , β

(m)
i )

.

(8)
Note that the superscripts (G) and (B) of fs mean that
the parameters they represented are from GMM and BMM
respectively.

In this study, for each data set we run each EM al-
gorithm 100 times with different initial values. The con-
vergence threshold (where Q is used to monitor the con-
vergence) and maximum number of iterations were set to
0.0001 and 100 respectively for all the tested models, and
all the simulations have reached their convergences ac-
cording to the statistics stored during the simulations.

2.2. Model Selection

Four well-known approximation-based model selection cri-
teria, AIC [1, 2], AIC3 [2, 3], BIC [8, 9], and ICL-BIC [5]
are compared in BGMM and its component models, ac-
cording to which the optimal criterion for each model is
chosen. Calculations for the above criteria are defined in

AIC = −2 log L(Θ̂) + 2d, (9)
AIC3 = −2 log L(Θ̂) + 3d, (10)
BIC = −2 log L(Θ̂) + d log(nM), (11)

ICL−BIC = −2 log L(Θ̂) + d log(nM)

−2
n∑

j=1

g∑

i=1

τji log(τji), (12)

where d is the number of free parameters in its corre-
sponding model, and M in equations 11 and 12 is the
total dimension of the data (M =

∑W
w=1 Mw, Mw is

the dimension of data set w and W is the number of in-
put data sets). Note that −2

∑n
j=1

∑g
i=1 τji log(τji) is

the estimated entropy of the fuzzy classification matrix
Cji = (τji) [5].

The number of free parameters d are different in dif-
ferent models. In GMM, we have (p2 + p)g/2 σs, pg µs,
and g− 1 free πs (

∑g
i=1 πi = 1), so dG = (p2 + p)g/2 +

pg + g − 1. In BMM, as we have pg αs, pg βs, and also
g − 1 free πs, dB = 2gp + g − 1. In the joint model,
the number of free parameters is the sum of those in its
parents’ models minus one set of free πs, thus we have
dBG = dB + dG − (g − 1).

3. RESULTS

In this study, we compared the performance of BMM,
GMM and BGMM using two artificial datasets, which are
generated by a simplified model (we generate data from

a diagonal covariance model although our model assumes
unconstraint covariance). Both datasets are designed to
have three clusters and 60 by 4 dimensions (n = 60,
p = 4). Parameters for different dimensions within each
cluster are the same in the first data set but different in
the second one, called ‘non-mixed’ and ‘mixed’ cases re-
spectively. We designed two kinds of data for each data
type within each data set, namely ‘gB’, ‘bB’, ‘gG’ and
‘bG’, which are short for ‘good Beta’ (less noisy, Beta
distribution), ‘bad Beta’ (more noisy, Beta distribution),
‘good Gaussian’ (less noisy, Gaussian distribution), and
‘bad Gaussian’ (more noisy, Gaussian distribution) respec-
tively. We also designed two kinds of ‘bG’, ‘bGm’ and
‘bGv’, which are hard to be clustered compared to ‘gG’
with respect to means and variances respectively. Param-
eter settings for the datasets are listed in Table 1, where the
combination of ‘good Gaussian variance’ and ‘bad Gaus-
sian mean’ is ‘bGm’, and the combination of ‘good Gaus-
sian mean’ and ‘bad Gaussian variance’ is the case ‘bGv’.
All the simulations are repeated 20 times with randomly
generated data sets.

In order to choose the optimal model selection crite-
rion (with the highest score) for each model, we summed
up the number of hits of the correct number of clusters for
each data combination in both simulations. The summa-
tion results for AIC, AIC3, BIC, and ICL are 93, 71, 16
and 10 respectively in BMM, 8, 54, 64, 58 respectively
in GMM, and 35, 101, 43, 43 respectively in BGMM, ac-
cording to which AIC, BIC and AIC3 are chosen as the
criteria for BMM, GMM, and BGMM respectively.

We developed one scoring system for evaluating the
clustering accuracy, which is denoted as ‘E score’

ej(r) =
{

1 if ẑji = 1 and ri = Tj

0 otherwise

E = max
r∈R

n∑

j=1

ej(r)/n (13)

R =
{
r = (r1, . . . , rĝ) : ∀i 6= j ri 6= rj ;

ri ∈ {1, . . . , max{ĝ, g}}}.

In this scoring system, Tj denotes the ground truth clus-
tering membership of data j; R stands for all possible as-
sociating ways between the estimated and the true clus-
ters, where ri is the label of data belonging to component
i predicted by the clustering algorithm, and r is chosen
from labels 1, 2, . . . , max{ĝ, g} (ĝ and g are the largest
labels in the estimated and ground truth clustering respec-
tively); also note that e represents the individual score of
each gene, E is the average score of all the genes for each
repetition, ‘E score’ of each repetition is the one corre-
sponding to the optimal Q, and the final ‘E score’ of each
data set is the median of the 20 ‘E score’s. This scor-
ing system evaluates the overall performance of the model
since it not only records the accuracy of the results but also
reflects the influence of the criterion for model selection.

The comparison results of BGMM with its component
models are shown in Fig. 1. For expression data whose
variances are not too large, the joint model can improve



Data Data set 1 Data set 2
c1 c2 c3 c1 c2 c3

good alpha 10 20 25 15 20 25 20 20 25 15 5 1 20 1 30
Beta beta 20 10 20 20 15 20 25 20 25 15 5 20 1 30 1

bad alpha 10 15 17 15 10 25 20 10 5 15 12 30 25 30 35
beta 20 20 18 10 15 20 25 5 10 12 15 25 30 35 30

good mean 7 8 9 9 -9 11 -11 10 -10 12 -12 11 -11 13 -13
Gaussian variance 0.3 0.4 0.2 0.7 0.2 0.7 0.2 0.8 0.3 0.8 0.3 0.9 0.4 0.9 0.4

bad mean 7.5 8 8.5 9.5 -9.5 10 -10 9 -9 9.5 -9.5 10 -10 9 -9
variance 1 0.9 0.8 1 1 1.5 1.5 1.5 1.5 2 2 2 2 1 1

Table 1. Data sets designed for simulations
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Figure 1. Performance test of BGMM.

the clustering accuracy regardless of the quality of the data
compared with either of its component models (E scores
for cases ‘gB+gG’, ‘bB+gG’, ‘gB+bGm’ and ‘bB+bGm’
in BGMM are higher than those in GMM or BMM). How-
ever, if the expression data contains too much noise with
respect to large variances(‘gB+bGv’, ‘bB+bGv’), the joint
model does not necessarily yield better results. These re-
sults indicate that BGMM has the power of reinforcing
each component model with information from the other
one in both mixed and non-mixed cases but is sensitive to
the variances of the Gaussian distributed data.

4. CONCLUSIONS

This paper presents a novel method based on Beta-Gaussi-
an mixture model, BGMM, for gene clustering from mul-
tiple data sources. In this study, we integrated gene ex-
pression data and protein-DNA binding data, where ex-
pression data and protein-DNA binding data are assumed
to be of Gaussian and Beta distribution respectively. An
EM type of algorithm for estimating parameters from beta
distribution is developed and combined with the EM for
Gaussian distribution into a single framework, which is
used as the core of BGMM. In principle, this proposed
BGMM is not limited to the data we have used here, and
any data that can be modeled as Gaussian and Beta dis-
tribution could be integrated into this framework. This
work demonstrates one approach of integrating informa-
tion from multiple data sources. Data of other distribu-
tions can also be incorporated by joining EM algorithm of
that particular distribution into this framework in a similar
way. Therefore BGMM is applicable to many problems
and not limited to the particular problem considered here.

For future work, we will first apply our method to real
data, where a possible problem might be the computa-
tional complexity due to the large dimensions of the data.
Many techniques might be used to handle these problems
such as reducing the dimension of the data or employing
a faster EM framework. Second, we will integrate more
data types into the proposed mixture model framework,
where the most obvious start is to develope a stratified
BGMM [8] which could incorporate one more data source
by constructing the priors from a third data type.

5. REFERENCES

[1] H. Akaike, “A new look at the statistical identification
model”, IEEE Transactions on Automatic Control vol. 19,
pp. 716-723, 1974.

[2] C. Biernacki and G. Govaert, “Choosing models in model-
based clustering and discriminant analysis”, J. Statis. Com-
put. Simul., vol. 64, pp. 49-71, 1999.

[3] H. Bozdogan, “Model Selection and Akaike Information
Criterion (AIC): The General Theory and its Analytic Ex-
tensions” Psychometrika vol. 52, pp. 345-370, 1987.

[4] C. Fraley and A. E. Raftery, “Model-based clustering, dis-
criminant analysis, and density estimation”, Journal of the
American Statistical Association, vol. 97, no. 458, pp. 611-
631, 2002.

[5] Y. Ji, C. Wu, P. Liu, J. Wang, R. K. Coombes, “Applications
of beta-mixture models in bioinformatics”, Bioinformatics,
vol. 21, no. 9, pp. 2118-2122, 2005.

[6] D. X. Jiang, C. Tang, A. D. Zhang, “Cluster analysis for
gene expression data: a survey”, IEEE Transactions on
knowledge and data engineering, vol. 16, no. 11, pp. 1370-
1386, 2004.

[7] G. Mclachlan and D. Peel, “Finite mixture models”, John
Wiley & Sons, 2000.

[8] W. Pan, “Incorporating gene functions as priors in model-
based clustering of microarray gene expression data”,
Bioinformatics, vol. 22, no. 7, pp. 795-801, 2006.

[9] G. Schwarz, “Estimating the dimension of a model” Annals
of Statistics vol. 6, pp. 461-464, 1978.

[10] P. Smyth, “Model selection for probabilistic clustering us-
ing cross-validated likelihood”, Statistics and Computing,
vol. 9, pp. 63-72, 2000.



FEATURE REPRESENTATION OF DNA SEQUENCES FOR MACHINE 

LEARNING TASKS 

Robertas Damaševičius

Software Engineering Department, Kaunas University of Technology,  

Studentų 50-415, LT-51368, Kaunas, Lithuania 

robertas.damasevicius@ktu.lt 

 

ABSTRACT 

Recognition of specific functionally-important DNA se-

quence fragments is one of the most important problems 

in bioinformatics. Common sequence analysis methods 

such as pattern search can not solve this problem because 

of noisy data and variability of consensus sequences 

across different species. Machine learning methods such 

as Support Vector Machine (SVM) can be used for se-

quence classification, because they can learn useful de-

scriptions of genetic concepts from data instances only 

rather than explicit definitions. Before applying SVM 

classification one must define a mapping of classified 

sequences into a feature space. We analyze binary and k-

mer frequency-based feature mapping rules. The effi-

ciency of such rules is demonstrated for the recognition 

of promoters and splice-junction sites. 

1. INTRODUCTION 

Biomolecular data mining is the activity of finding sig-

nificant information in DNA, RNA and protein mole-

cules. The significant information may refer to peri-

odicities, motifs, clusters, genes, protein signatures, 

grammar rules and classification rules. Common methods 

are sequence alignment using dynamic programming 

(Needleman-Wunsch, Smith-Waterman) and substitu-

tion-matrix based methods (PAM, BLOSUM). However, 

such methods are not very effective for recognition of 

some types of DNA sequence such as promoters (short 

sequences that precede the beginnings of genes) or 

splice-junction sites (boundary points between exons and 

introns where splicing occurs), because of noisy data and 

large variability of consensus sequences across species. 

For such difficult cases machine learning techniques such 

as Support Vector Machine (SVM) are applied [1-6].  

SVM [7] is a supervised learning method for creating 

binary classification functions from a set of labeled train-

ing data. The accuracy of a particular parametric classi-

fier on a given dataset will depend on the relationship 

between the classifier and the available dataset [8].  

There are two groups of approaches for improving 

the classification results. The algorithmic approach fo-

cuses on improving or proposing new classification algo-

rithms or kernels, whereas the data processing approach 

focuses on modifying the dataset or extracting relevant 

features to improve the accuracy of classification. SVM 

requires that each data instance is represented as a vector 

of binary/real numbers in a feature space. Thus, if there 

are categorical attributes, we first have to convert them 

into numeric data. Good mapping of data into feature 

space can allow achieving better classification accuracy.   

Feature mapping rules such as binary mapping [9], 

frequency-based encoding [10], determinative degree 

[11], and features constructed based on a combination of 

various k-mers (k-base long sequences) [12-14] have 

been an object of extensive research. Here we analyze 

different position-dependent (binary) and position-

independent (frequency-based) data encoding schemes 

for nucleotides (A, C, G, T) and their groupings (S/W, 

K/M, R/Y), which can achieve optimal classification 

results for promoter and splice-site recognition problems.  

2. DNA MAPPING RULES 

Before applying SVM classification to the available 

dataset, first, one must define a mapping of classified 

objects to the feature space. This mapping is called a 

feature vector representation of the subject area. A fea-

ture space can be constructed using a) position-

dependent information, b) position-independent informa-

tion, or c) both position-dependent and position-

independent information about the presence or absence 

of specific nucleotides or their k-mers.  

A feature mapping rule can be described as a function 

FSM →ˆ: , where ( ) { }kiN TGCAssssS ,,,,,...,,ˆ
21 ∈=  

is a DNA sequence, N  is the length of a DNA sequence, 

isk = is the length of the mapped sequence, and 

( )MfffF ,...,, 21= , where { }ljf 1,0∈  in case of a binary 

feature space, or ℜ∈jf  in case of a real number feature 

space, M  is the length of a feature vector, ifl =  is the 

length (dimension) of a feature.  

Depending upon the values of k  and l , we classify 

binary feature mapping rules as the binary 41→ , 

21→ , 11→  and 12→  rules. Feature mapping rules 

based on k-mer frequency are categorized according to 

the DNA alphabet they are applied on. 



2.1. Binary mapping rules 

2.1.1. Binary 41→  rule 

An example of the 41→  rule is orthogonal encoding, 

where the nucleotides in a DNA sequence are repre-

sented by 4-dimensional orthogonal binary vectors: 

( ) ( ) ( ) ( )1000,0100,0010,0001 →→→→ TGCA   (1) 

For this rule, feature vector size is N4 . 

This rule allows achieving better classification results 

than the mapping of the nucleotides into 2-dimensional 

binary vectors, due to the identical Hamming distances 

between the nucleotide encodings [15]. 

2.1.2. Binary 21→  rule 

There are several methods to represent DNA nucleotides 

using a binary 2-bit code. Jiménez-Montaño et al. [16] 

suggested the rule 11C 10,T 01, G  00, A ==== . Stam-

buk [17] defined the rule 11 A  10,G  01,  C 00,  T ==== . 

Karasev and Stefanov [18] suggested the rule 

11A 10,G 01,T 00,C ==== . He et al. [19] used the 

rule  01A 11,G 10,T 00,C ==== .  

Actually, there are 24!4 =  such rules; however, only 

3 rules are essentially different, while the remaining rules 

can be obtained from these by inversion: 

Binary 1: ( ) ( ) ( ) ( )1,1,0,1,1,0,0,0 →→→→ TGCA  (2) 

Binary 2: ( ) ( ) ( ) ( )0,1,1,1,1,0,0,0 →→→→ TGCA  (3) 

Binary 3: ( ) ( ) ( ) ( )0,1,1,0,1,1,0,0 →→→→ TGCA  (4) 

For these rules, feature vector size is N2 . 

2.1.3. Binary 11→  rule 

The 11→  rules are unequal representation rules that 

map one nucleotide into 1 and the remaining nucleotides 

into 0. There are four such rules: A -rule, C -rule, G -

rule and T -rule [20]. These rules reflect the distribution 

of a particular type of nucleotides along the DNA se-

quence: 

A-rule: { }TGCBBA ,,,0,1 =→→   (5) 

C-rule: { }TGADDC ,,,0,1 =→→     (6) 

G-rule: { }TCAHHG ,,,0,1 =→→   (7) 

T-rule: { }GCAVVT ,,,0,1 =→→   (8) 

For these rules, feature vector size is N . 

2.1.4. Binary 12→  rules 

The 12→  rules are based on the grouping of the 4-letter 

DNA alphabet into two subsets of two nucleotides each. 

There are 3 different such partitions, therefore there are 3 

different binary mapping rules that map a nucleotide onto 

a binary number. Each of these rules represents a differ-

ent aspect of the DNA molecule structure. 

The SW mapping rule ({ }TA,  vs. { }CG, ) reflects the 

difference in the number of hydrogen bonds in the DNA 

molecule. Each strong ( S ) nucleotide (C  or G ) has 3 

hydrogen bonds, and each weak (W ) nucleotide ( A  or 

T ) has only 2 hydrogen bonds. This rule is particularly 

appropriate to analyze genome-wide correlations [21]. 

SW rule: },{},,{,0,1 GCWTASWS ==→→  (9) 

The RY rule ({ }GA,  vs. { }CT , ) describes how 

purines ( R ) and pyrimidines (Y ) are distributed along 

the DNA sequence. This rule corresponds to the chemi-

cal composition bias in the DNA strand. 

RY rule: },{},,{,0,1 TCYGARYR ==→→  (10) 

The KM rule ({ }CA,  vs. { }GT , ) describes how 

amines (M ) and ketones ( K ) are distributed along the 

DNA sequence. 

KM rule: },{},,{,0,1 TGMCAKMK ==→→ (11) 

For these rules, feature vector size is N . 

2.2. K-mer frequency rules 

K-mers are lists or ordered sets of nucleotide sequence 

elements, which can be described as a k-tuple 

( )ka, . . . , , aa 21 , where Sai
ˆ∈  for all k , . . . 2, 1,  i = . 

Feature vector is constructed using a frequency (or prob-

ability) 
1+−

=
kN

n
p

j
j  of each k-mer in a N -length 

sequence Ŝ , where jn is the number of j -th k-mer in Ŝ . 

Traditionally, k-mers have been used with 4-letter DNA 

alphabet { }TGCA ,,, . The disadvantage of such mapping 

rule is its explosive feature space growth: there may 

be k4 distinct k-mers in a nucleotide sequence (actually, 

there are 1+− kN  such k-mers in N-length sequence), 

and a feature vector is composed of k4 elements:  

ACGT: ( ) { } kN
j jTGCASpS 4,...,1,,,,ˆ,ˆ =∈→  (12) 

We can construct smaller feature vectors based on the 

grouping of the 4-letter DNA alphabet into two subsets 

of two nucleotides each. There are three different such 

partitions, therefore there are three different grouping-

based k-mer frequency mapping rules [22]: 



SW k-mer rule: ( ) { } kN
j jWSSpS 2,...,1,,ˆ,ˆ =∈→   (13) 

RY k-mer rule: ( ) { } kN
j jYRSpS 2,...,1,,ˆ,ˆ =∈→   (14) 

KM k-mer rule: ( ) { } kN
j jMKSpS 2,...,1,,ˆ,ˆ =∈→  (15) 

Note that using SW, RY or KM groupings, a feature 

vector is much smaller than in case of full nucleotide 

alphabet, and is composed of only k2  elements. 

3. CASE STUDY 

3.1. Datasets 

For promoter classification, we use the 2002 collection 

of data of drosophila (D. melanogaster) core promoter 

regions [23]. The training file contains 1260 examples 

(372 promoters, 361 introns, 527 coding sequences). The 

test file contains 6500 examples (1842 promoters, 1799 

introns, 2859 coding sequences).  

For splice site recognition, we use the dataset from 

the UCI repository [24] obtained from Genbank 64.1 

primate data. The dataset contains 3175 sequences, each 

60 bp length starting at position -30 bp and ending at 

position +30 bp with regard to splice site location, of 

which 767 (25%) sequences contain exon/intron (EI) 

sites (donors), 768 (25%) sequences contain intron/exon 

(IE) sites (acceptors), and 1655 (50%) sequences contain 

neither EI nor IE sites (negative, N). 

3.2. Problem definition 

Dataset sequences are mapped into a feature space using 

feature mapping rules described in Eq. (1-15). A training 

dataset is an ordered set of features ( )MfffF ,...,, 21=  

of the sequences and their assigned class: 

( ){ }MicFLS iiM ,...,1|, ==    (16) 

The objective of the classification is to derive from 

MLS  a classifier ( )jFĉ , which predicts the class of un-

seen sequence js  as accurately as possible based on 

some selected classification accuracy metric. As a classi-

fier, we use SVM
light

 [25] with power series kernel [26].  

3.3. Results 

To represent the precision of promoter classification for 

binary mapping rules (Eq. 1-11) graphically, the Re-

ceiver Operating Characteristic (ROC) is used (see Fig-

ure 1). The perfect classification corresponds to the 

 (0,100) point in the ROC plot. 

The best classification results are obtained using Bi-

nary 1, KM, A and T rules. This can be explained by the 

fact that drosophila promoter sequences are characterized 

by the repeating occurrences of the so called TATA box 

( TATAA  or TATAAA ) or the Pribnow box 

( TATAAT ), thus the best results can be achieved using 

the rules, where A  and T  nucleotides are coded using 

different binary values (as, e.g., in the KM rule).  

 

Figure 1. Comparison of promoter classification 

results for binary feature mapping methods 

The splice site classification results for k-mer fre-

quency rules (Eq. 12-15) are summarized in Figure 2. 

 

 

Figure 2. Comparison of splice-site sequence 

classification results for different k-mers using F-

measure: EI vs. N (top), IE vs. N (bottom) 



EI splice sites are best recognized with ACGT alpha-

bet 4-mer frequencies (78.05%) and IE splice sites are 

best recognized using ACGT alphabet 6-mer frequencies 

(70.75%). Interestingly, 5-mers in both cases have worse 

recognition results for all types of frequency mapping 

rules than 4-mers or 6-mers. The classification accuracy 

for larger k-mers decreases. Out of the 2-nucleotide 

grouping based feature mapping rules, the RY frequency 

based feature mapping rule has the best results in both 

cases, and the results are only slightly worse than the 

results of the 4-nucleotide frequency mapping for IE 

splice site recognition. Therefore, if the classification 

speed is the issue, the RY frequency mapping for IE 

splice site recognition may yield nearly the same accu-

racy, though its feature space is significantly smaller ( k2  

instead of k4 elements). 

The k-mer frequency-based mapping rules perform 

worse than binary rules (though we solve different prob-

lems and use different accuracy metrics). This can be 

explained by the fact that in frequency based feature rep-

resentation the nucleotide (k-mer) position information is 

lost. However, the advantage of frequency rules is 

smaller feature space, if long sequences are classified. 

4. CONCLUSION 

The selection of the appropriate feature mapping rule can 

greatly influence the DNA sequence classification re-

sults. The mapping rule should be selected based on the 

properties of the available data for a specific classifica-

tion problem. The obtained classification results confirm 

that the mapping rule(s) with the best classification re-

sults correspond to the characteristics of the repeating 

subsequences (“boxes”, consensus sequences) of the ana-

lyzed sequences. The selection between binary and fre-

quency mapping rules can provide a trade-off between 

classification precision and speed.  

Future work will focus on the feature space reduction 

problem to identify features that do not contribute to 

classification accuracy and can be discarded thus yield-

ing higher recognition speed and better accuracy. 
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ABSTRACT

Building upon a recently proposed algebraic framework
for representing expression profiles, we propose a novel
method for reverse engineering the dynamics of gene reg-
ulatory networks of known topology. The crux of our ap-
proach is to describe the update functions for gene expres-
sions in terms of polynomials over finite fields. Establish-
ing a connection to coding theory, we account for stochas-
tic effects and small sample sizes of the measurements via
decoding and iterative model refinement algorithms. We
test the performance of the new method on synthetic data
and apply it to a regulatory sub-net of theE. coli gene
control network responsible for DNA repair.

1. INTRODUCTION

The problem of predictive statistical inference of gene reg-
ulatory networks (GRN) has recently attracted significant
attention of the bioinformatics, systems biology, and sig-
nal processing research community. Modern high- through-
put experimental systems, such as DNA microarrays, en-
able biologists to monitor whole-genome expression pat-
terns, and many inference techniques have been proposed
for describing the coupled dynamics of these patterns. Cur-
rently used modeling approaches, capable of capturing non-
linear interactions characteristic of biological controlcir-
cuits, can broadly be classified into discrete or continu-
ous, deterministic or stochastic models [1]. For example,
Boolean network (BN) models are discrete deterministic
models where genes are either switched “ON” or “OFF”
over discrete steps of time according to a Boolean rule.
Probabilistic extensions of Boolean networks account for
stochastic effects by using a list of functions that are eval-
uated according to a probability distribution [2]. Early ef-
forts for reverse engineering of Gene networks under the
BN model were based on the assumption that a time series
generated by the underlying model could be perfectly ob-
served [3]. More recent approaches account for stochas-
ticity of the system and noise in the data by performing
model selection, e.g. based on the Minimum Description
Length principle, and were shown to outperform purely
deterministic models [4]. Algebraic expression models,
as introduced by Laubenbacher et al. in 2005 [5], provide
a generalization of Boolean networks. Laubenbacher et
al. assume that expression levels can take values from a
finite set that is given the structure of a finite field. They
use tools from computer algebra to develop an algorithm

that reconstructs the topology and the dynamics of the net-
work assuming purely deterministic generated data. In
this paper, we consider the easier problem of inferring
the dynamics under the algebraic model when the net-
work topology is given a priori. However, we describe a
constructive approach for addressing the randomness and
missing data issues in an algebraic framework making use
of concepts developed in coding theory. We show that
known decoding algorithms can be used to reverse engi-
neer the dynamics of gene expression profiles from noisy
data when the topology of the network is known, and there
is no requirement for the logic to be Boolean. The re-
mainder of the paper is organized as follows. Section 2
contains the description of algebraic GRN models, while
Section 3 introduces the new reverse engineering frame-
work. Section 4 presents performance results of decoding
methods for synthetic data, and data for an emergency re-
sponse control network ofE. coli. In the same section, we
also briefly address possible extensions of our work.

2. GENE NETWORKS AS POLYNOMIAL
DYNAMICAL SYSTEMS

We formally define a gene regulatory network as a di-
rected graph,G = (V, E), in which the verticesV =
{v1, ..., vn} represent genes, while the edges inE describe
regulatory relationships among genes. An edge(j, i) is
drawn from genevj to genevi if genevj regulates the ex-
pression of genevi. Throughout the paper, it is assumed
that the topology of the network, i.e.E, is known. Let
v̆i = (vi1 , .., vim

), i1 < i2 < .. < im, ∀vik
: (ik, i) ∈ E

be the vector of regulators ofvi. We consider discrete
time, discrete value models, i.e.t ∈ N, vi(t + 1) ∈
{0, 1, ...}. The expression of a genevi at time t + 1 is
determined by the expression pattern of its regulators at
time t via the functionfi:

vi(t + 1) = fi(v̆i(t)). (1)

Boolean network (BN) models allow genes to be in two
different states - “ON” or “OFF”. In this case, the func-
tionsfi : F

n
2 → F2, whereF2 denotes the finite field of

order two, describe a Boolean relationship among a gene
and its regulators. The vectorv(t) = (v1(t), ..., vn(t))
denotes the state of the BN at timet. A global transi-
tion of the network is a pair of consecutive network states,
(v(t), v(t + 1)) ∈ F

n
2 × F

n
2 . An alternative way to rep-

resent a transition of the network is to list the local transi-



tions at the nodes(v̆i(t), vi(t + 1)) ∈ F
m
2 × F2, i = 1..n.

Clearly, a list of local transitions completely specifies a
global transition and vice versa. In other words, a BN is a
Boolean mapping

F : F
n
2 → F

n
2 , v(t) 7→ v(t + 1), (2)

that can be decomposed inton different Boolean functions
fi. Recently, Laubenbacher et. al. introduced reverse en-
gineering in an algebraic framework for modeling gene
expression profiles which is a generalization of the two-
state Boolean model [5]: a gene is allowed to take a finite
number of states that represent different expression lev-
els. The number of states,q, is chosen to be a power of
a prime, and the state values are assumed to be elements
of a finite fieldFq. Consequently,vi(t) ∈ Fq and the re-
sulting discrete network can be seen as a generalization of
BNs, defined analogously to Eq. (2):

Fq : F
n
q → F

n
q , v(t) 7→ v(t + 1). (3)

It is well known that over a finite field, any possible
functionF

n
q → Fq is an element of the polynomial ring

Fq[x1, x2, ..., xn], i.e. the set of all polynomials in vari-
ablesx1, .., xn, and coefficients inFq. Hence, under this
model, each node functionfi is a multivariate polynomial
with the regulators̆vi of the gene as the variables. In a
more general context, models of this form are also referred
to aspolynomial dynamical systems (PDS).

We describe next a class of algorithms for construct-
ing PDS models for GRN under noisy conditions that use
coding-theoretic ideas.

3. DECODING OF NOISY PDS

Early efforts on reverse engineering discrete models as-
sumed a completely deterministic network and perfectly
observed transitions[3]. As this is an unrealistic assump-
tion, recent approaches for reverse engineering under the
Boolean model account for randomness by means of model
selection criteria [4]. No such method has yet been pre-
sented for the algebraic model. Even though the algorithm
presented by Laubenbacher et al. selects a solution which
is in a sense “minimal”, it does not explicitly take noise
into account and is therefore very sensitive to stochastic
effects [6]. Here, we assume that, for each genevi, we are
given time series data of transitions

Vi = ((v̆i(0), vi(1)), .., (v̆i(T − 1), vi(T ))),

under the algebraic expression model, and we explicitly
assume that the observations are noisy, i.e.vi(t + 1) =
fi(v̆i(t)) + εi(t) whereεi(t) is a random variable that
can take values inFq with nonzero probabilityP (εi(t) 6=
0) = pε > 0, P (εi(t) = ℓ) = (1 − pε)/(q − 1), ℓ 6=
0. In the noiseless case (pε = 0), interpolating a poly-
nomial through the observed pointsVi will perfectly re-
construct the functionfi, provided enough transitions are
available [7]. However, whenpε > 0 is fairly large, inter-
polating through all transitions is obviously a bad strategy
as one may expect to over-fit the data and reconstruct the
wrong polynomial. In this case, one tractable solution is to
perform specialized model selection and to find a solution
that generates a time series that differs from the observed
values in a fraction of points (approximation instead of

interpolation - similar to a regression analysis). In what
follows, we establish a connection of the approximation
problem to coding theory and present an algorithm that ef-
ficiently solves this problem, provided certain conditions
are met.

As shown above, we deal with approximating obser-
vations by functionsfi that are multivariate polynomi-
als in Fq. In Coding Theory, this is known as the prob-
lem of decodingq-ary Reed-Muller (RM) codes: letf ∈
Fq[x1, ..., xn], i.e.

f =
∑

i1,...,in

ai1i2...in
xi1

1 ...xin

n ,

then the total degree off , totdeg(f), is defined as

totdeg(f) = max{i1 + i2 + ... + in : ai1i2...in
6= 0}.

A q-ary Reed-Muller (RM) codeRMq(u, m) is the set of
all m-variate polynomialsf ∈ Fq[x1, .., xm] of bounded
total degree evaluated atqm pairwise-distinct pointsαk ∈
Fqm . Formally,

RMq(u, m) ={(f(α1), ..., f(αqm)) :

f ∈ Fq[x1, .., xm], totdeg(f) ≤ u}. (4)

A code is used to encode messages allowing for their sub-
sequent reconstruction from an observed noisy version of
the codeword. The reconstruction process is called de-
coding. In an RM code, the encoded messages are multi-
variate polynomials of bounded degree. Given the noisy
observations(f(α1) + ε1, .., f(αqm) + εqm) an optimal
RM decoder finds the polynomialf of bounded degreeu
that most likely led to the observation (Maximum Likeli-
hood). However, this problem is NP hard and suboptimal
decoders must be used. A set of powerful algorithms has
been proposed in the coding literature that can closely ap-
proach optimal performance (see references in [6]).

We will shortly sketch our reverse engineering method
and refer to [6] for a more detailed discussion: The num-
ber of regulators corresponds to the parameterm in Eq. (4).
The message that is to be encoded in the codeword is
the polynomialfi. The input vectorv̆i having m ele-
ments from the fieldFq can be interpreted as an element
from Fqm and corresponds to the evaluation pointsαk.
In this framework, the genes’ outputsvi(t + 1) represent
the codeword symbolsf(αk). The situation is depicted in
Figure 1 as an example for a single gene with3 regula-
tors. We can then apply known RM decoding algorithms
to find the approximating polynomials. Our model selec-
tion criteria here is to favor polynomials with low degree,
this is done by exploring the solution space of polynomi-
als of bounded degreeu. We start withu = 1 and try to
find a polynomial that approximates the time series using
a decoding algorithm. If a solution is found, it is stored
in the listC, then we increaseu by one and repeat the de-
coding step. The success of this procedure depends on the
combined number of errors|{t : εi(t) 6= 0}| and num-
ber of observations and the degree of the node functionu.
Bounds on the required number of transitions for unique
reconstruction are easily derived by analyzing the prop-
erties of RM codes (for details see [7]). By increasingu
to its maximum value,C will always contain the solution



vi

fi(·)

v̆i(t) = αk′ ∈ Fq3

vi(t + 1) ∈ Fq

Figure 1. The functionfi is evaluated at the input vector
resulting invi(t + 1) which can be regarded as the code-
wordsymbol of the RM-code arising fromαk′ .

that perfectly interpolates the time series. Note that our
algorithm explicitly reconstructs the functionsfi meaning
that it is able to predict outputs for input patternsv̆i that
have not been observed inVi.

4. RESULTS

4.1. Synthetic Networks

We sampled1000 PDS with random topologies, the nodes
having in-degree0 (30%), 2 (50%) or3 (20%). Each time
the different degreesui of the node polynomialsfi were
randomly chosen fromui ∈ {1, 2, 3, 4, 5} with random
coefficients fromFq, q = 5 was used for the simulations.
Nodes were initialized with random expression values and
five transitions of the network were recorded. This was re-
peated50 times, producing a set of250 synthetic expres-
sion samples. Noise was added to the “measurements”
by randomly replacing a fraction of values with different
symbols. Simulations were implemented and run in MAT-
LAB and the algorithm described in [8] was implemented
for the decoding step. Figure 2 shows the percentage of
correctly reconstructed node functions over an increasing
noise levelpε. Results show that reverse engineering is
indeed possible in the presence of a significant noise com-
ponent.

0 0.025 0.05 0.075 0.1 0.15
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fraction of noisy symbols in measurements

F
ra

ct
io

n 
of

 c
or

re
ct

ly
 in

fe
rr

ed
 fu

nc
tio

ns

Figure 2. Performance on1000 simulated 20-node PDS
over F5 with random topologies and random node func-
tions.

4.2. E.Coli SOS pathway

Microarray experiments are still very expensive, and of-
ten only extremely small datasets are available for a time-
course analysis of expression profiles. The number of time
points measured in such experiments is typically in the
range5 − 15. Yet, the many small microarray datasets
generated by different groups around the world represent
a large resource for network inference. In order to facili-
tate the analysis of expression data compiled from multi-
ple laboratories, Faith et al. compiled a unified microarray
database for several microbe organisms [9]. This database
contains only single-channel arrays using the same plat-
form and the raw expression data is uniformly normal-
ized to enable analysis across experiments without fur-
ther user-dependent processing. We used the microarray
data ofE.coli, provided in this database, and filtered time
course experiments that revealed at least one transition
of the network. We found a total of69 transitions ob-
tained from21 different experiments. Using the Lloyd-
Max quantizer we discretized the data for each gene into
q discrete expression levels. We considered the SOS path-
way described in [10]. This pathway regulates cell sur-
vival and repair after DNA damage. Our “test network”
comprises9 genes including the principal mediators of
the SOS responselexA andrecA which are known to reg-
ulate many genes directly and tens or possibly hundreds
indirectly [10]. Further, four genes (ssb, recF, dinI and
umuDC) known to be involved in the SOS response are
included as well as three sigma factor genes (rpoD, rpoH
and rpoS) whose regulatory role in the SOS response is
not fully understood [10]. The network is depicted in Fig-
ure 3.
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Regulation of
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Figure 3. Diagram of interactions in the SOS network
(as described in [10]). Angled boxes denote genes, small
rounded boxes proteins.

We applied our algorithm as described above. Forq =
5 we were able to reconstruct approximating functions of
3 of the genes (lexA, rpoS, rpoH). The input/output re-
sponses of these genes are depicted in Figure 4. Note
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Figure 4. Inferred responses (rows 1-3) of thelexA, rpoS,
rpoH to all 25 possible inputs of the regulators (last row).

that there are52 = 25 possible input patterns for each
of these genes, shown in the last row, and a single quin-
ternary response per input (shown in rows 1-3 for the dif-
ferent genes). Interestingly,rpoS andrpoH exhibit iden-
tical responses; both are regulated byrpoD and a direct
self-loop, which may explain this observation. All found
polynomials are linearu = 1, indicating that non-linear
functions could not be found with the provided number of
samples and quality of data. In an attempt to assess the
statistical significance of our results, we randomly sam-
pled 9 genes from the available4292 in our dataset and
applied the reverse engineering using their expression pro-
files, assuming the same topology as in Figure 3. Func-
tions found in this way should be counted as false posi-
tives. This experiment was repeated1000 times and the
number of non-empty lists was counted. Only in6 out
of the1000 times,3 nodes were simultaneously inferred
in the same network. The overall observed false positive
rate per node was less than3.8%. In order to find lists
of possible update functions for more complex networks
or to study organisms with more uncertainty in network
topology, one needs more high quality microarray data of
transition measurements. The functions inferred through
our algorithm could then be used to simulate the response
of the gene network to different perturbations and to pro-
pose treatments for certain diseases.

4.3. Extensions

The proposed list-decoding approach can be improved and
extended in the following directions.

1. More efficient decoding algorithms for Reed-Muller
codes can be used to further reduce the number of
required observed transitions and exploit statistics
of the observed time series as side information.

2. Genomic update functions are not arbitrary, e.g. rules
have been found to be often canalizing. In addition,
a given transcription factor is usually unidirectional,
meaning that most of its regulatees are either all
down-regulated or up-regulated. Incorporating this
feature into the model refinement process may fur-
ther improve the inference potential of our method.

3. The influence of quantization on network dynamics
inference is still not well understood, and quantiza-
tion techniques that take into account error models
for DNA microarray measurements have to be con-
sidered in this setting.
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ABSTRACT

In this paper, we test and compare different data mod-
els for finding differential expression in cDNA microarray
measurements. We use Bayesian hierarchical error model
(HEM) and its variants that are derived by changing the
functional form of the original HEM variance. In addi-
tion to heterogeneous variance, we use the HEM with ex-
ponential and constant variance functions. The standard
t-test for finding differential expression is our reference
test. For both approaches, false discovery rates (FDR) are
estimated. With data simulations, we test the accuracy of
variance models and FDR estimators. The fit of exponen-
tial variance function to real data is observed as well. The
parameters for the Bayesian models are estimated using
Gibbs sampling.

1. INTRODUCTION

For different microarray technologies, data models that
try to explain sources of variation of measured expression
have been proposed (see [1] and [2]). One usual set-up for
microarray measurements is to measure gene expression
profiles of two or more biological samples under different
conditions, or expression profiles of two or more different
cell lines. The differences between the biological samples
are then assumed to be characterized by the measured ex-
pression profiles that represent expressions proportionalto
the underlying mRNA concentrations [3].

Biological and technical variations are the primary
sources of variation in the measured data. Other sources,
e.g., environmental conditions, degradation of mRNA [4],
and labeling of samples [5], also have a significant role.
Thus, without taking the high amount of uncertainty into
account, one may not be able to accurately identify, say,
differences between conditions, while increasing FDR.
Throughout the study, we (a) try to take the nature of vari-
ation in the measurements into account, and (b) estimate
FDR in finding differentially expressed genes.

In Section 2, we introduce the HEM variants, and give
the formulas for calculating FDR estimates. In Sections
2.1 and 2.2, we introduce the used data simulation meth-
ods, prior distributions, and Gibbs sampling.

2. METHODS

In this study, we assume that there are no missing values in
the data. We can therefore use the following labeling for
our data sets:i ∈ {1, . . . , I} corresponds to gene index,
j ∈ {1, 2} corresponds to biological condition, and the
replicates are denoted ask ∈ {1, . . . , K}.

Before using the expression data, we transform it into
log2-domain [3]. This is done for two reasons: the data
may contain multiplicative biases for different microarray
slides and, more importantly, the models we use assume
data to containlog-normally distributed components.

We fit the HEM to cDNA microarray expressions of
2-color cDNA microarrays; one color channel is for a bio-
logical sample under conditionj = 1, and the other chan-
nel for a biological sample under conditionj = 2. When
biological replicates are missing from the experiment,i.e.
, when only technical replicates are available, the HEM
takes the form

yijk = xij + eijk ∼ N(xij , σ
2
ij) (1)

where

xij = µ + gi + cj + rij . (2)

In Eq. 1,yijk is the observed data and in Eq. 2,µ is the
grand mean over all slides,gi is the gene effect,cj is the
condition effect, andrij is the interaction effect of gene
i and conditionj. The termeijk models the error of
the whole experiment process. Thus, the model is simi-
lar to the standard2-way ANOVA, except that HEM uses
prior knowledge for estimating unknown parameters and
does not, in general, assume constant variance. Different
ways to stabilize the variation of expression values have
been proposed [6], but one may also give the variance a
functional form; in this study, we have used the following
functions:

σ2(xij) =






σ2
ij ,heterogeneous

a2 + be−cxij ,a2, b, c, xij > 0
a2 ,b, c = 0

(3)

where the wordheterogeneousrefers to the original HEM.
In the exponential function,xij is the true expression of
the genei and conditionj, and the variance is assumed to



Figure 1. Model graph with functional variance. Ellipses
represent stochastic nodes and rectangles represent func-
tion nodes. For all the ellipses, a prior distribution is as-
signed.

be intensity-dependent. The parametersa2,b, andc need
to be estimated from the data, and ifb is negligible com-
pared toa2, or if c is close to zero, the variance shrinks
to constant, which is the special case of the model. The
assumption of functional variance complicates the depen-
dency graph of parameters in the model, which can be
seen in Fig. 1. Without the functional variance, the vari-
ance node itself would be stochastic, and no direct rela-
tionship toxij would exist. The edge between the vari-
ance and true expression, in fact, makes the model un-
hierarchical. We simplify the dependency by approximat-
ing the relationship using sample mean over the replicates
k

xij =
1

K

K∑

k=1

yijk (4)

instead ofxij . The parameters of the HEM and its variants
can be solved using, for instance, Gibbs sampling (see 2.2
for further information).

After Bayesian parameter estimation for the models,
we use hypothesis testing methods to find differential ex-
pression in the data set. For HEM models, we use the
H-score [7], a modified version ofF -statistic, and for the
t-test, we usep-values. TheH-score for genei is

Hi =
1

2

2∑

j=1

(x̂ij − x̂i·)
2

σ̂2(x̂ij)
(5)

where the hat over the letter denotes a Bayesian posterior
mean parameter estimate, and the dotted subscript denotes
averaging over that index. Since no null data is available,
i.e. , a reference data with no differential expression from
which to compute nullH-scores is missing, we simulate
such data by permuting the original data set, so that in-
dicesi ∈ {1, . . . , I} are preserved.H-scores of the null
data set is computed with

H0
ip =

1

2

2∑

j=1

(xijp − xi·p)
2

σ̂2(xijp)
(6)

wherep is the permutation index,p ∈ {1, . . . , P}, and

σ̂2(xijp) =






σ2
ijp ,heterogeneous

â2 + b̂e−ĉxijp ,exponential
â2 ,constant

. (7)

We useP = 100 permutations, and for each permutation,
we use the standard sample estimators to calculatexijp

(andσ2
ijp, if we are assuming heterogeneous variance), as

Bayesian sampling after each permutation would drasti-
cally increase the computation time. It is noteworthy, that
we have modified theH0-score calculation in Eq. 6 to take
into account the functional forms for variance. for both
theH-score andH0-score, it is crucial to use similar vari-
ance estimators, to reduce FDR estimator bias. See Fig.
3(a) for illustration of estimation bias: the actual scores
are calculated using the assumed functional model for the
variance, whereas the null scores are calculated using a
sample variance estimator for the permuted data set. The
FDR estimators for the HEM variants and thet-test (as
proposed in theR implementation document of HEM and
in [8], respectively) are

F̂DRHEM (Hj) =
π̂0R

0(Hj)

R(Hj)
(8)

and

F̂DRT (pj) =
π̂0S

0(pj)

S(pj)
(9)

where

R0(Hj) = 1
P

∑P

p=1 #i{H
0
ip : H0

ip > Hj}

R(Hj) = #i{Hi : Hi > Hj}
S0(pj) = Ipj

S(pj) = #i{pi : pi < pj}

. (10)

The#i denotes the number of values, that fulfill the terms
inside the braces fori ∈ {1, . . . , I}. The point estimates
pλn

of π0 are also calculated as in [7] and [8] using the
percentilesλn = 0.01n, n ∈ {1, . . . , 100}, but the es-
timator forπ0, the proportion of non-significant genes, is
calculated using weighted average. We use the cumulative
distribution function ofN(0.1, 0.3) to generate weights
for each percentileλn:

cλn
= Φ

(
λn − 0.1

0.3

)
, n ∈ {1, . . . , 100} (11)

The weight matrix is a diagonal matrixC =
diag (cλ1

, . . . , cλ100
), andp = [pλ1

, . . . , pλ100
]
T . The es-

timatorπ̂0 is therefore

π̂0 =
(
1

T C1

)
−1

1
T Cp. (12)

The reason for usingC, that gives more weight asn in-
creases, is to compensate the bias and variance of each
point estimate; whenn increases, the bias of point esti-
matepλn

decreases, whereas the variance increases [8].



2.1. Simulations

In the simulation study, we generate cDNA microarray
data with outliers using methods proposed in [9]. The
data consists ofI = 5000 genes,J = 2 conditions, and
K = 10 replicates. The distributions of the simulator are

∀i: zi ∼Exp(λ′)
∀i: oi ∼Ber(1 − π0)

∀oi = 1: si ∼Rademacher
∀oi = 1: bi ∼Beta(α′, β′)
∀i, j, k: yijk∼N(xij , σ

2(xij))

, (13)

the functions of the simulator are

∀oi = 1:
√

ti=10sibi

∀oi = 1: zi1=zi

√
ti

∀oi = 1: zi2=zi/
√

ti
∀oi = 0: zi1=zi2 = zi

∀i, j: xij=log2(zij)
∀i, j: σ2(xij)=a2 + be−cxij

, (14)

and the parameters for the functions and distributions are
set to

λ′ = 1000, π0 = 0.96,
α′ = 1.7, β′ = 4.8

a2 = 0.2, b = 1.0, c = 0.4.
. (15)

So, the simulation of measurements in short: Generate
I measurements from an exponential distribution. With
probability 1 − π0, a measurementi is assigned as dif-
ferentially expressed. With probability0.5 it is an over-
expression, andt is the shifting value between the condi-
tions j = 1 and j = 2. The expressions are thelog2-
transformed, and variance is generated from the exponen-
tial function, using thelog2-transformed measurements.
Finally, for each replicatek, normally distributed noise is
added.

2.2. Prior specification and Gibbs sampling

We have built the Gibbs samplers with WinBUGS
(Bayesian inference Using Gibbs Sampling for Windows)
[10]. The software is suitable for generating Gibbs sam-
plers for models, where the parameter dependencies form
a directed acyclic graph (DAG). WinBUGS can be down-
loaded fromhttp://www.mrc-bsu.cam.ac.uk/
bugs/.

The used prior and hyperprior distributions for all pa-
rameters are tabulated in Table 1. The priors are on the
left-hand side and the used parameters for the distribu-
tions are on the right-hand side. The chosen parame-
ter and distribution values are similar as in [7]. We use
Gibbs sampling posterior mean to calculate the estimates
for each parameter in the model, we generate a600-point
sample after a300-point burn-in period. We noticed, that
in this study such amount of iterations is sufficient for the
Markov chains to converge.

µ ∼ U(0, µmax) µmax = 50
gi ∼ N(0, σ2

g) σg = 1
cj ∼ N(0, σ2

c ) σc = 1
rij ∼ N(0, σ2

r) σr = 1
eijk ∼ N(0, σ2(xij)) Eq. 3

σ−2
ij , a−2 ∼ Γ(α, β) α = 1, β = 0.125

b, c ∼ U(0, tmax) tmax = 5

Table 1. Prior and hyperprior distributions for the HEM.

3. RESULTS AND CONCLUSION

The simulation study consisted of data generation with
known parameters, Bayesian and frequentist parameter es-
timation, visualization of FDR estimation accuracy for all
models (Fig. 3(a) and 3(b)), and visualization of accu-
racy (ROC curves) for finding differential expression. The
simulations show, that if such exponential variance struc-
ture exists, the functional form of variance in HEM can
be modified to better fit the data (Fig. 2), thus resulting in
more accurate differential expression detection (Fig. 3(c)).
The approximation of dependency between the variance
function and true expression could reduce the accuracy of
the variance fit drastically, if the amount of replicates was
small. Also, after each perumation for calculating theH0-
score, the using of Bayesian estimates instead of sample
estimates would increse the performance of FDR estima-
tion for the HEM variants.
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ABSTRACT

Modeling of plant metabolism offers new approaches to
improve the understanding of complex biological proces-
ses. In this paper we present a framework for the constraint-
based stoichiometric analysis of crop plant metabolic mod-
els, which combines tools for (1) model reconstruction,
(2) model analysis (i.e. flux balance analysis), and (3)
model visualization. The approach is illustrated by de-
scribing its application to the modeling of cereal seed me-
tabolism.

1. INTRODUCTION

Crop plants are the main source for feed and food and
important contributors to chemical feedstocks and renew-
able fuels [1, 2, 3]. A detailed understanding of crop
plant metabolism is necessary to improve their growth and
yield [4, 5]. Mathematical modeling of metabolism of-
fers new approaches to analyze the structure, dynamics
and behavior of complex metabolic pathways. Metabolic
models can be used to verify and extend the understand-
ing of complex processes, to generate or test hypotheses
and to explore in silico scenarios, thus allowing to identify
suitable targets for metabolic engineering. The issue of
mathematical modeling in plant metabolism is constantly
gaining attention and several mathematical modeling ap-
proaches applied to plant metabolism exist [6, 7, 8].

Flux balance analysis (FBA) is a constraint-based mod-
eling approach which can be used to predict metabolic ca-
pabilities and flux distributions under different environ-
mental conditions. FBA has the advantage that is does
not require the knowledge of kinetic parameters, instead
only the stoichiometry of the metabolic network has to be
known, and an objective function is needed to identify the
optimal flux distribution among all possible steady state
flux distributions. Although metabolic flux determination
is acknowledged to be an important part of plant metabolic
engineering [9], to the best of our knowledge FBA has not
yet been applied to plant metabolic systems.

This paper describes in the first part a framework for

the constraint-based stoichiometric analysis of crop plant
metabolic models comprising the following steps of the
modeling approach: (1) model reconstruction, manage-
ment and export, (2) model simulation and analysis (FBA),
and (3) model and flux visualization. Focusing on the
tools and methods developed, each of the modeling steps
is described and in the second part of the paper the ap-
plication of the proposed framework is shown by a case
study of storage metabolism in developing barley seeds.

2. METHODS

The workflow used for the constraint-based stoichiometric
analysis of crop plant metabolic models is summarized in
Figure 1. Each step of the workflow is described below:

2.1. Model reconstruction

The reconstruction of plant metabolic models requires de-
tailed metabolic information. To facilitate the modelling
of crop plant metabolic models, we developed MetaCrop
(http://metacrop.ipk-gatersleben.de) [10], a manually cu-
rated database for crop plant metabolism. MetaCrop pro-
vides manually curated, detailed information about meta-
bolic pathways in six major crop plants, including path-
way diagramms, locations, transport processes, reaction
kinetics and literature. Scientists working in the area of
plant research can use the data of MetaCrop, thus accel-
erating the process of data curation. Moreover, new path-
ways can be created by combining existing information or
by adding new data.

MetaCrop is based on the Meta-All software [11]. Both
conversions and substances play a central role in Meta-
Crop. A conversion should be understood as a reaction
or a translocation, which can be either an active or a pas-
sive process. Substances can be assigned to conversions
and play certain roles within these processes, such as sub-
strate, product, catalyst or inhibitor. Conversions can be
combined to pathways and pathways to super-pathways,
thus enabling the successive reconstruction of metabolic
models.
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Figure 1. General workflow used for constraint-based sto-
ichiometric analysis

All elements stored in MetaCrop can be enriched by fine-
grained information. This includes kinetic data such as af-
finity or inhibitor constants, reaction or translocation type,
formula, Enzyme Commission (EC) numbers and litera-
ture references. Furthermore, MetaCrop enables the user
to store different parallel versions of pathways to represent
different models and also because frequently ambiguities
in biochemical data exist. In order to interact with simula-
tion and analysis tools, models reconstructed in MetaCrop
can be exported using the standardized Systems Biology
Markup Language (SBML) format.

2.2. Model analysis

Flux balance analysis is a constraint-based modeling ap-
proach developed to characterize systemic properties of a
metabolic network based on mass balance constraints [12].
Stoichiometric metabolic models are usually underdeter-
mined systems of linear algebraic equations. FBA uses
the principle of linear programming to solve the equations
by defining an objective function and searching the solu-
tion space for an optimum flux distribution that meets the
objective.

For growth simulations of crop plant metabolic models,
the growth rate (i.e. the rate of biomass synthesis) was
selected as the objective function to be maximized. The
growth objective is mathematically defined as a flux drain
comprised of all biosynthetic precursors and cofactors (e.g.
amino acids, ATP) required for biomass production. Sim-
ilar approaches have been proposed and proven useful in
predicting in vivo cellular behavior of different biological
systems [13, 14].

Flux balance analysis is performed using the COBRA
toolbox (http://systemsbiology.ucsd.edu/downloads/COB-
RAToolbox/) [15], a constraint-based reconstruction and
analysis toolbox running in the MATLAB environment.
The toolbox has the advantage (1) to support SBML-im-
port, thus allowing to import crop plant metabolic models
reconstructed in MetaCrop, and (2) to be extendable by
user-written MATLAB routines, thus allowing to incor-
porate functionalities not offered by the system. In order
to interact with the visualization tool, analysis results ob-
tained in COBRA can be exported as text- or csv-format.

2.3. Model and flux visualization

Visualization can improve the understanding of complex
processes such as the structure of metabolic models and
the results of their analysis. VANTED (visualization and
analysis of networks containing experimental data) (http://
vanted.ipk-gatersleben.de) is a platform-independent soft-
ware system which enables researchers to evaluate exten-
sive data from genomics, proteomics and metabolomics.
In order to support the analysis and visualization of me-
tabolic flux data, the data-mapping methods introduced in
[16] and refined in [17], have been extended to support
the assignment of experimental and computed datasets to
network edges.

In addition to previously available data visualization
approaches utilizing line-, bar- and pie-charts, it is now
possible to map data onto graphical attributes such as edge
width or arrow shape. For the visualization of fluxes we
map the metabolic flux to the width of the reaction edge.
This visualization approach supports a fast understanding
of the fluxes in both overview and detail, see Figure 2.

3. CASE STUDY: A MODEL OF CEREAL SEED
METABOLISM

3.1. Model reconstruction

The metabolic network of central metabolism in the de-
veloping endosperm of barley (Hordeum vulgare) was re-
constructed with the aim of giving insight into cereal seed
metabolism during starch accumulation. The information
necessary for network reconstruction (biochemical, physi-
ological, and proteomic data) was collected through an ex-
tensive survey of scientific literature (e.g. [18, 19, 20, 21])
and online databases (e.g. [22, 23, 24, 25]), where data has
been additionally checked against literature. The data was
integrated into MetaCrop and the model was reconstructed
in a stepwise manner.

The resulting compartmented stoichiometric model in-
cludes central metabolism (glycolysis, pentose phosphate
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Figure 2. Carbon flux map of the reconstructed model of
cereal seed metabolism under optimal growth conditions.
(A) Complete model; (B) Sucrose-to-starch pathway.

pathway, citrate cycle), amino acid metabolism, starch syn-
thesis, and some minor pathways. It comprises 234 me-
tabolites and 257 reactions, of which 193 represent bio-
chemical conversions and 64 represent transport processes
compartmentalized between the extracellular medium and
the intracellular compartments cytosol, mitochondria and
plastid.

3.2. Model analysis and visualization

To elucidate the metabolic capabilities of barley grains
concerning biomass production and to get insight into the
underlying metabolic flux distribution, the FBA approach
described in Section 2.2 was applied to the reconstructed
model using the COBRA toolbox. Parameters necessary
to perform FBA (maximum uptake and excretion rates,
biomass composition, maintenance requirements) were de-
termined based on published experimental results [26, 27,
28] and simulations under optimal growth conditions were
run. Optimal growth was simulated by constraining the
maximum sucrose uptake rate only. Based on the result-
ing flux vector, the carbon flux distribution was computed
and the resulting flux map was visualized using VANTED,
see Figure 2.

In general, the simulation results were found to be in agree-
ment with the main biochemical properties of barley seed
storage metabolism: the simulated growth rate, µ = 0,003
h−1, was in the range of experimental observations [29,
30], and the metabolic pathway pattern predicted by the
model was in accordance with literature-based findings.
As shown in Figure 2(B) the model correctly reproduces
the sucrose-to-starch pathway reported from barley seed
metabolism [31, 32] by predicting that (1) sucrose degra-
dation is restricted to the sucrose synthase (SuSy) pathway
and (2) synthesis of ADPglucose (ADPglc), which is the
main precursor for starch synthesis, is predominantly cat-
alyzed by the cytosolic isoform of ADPglucose pyrophos-
phorylase (cAGPase).

These results indicate that the reconstructed model has
the potential to simulate cereal seed metabolism. Thus, by
providing an initial template for studying seed metabolic
behavior, the model can be used to generate or test hy-
pothesis and to explore cereal seed metabolism in silico.
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U. Scholz, F. Schreiber, and B. H. Junker, “Meta-
All: a system for managing metabolic pathway in-
formation,” BMC Bioinformatics, vol. 7, pp. e465,
2006.

[12] J. S. Edwards, R. Ramakrishna, C. H. Schilling, and
B. Ø. Palsson, “Metabolic Flux Balance Analysis,”
in Metabolic Engineering, S. Y. Lee and E. T. Pa-
poutsakis, Eds., New York, 1999, pp. 13–57, Marcel
Deker.

[13] J. S. Edwards, R. U. Ibarra, and B. Ø. Palsson, “In
silico predictions of Escherichia coli metabolic ca-
pabilities are consistent with experimental data,” Nat
Biotechnol, vol. 19, no. 2, pp. 125–130, 2001.

[14] I. Famili, J. Forster, J. Nielsen, and B. Ø. Pals-
son, “Saccharomyces cerevisiae phenotypes can
be predicted by using constraint-based analysis of
a genome-scale reconstructed metabolic network,”
Proc Natl Acad Sci U S A, vol. 100, no. 23, pp.
13134–13139, 2003.

[15] S. A. Becker, A. M. Feist, M. L. Mo, G. Hannum,
B. Ø. Palsson, and M. J. Herrgard, “Quantitative pre-
diction of cellular metabolism with constraint-based
models: the COBRA Toolbox,” Nat Protoc, vol. 2,
no. 3, pp. 727–738, 2007.

[16] L. Borisjuk, M. Hajirezaei, C. Klukas, H. Rol-
letschek, and F. Schreiber, “Integrating data from
biological experiments into metabolic networks with
the DBE information system,” In Silico Biology, vol.
5, no. 2, pp. 93–102, 2005.

[17] B. H. Junker, C. Klukas, and F. Schreiber,
“VANTED: A system for advanced data analysis and
visualization in the context of biological networks,”
BMC Bioinformatics, vol. 7, pp. e109, 2006.

[18] J. D. Bewley and M. Black, SEEDS: Physiology
of Development and Germinantion, Plenum Press,
New York, 2. edition, 1994.

[19] B. B. Buchanan, W. Gruissem, and R. J. Jones, Bio-
chemistry and molecular biology of plants, Amer-
ican Soc of Plant Physiologists, Rockville, Md, 4.
edition, 2002.

[20] N. Sreenivasulu, L. Altschmied, V. Radchuk, S. Gu-
batz, U. Wobus, and W. Weschke, “Transcript pro-
files and deduced changes of metabolic pathways
in maternal and filial tissues of developing barley
grains,” Plant J, vol. 37, no. 4, pp. 539–553, 2004.

[21] U. Wobus, N. Sreenivasulu, L. Borisjuk, H. Rol-
letschek, R. Panitz, S. Gubatz, and W. Weschke,
“Molecular physiology and genomics of developing
barley grains,” Recent Res Devel Plant Mol Biol, vol.
2, pp. 1–29, 2005.

[22] “Brenda - BRaunschweig ENzyme DAtabase,” http:
//www.brenda-enzymes.info/.

[23] “KEGG - Kyoto Encyclopedia of Genes and
Genomes,” http://www.genome.jp/kegg/.

[24] “MetaCyc - Metabolic Pathway Database,” http://
metacyc.org/.

[25] “ARAMEMNON - Plant Membrane Protein Data-
base,” http://aramemnon.botanik.uni-koeln.de/.

[26] F. C. Felker, D. M. Peterson, and O. E. Nelson,
“[14C]Sucrose uptake and labeling of starch in de-
veloping grains of normal and segl barley,” Plant
Physiol, vol. 74, no. 1, pp. 43–46, 1984.

[27] OECD, “Consensus document on compositional
considerations for new variety of barley (Hordeum
vulgare): key food and feed nutrients and anti-
nutrients,” in OECD Environmentl Health and Safety
Publications, Paris, 2004, vol. 12 of Series on the
Safety of novel foods and feeds, pp. 1–42, OECD.

[28] F. W. T. Penning de Vries, “The cost of maintenance
processes in plant cells,” Annals of Botany, vol. 39,
pp. 77–92, 1975.

[29] F. C. Felker, D. M. Peterson, and O. E. Nelson,
“Growth characteristics, grain filling, and assimilate
transport in a shrunken endosperm mutant of barley,”
Plant Physiol, vol. 72, no. 3, pp. 697–684, 1983.

[30] S. A. Quarrie, R. Tuberosa, and P. G. Lister, “Ab-
scisic acid in developing grains of wheat and barley
genotypes differing in grain weight,” Plant Growth
Regulation, vol. 7, no. 1, pp. 3–17, 1988.

[31] T. Thorbjørnsen, P. Villand, K. Denyer, O.-A. Olsen,
and A. M. Smith, “Distinct isoforms of ADPglu-
cose pyrophosphorylase occur inside and outside the
amyloplasts in barley endosperm,” Plant J, vol. 10,
pp. 243–250, 1996.

[32] W. Weschke, R. Panitz, N. Sauer, Q. Wang,
B. Neubohn, H. Weber, and U. Wobus, “Sucrose
transport into barley seeds: molecular characteriza-
tion of two transporters and implications for seed de-
velopment and starch accumulation,” Plant J, vol.
21, no. 5, pp. 455–467, 2000.



BAYESIAN MODELLING FOR GENETIC NETWORKS
WITH TOPOLOGICAL CONSTRAINTS

Angela Grassi1,2 and Ernst Wit3

1Institute of Biomedical Engineering, Italian National Research Council,
Corso Stati Uniti 4, I-35127 Padova, Italy

2Department of Information Engineering, University of Padova,
Via Gradenigo 6b, I-35131 Padova, Italy

3Department of Mathematics and Statistics, Lancaster University,
Lancaster, LA1 1AE, UK

angela.grassi@isib.cnr.it, e.wit@lancaster.ac.uk

ABSTRACT

In this paper we propose a Bayesian approach for mod-
elling gene regulatory networks, starting from time-course
gene-transcription data. Due to the potentially huge num-
ber of parameters, we assume a scale-free topological struc-
ture of the network, in agreement with the main features
exhibited by biological networks. We construct a Bayesian
hierarchical model in which the gene interaction matrix is
an unknown parameter and a hyperparameter on it forces
the desired topology. We consider a parsimonious mathe-
matical model for describing the transcription dependen-
cies. The identification of the parameters from real data is
based on Markov Chain Monte Carlo techniques. A new
way to do MCMC inference in high-dimensional prob-
lems with complex likelihoods is introduced for inferring
the gene interaction matrix.

1. INTRODUCTION

In the last decade, the rapid improvement of experimental
high-throughput technologies and the availability of data
on a genome-wide scale have given rise to a great interest
into a deeper understanding of a cell’s underlying regu-
latory systems. Gaining insight into the complex struc-
ture of interactions among cellular elements is one of the
prior aims of systems biology. Many different approaches
have been proposed for the identification of gene interac-
tions based on microarray data. Some of them based on
profile comparison between couples of genes, e.g. [1],
other model based, e.g. [2, 3]. See [4, 5] for an exhaus-
tive review of the existing approaches for the modelling
of gene regulatory networks. In this paper we consider a
Bayesian approach for the reconstruction of gene regula-
tory networks starting from time-course gene-expression
profiles. Our aim is to infer the regulatory interactions be-
tween genes, accounting also for the directionality of the
regulation.

The remainder of the paper is organized as follows. In
the next section we consider a parsimonious mathematical

model for the transcription process. We then propose a
Bayesian hierarchical model for gene regulatory networks
imposing a topological constraint on the overall structure
of the network. At the end of the section we discuss the
interpretation of the parameters. Next we describe the
Markov chain Monte Carlo technique used for inferring
the parameters, discussing separately the non-standard up-
date used for the gene interaction matrix. Finally we apply
our algorithm to a 25-gene subnetwork in yeast,Saccha-
romyces cerevisiae.

2. MODELLING GENE TRANSCRIPTION

One of the principal means of control of the behavior of
the cell is the control of the gene expression process. Tran-
scription is the process by which the DNA sequence of
a gene is expressed into mRNA molecules that then are
translated into proteins. The regulation of transcriptionis
due to special proteins called Transcription Factors (TFs)
that can act as activators or inhibitors of the process. We
say that a gene,i say, regulates the transcription process
of genej if the protein it encodes is a transcription fac-
tor for j, and is present in its active form (for instance
phosphorilated). Modelling the dynamics of transcrip-
tion and accounting for its regulatory mechanism, requires
the knowledge of a number of biological quantities: the
mRNA abundance levels, the active levels of TF proteins,
and a set of gene-specific constants such as the basal ex-
pression level, the rate of decay of its mRNA, and the
affinity that a specific transcription factor has for the given
substrate [6]. Unfortunately some of these biological quan-
tities, such as protein activity, are not yet available on a
genome-wide scale. A common approach in modelling
transcription assumes that the mRNA abundance level of
a regulator approximates reasonably well the active level
of the TF protein it produces. Although we are currently
working on a Bayesian model which includes the dynam-
ics of the transcriptional process, in this paper we assumes
the following simplified dynamics.



2.1. Linear gene transcription model

The model we consider is a linear gene transcription model
with Gaussian error on the log-transcription scale. We
assume that the mRNA abundance level of each gene at
time t, yj(t), results from a multiplicative effect of the
mRNA abundance levels of a collection of other genes.
By considering the log-transformed data, the relationship
between the log-transcription level of a gene, sayj, at time
t and the others is assumed to be

log yj(t) =
∑

i6=j

xijαij log yi(t) + α0j + ǫj(t), (1)

wherexij is the(i, j) element of the connectivity matrix
X (indicating if genei regulates genej), αij are param-
eters representing the strength of interaction associated
with xij , α0j represents a sort of background mean ex-
pression level, andǫj(t) is an i.i.d. Gaussian error with
unknown varianceσ2.

3. A BAYESIAN MODEL

Starting from the available time-course gene-transcription
data,y, we aim at the reconstruction of the directed graph
which represents the regulatory influences at the gene level.
We assume the gene transcription model (1) to hold and
its unknown parameters being part of our Bayesian model.
The connectivity matrixX is the structural parameter, rep-
resenting the algebraic counterpart of the gene interaction
graph.

3.1. Scale-free topological constraint

Assume the elements of the connectivity matrixX be de-
fined as

xij =

{
0 if genei does not regulate genej;
1 if genei regulates genej.

The matrixX is a parameter that can be estimated from
the available data. In this paper we follow the approach
presented in [7], where a scale-free topological constraint
was introduced in agreement with the main features ex-
hibited by biological networks [8]: a relatively short path
length between any two nodes (small world property), the
presence of many genes with few connections and few
highly connected genes (hubs), the lethal impact for the
overall architecture of the network of the deletion of a hub
(centrality and lethality principle)[9].

As the departing connectivity of each gene,outdegree,
has been found to follow approximately a power law [10],
in our model we impose a scale-free structure on the data
via a power law prior on the outdegree:

P (xi· = k) ∝ k−γ , (2)

wherexi· =
∑

j xij is the outdegree of genei, andγ
is the scaling parameter. The way in which we actually
incorporate this constraint in our model will be explained
in subsection 4.2.

y
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Figure 1. Directed acyclic graph showing the dependen-
cies among the parameters of the model.

3.2. Interpretation of parameteres

The power law exponentγ can only take positive val-
ues, it represents a tuning parameter for our model; the
higher gamma, the stronger the penalty on large numbers
of gene-interactions. Onγ we impose a uniform prior over
the range(0.5, 2.5), which are the most common values
quoted in the recent literature. The noise varianceσ2 is
assumed to follow an Inverse Gamma prior distribution.

4. MCMC INFERENCE

The hierarchical model has a directed acyclic graph struc-
ture (Figure 1), which in principle makes an MCMC im-
plementation a standard option for performing Bayesian
inference. We implemented a hybrid Gibbs and Metropolis-
Hastings sampler in R with a few modifications that are
described below. At every sweep parametersγ andσ2 are
updated in a standard manner. Due to the dimensionality
of the connectivity matrixX and linear model parame-
tersα, efficiency considerations force us to use something
else for updating those parameters. Given thatα is not
our main interest, we estimate them within every sweep
via an empirical Bayes approach. This means thatX and
α are updated jointly, whereby a proposal forX is supple-
mented with a valuêα(X, y), to wit the maximum likeli-
hood estimate forα given the connectivities and the data.
The update forX itself involves a novel idea, using a fast
ratio of p-values of a relevant test-statistic rather than the
more involved ratio of conditional probabilities. This ap-
proach has strong similarities with [11].

4.1. Algorithm

Given an arbitrary set of starting values, the basic algo-
rithm proceeds as follows:

(A1) X update: return updated values forX , α0j and
αij , ∀i, j.

(A2) σ2 update: return updated value forσ2.

(A3) γ update: return updated value forγ.

At each iteration of the algorithm we do a sweep of these
three steps. Informal convergence criteria suggest that
the sampler converges after 10,000 iterations. We obtain
300,000 iterations and consider the output after a 10,000
sweep burn-in, with a thinning value of 25.



4.2. Gene interaction matrix update

As we indicated above, we use a novel MCMC procedure
for the updateX ′ of X . The reason for this is that calculat-
ing the ratioP (X′

|γ)
P (X|γ) can be time-consuming. Instead, this

ratio is replaced by a ratios of p-values from a frequentist
testing strategy. This goodness-of-fit test-statistic

Tγ(X) =

N−1∑

k=1

(Ek − Ok)2

Ek

,

whereEk are the expected counts under a power law dis-
tribution with parameterγ andOk are the observed counts
in the connectivity matrixX , checks to what extend the
data is consistent with the scale-free topology with cur-
rent exponentγ. The p-values,

p(Tγ(X)) = P (χ2
(n−3) > Tγ(X)) (3)

from both the current valueX and the proposalX ′ are
then combined in the alternative acceptance probability

AP = min

{
1,

p(Tγ(X ′))

p(Tγ(X))

p(y|X ′, γ, σ)

p(y|X, γ, σ)

}
. (4)

This acceptance probability guarantees that without data
one would end up sampling from a network indistinguish-
able from one with a scale-free distribution. With data, the
solution will converge to the most scale-free distribution
that is consistent with the data. This approach, although
novel, has direct links with Approximate Bayesian Com-
putation [11], where for large probability calculations sum-
mary statistics are used instead.

In summary, for theX update we use the following
procedure:

1. Propose a new valueX ′ by flippingm random ele-
ments ofX from 0 to 1 or viceversa, and its associ-
atedα̂(y, X ′).

2. Compute

• the likelihood with both the current value of
(X, α(y, X)) and the proposal(X ′, α(y, X ′)).

• the p-value ratio as in equation (3).

3. Combine the information from Step 2 in forming
the acceptance probability (4).

4. Accept the proposal(X ′, α(y, X ′)) with probabil-
ity in step 3.

5. Proceed in the algorithm withσ2 andγ updates.

5. APPLICATION

The model has been applied to a 25-gene subnetwork of
the yeast,Saccharomyces cerevisiae, gene interaction net-
work, the SGS1 neighbor subnetwork, described by [12].
We use expression data from a 77-time point microarray
dataset of Spellman [13]. The aim is to infer the structure
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Figure 2. Reconstructed influence network, with
YMR190C being the systematic name of SGS1.

of the SGS1 subnetwork, reconstructing both the connec-
tivity matrix X and the matrixα with the intensities of the
interaction.

We apply our algorithm and reconstruct the correspond-
ing influence network displayed in Figure 2, where the dif-
ferent intensities of the directed edges represent the mag-
nitude of the correspondingα parameters. To establish
the presence of an edge between two genes, we chose a
threshold of 0.8 on the posterior probability ofX . Look-
ing at the histogram of the outdegrees represented in Fig-
ure 3 we can see that the power law behavior is preserved
by the algorithm. This is in contrast to the results that
would have been obtained without any topological con-
straint. Figure 4 shows the outdegrees for the same model
without topological constraint, where the number of links
was chosen via a stepwise AIC procedure. This figure sug-
gests that such model typically overestimates the number
of links, leading to a non-sparse network.

6. CONCLUSIONS

In this paper we presented a Bayesian hierarchical model
for the reconstruction of regulatory networks from gene
expression data. We assume the transcriptional interac-
tions to be described via a simple linear model on the
logarithmic scale. Due to the typically high dimension-
ality of the data, a scale-free topological constraint on the
outdegree distribution has been imposed. We develop an
MCMC algorithm for inferring the structure of the net-
work, implemented in the statistical software R. A key el-
ement of our procedure is that we impose the topological
constraint on the network within the MCMC update ofX .
We tested the algorithm reconstructing a small regulatory
network in yeast and compared our method with stepwise
regression, showing that the decaying outdegree distribu-
tion is not preserved by that method. Our future work
will be devoted to the extension of the model including
a transcription dynamics closer to the biological behavior,
which takes into account also the TF activities as unknown
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ABSTRACT

Gene regulatory networks can be found to contain net-
work motifs, small recurring local structures. In this work
we utilize the Boolean network model to study the effects
of some local structures on network dynamics and pro-
pose a partially annealed approach. In partial annealing
the connections in the local structures are fixed while the
other connections, including those between the fixed pat-
terns and other nodes, are generated randomly. We focus
on local structures that are dynamical, in the sense that
their topology has no particular distinguishing characteris-
tics, but they introduce correlations between connections
and update rules. Comparison between predictions and
simulations suggests that the partially annealed approach
can be used to investigate networks with local dynamical
structures. Based on the effects observed by comparing
the partially annealed model and the traditional annealing
we suggest that, if possible, the motifs should be defined
based on both topological and dynamical characteristics.

1. INTRODUCTION

Boolean networks are a computationally simple way to
model large dynamic networks [1]. In particular the model
has been used in the context of genetic regulatory net-
works. A Boolean network can be described as a directed
graph, where every node has a Boolean function as a up-
date rule, and the inputs of an update rule are taken from
the topology of the network. The network nodes are up-
dated synchronously.

Despite their simplicity, many interesting phenomena
occur. The response of the network to small perturbations
can be used to characterize the general dynamical behav-
ior of the system. In ordered networks small perturbations
tend to die out, whereas in chaotic networks small pertur-
bations spread to the system. The network is said to have
critical dynamics, if the perturbations retain their original
size on average. Recent studies indicate that real gene reg-
ulatory networks may have critical dynamics [2, 3].

Analysis of Boolean network dynamics can be done
by using the annealed approximation [4, 5]. With this
stochastic mean-field approximation it is possible to pre-
dict the dynamical behavior of a network in terms of av-
erage perturbation propagation for a given distribution of
update rules. The annealed model gives an iterated map
of the system states described with a simple probabilis-

tic parametrization [6]. For example, perturbation sizeρ
and network state biasb can be predicted utilizing such a
model. In this paper we generalize the annealed approxi-
mation to study the effects of fixed local structures.

Partially annealed approach has been used before in
[7] to compute the pairwise mutual information between
the nodes of random Boolean networks. In that case chains
of nodes were found to have an important contribution to
the special properties of critical networks. Here we fo-
cus on the effects of the specific dynamical local struc-
tures, that are introduced into the networks with an in-
cidence above that expected by chance. The topological
features of the structures are simple in themselves, but the
networks can be used to study the effects of correlations
between update rules and connections.

Observations from real gene regulatory networks sug-
gest that the networks contain a significant number of small
repeating structures called motifs [8]. In particular, the
abundances and effects of feed-forward loops and dense
overlapping regulons have been studied. In this paper we
focus on simple tree-like motifs, leaving the analysis of
these cases to future work.

2. PARTIALLY ANNEALED MODEL

The annealed model enables a probabilistic approach of
studying the dynamics of Boolean networks. In the model
the connections and the functions of the network are ran-
domized after every time step, and the only topological
information of the network is typically taken as the in-
degree distribution, the out-degree distribution being Pois-
sonian [1]. An annealed approximation for a given class
of quenched Boolean networks is obtained by studying the
behavior of an annealed model with the same distribution
of functions. For many interesting cases, this turns out to
be simple to analyze using probabilistic calculations.

Partial annealing is a generalization of the annealed
model. In partial annealing only a part of the connec-
tions in the network is reshuffled. A specified fraction
of the nodes is fixed to local structures, which remain in-
tact. This allows a similar probabilistic calculations as in
the traditional annealed case, making the analysis of the
model computationally simple. In addition, the partially
annealed model can also be simulated in the case of non-
tree-like motifs, when our probabilistic approach is not
directly applicable.
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Figure 1. Two node motif.

We use the four-state model presented in [6] to keep
track of the state of the network. In the four-state model
we have two similar annealed networks, the first one with-
out and the second one with a perturbation, i.e. a fraction
of the nodes have their state inverted. The functions and
the connections of the networks are the same for a given
time step. For an arbitrary node there are four possible
states, taking both networks into account. The probability
that a node from the first network has valuei and the cor-
responding node from the second network has valuej at
time t is denoted bypij(t). For the analysis of local struc-
tures we need to keep track of the history of the network.
The probabilistic description of the state at timek can be
parametrized as

P
t
k = [p00(k), p01(k), p10(k), p11(k)] .

For simplicity of notation, we denote the series of the state
vectors at timesk < t by P

t.
We can account for tree-like local structures by defin-

ing vectorτi, which is defined for every internal nodei of
the motif. The lengthKi of the vectorτi = [τi,1, . . . , τi,Ki

]
is the total number of inputs affecting the node in the par-
tially annealed approximation. Note that this can be dif-
ferent from the number of inputs of the node, since all the
leafs in the tree of influence of the node are considered
inputs in this extended sense. For example, in Fig. 1 node
F2 has three inputs x1, x2, and x3.

τi,j gives the distance of leaf nodej from nodei in
the motif. In terms of dynamics, this means that the state
of nodei at timet will be affected by the state of a ran-
domly selected nodej at timet− τi,j , taking into account
the Boolean functions attached to the nodes. Due to the
annealing, the state corresponds to one selected randomly
from distributionpmn(t − τi,j). In our example shown
in Fig. 1 the correspondingτ for the node F2 would be
[2, 2, 1].

The function distributionF now consists of the func-
tions constructed using composition of functions assigned
to the nodes of the motifs and functions with annealed in-
put connections. Continuing our example in Fig. 1, if
both update rulesf1 andf2 in the motif are two-input log-
ical ands, the composed rule for node F2 will be given by
F2(x1, x2, x3) = f2(x3, f1(x1, x2)) = x1 ∧ x2 ∧ x3, that
is, a three-input logical and.

Like the annealed model, the partial annealing can also
be formulated as a probabilistic model to predict the dy-
namical behavior of the network. The four-state model of
probabilitiespij(t) in this generalized form can be written
as a group of equations





p00(t) = E
f∈F

[∑
x,y

(1 − f(x))(1 − f(y))A(x,y, τf ,Pt)
]

p01(t) = E
f∈F

[∑
x,y

(1 − f(x))f(y)A(x,y, τf ,Pt)
]

p10(t) = E
f∈F

[∑
x,y

f(x)(1 − f(y))A(x,y, τf ,Pt)
]

p11(t) = E
f∈F

[∑
x,y

f(x)f(y)A(x,y, τf ,Pt)
]
.

(1)
The function A is defined as

A(x,y, τ,Pt) =

L∏

j=1

∏

m,n∈B

pmn(t − (τ )j)
δ(m−xj)δ(n−yj)

(2)
whereL is the length of the vectorτ , xj is thej’th element
of x, (τ )j is thej’th element ofτ andδ(x) is the delta
function. Note that A is the joint probability distribution
function of x andy, the inputs from networks 1 and 2,
given the delay vectorτ and the history of probabilities
P

t.
Since perturbation sizeρ is often the main feature un-

der study, it should be noted that the equations can be
reparametrized withρ and state biasesb1 andb2 of both
networks as follows [6]:






ρ = p01 + p10

b1 = p10 + p11

b2 = p01 + p11.
(3)

For example, in the simulations that follow, the results are
presented in terms of perturbation size.

3. RESULTS

In the simulations we have studied the simplest possible
case of a local dynamical structure, the motif shown in
Fig. 1. We used networks with half of the nodes in motifs
and generated the rest of the network with random con-
nections and fixedK = 2. Each network only contains
dynamical local structures of one type. The functions of
the rest of the network were generated randomly with bias
p = 1

2 . The inputs for node type F1 were chosen randomly
from the network, while the nodes of type F2 had node F1
as a fixed input. The second input of nodes of type F2 was
also chosen randomly from the network.

In Section 3.1 we study a single example analytically
with partial annealing to solve the fixed point of state bias.
In Section 3.2 we present results of simulations for all se-
lections of two-input functions with no redundant inputs
in the motif shown in Fig. 1.

3.1. Bias map

Particular topics of interest are the fixed points of the sys-
tem, since they can conveniently characterize the long-
term behavior of the system. Those are often hard to ob-
tain analytically, but there are also exceptions. We show a
simple case where analytic solution can be found.



We denotebt for the probability that a network node
has value1 at timet. The bias map [9] is an iterative map-
ping bt = f(BT

t ), whereBT
t = [bt−1, bt−2, . . . , bt−T ] is

a vector consisting of the biases ofT earlier time steps.
For a single two-input and-node the bias of the next time
step isbt = b2

t−1. We set the proportion of the motifs so
that half of the network nodes are in the fixed structures.
We consider the case in Fig. 1 where both the internal
nodes have an and-function. For the motif with two se-
quential ands we can write the bias map as

bt =
1

4
b2
t−2bt−1 +

1

4
b2
t−2 +

1

4
. (4)

To solve the bias fixed pointb∗, we substitutebt = b∗ for
everyt. Thus we end up solving the roots of the following
polynomial:

1

4
b∗3 +

1

4
b∗2 − b∗ +

1

4
= 0. (5)

The roots of the Eq. 5 areb∗ ≈ −2.6511, b∗ ≈ 1.3772
and b∗ ≈ 0.2739. The only valid solution for the bias
fixed point isb∗ ≈ 0.2739. The solution found forb∗ is
a stable fixed point. The state bias can also e.g. show
periodic behavior. For common mixtures of functions a
stable fixed point is usually found [9].

The difference equations of higher degree in Eq. 1
can not in general be solved analytically. However, the
fixed point can also be found by iterating the equations
until convergence. The computational complexity of the
iterations is determined by the number of functions inF

and the number of their inputs.

3.2. Comparison with simulations

In the numerical simulations of the networks we use only
those ten Boolean rules which are truly two-input func-
tions, so the total number of different motifs is 100. For
every pair of functions we have generated 5000 networks
with 600 nodes. Each network is set to a random state and
a perturbation of 180 nodes is applied, which corresponds
to ρ = 0.3. After flipping the nodes both the original and
the perturbed networks are run for 20 time steps and the
fractionspij are calculated for every time step. Each result
is computed as an average over 5000 networks.

Predictions for the networks are calculated with both
annealed and partially annealed approximations. For the
partially annealed approximation we predict the first time
step with the ordinary annealed approximation since there
are no correlations due to dynamical motifs at this point.
This is sufficient for initialization of the iterations in case
the greatest element in everyτi is at most 2. If there are
larger dynamical motifs in the network, the initialization
of the model should be considered in more detail than re-
quired in this case. In addition, we have also simulated
some cases with networks having 1200 nodes with the
same perturbation sizeρ = 0.3 to get insight into how the
network size affects the accuracy of the approximations.

The partial annealing is compared to ordinary annealed
approximation and numerical simulations. The prediction
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Figure 2. Average error for perturbation sizeρ over time
for the annealed (dotted line, crosses) and the partially an-
nealed model (solid line, triangles). Initial perturbation
size is set to 0.3. Errors are averaged over all 100 motifs.

errors for perturbation sizes averaged over all 100 dynam-
ical motifs are shown in Fig. 2. It can be seen from the
figure that partial annealing increases the accuracy of the
predictions, when there are small fixed structures in the
network.

For the motif with functionsx ∧ y for F1 andx ∧ ¬y
for F2, the progression of predicted and simulated pertur-
bation sizes in time can be seen in Fig. 3. In addition to
confirming the greater accuracy of the partially annealed
approximation, it can be seen that for larger network sizes
simulation results approach the partially annealed predic-
tion, as expected. The standard deviations of the simula-
tion results in Fig. 3 are bounded by0.53 · 10−3.

Figure 4 shows the histogram of the average effect of
local dynamical structures over 100 cases considered. The
effect sizes are computed by comparing the predictions
given by the annealed and the partially annealed models
after 19 time steps. As before, the initial perturbation size
is set to 0.3. As can be seen from the figure, the effect
of local dynamical structures can vary depending on the
assignment of the update rules in the structure. However,
the histogram is slightly biased to positive values, mean-
ing that the local structures tend to preserve perturbations
longer than networks with no dynamical motifs on aver-
age.

4. DISCUSSION

In this paper we only used the simplest possible motifs to
demonstrate the principle of partial annealing. The par-
tially annealed model can be applied to study the effects
of biologically relevant and more complex motifs as well,
even though the analysis of the model gets more difficult
due to loops. Loops can create paths of different lengths
between two given nodes, resulting in correlations that can
not be analyzed using the parametrizationpij(t). Finding
efficient computational methods for these cases remains a
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key topic of further studies.
Even though in this work we restricted our attention to

networks with only one type of local structure with a fixed
rate of occurrence, our method can be applied to study
the effects of the proportion of nodes assigned to local
structures. Networks with different mixtures of dynamical
motifs can be investigated as well. These topics should be
considered in more detail in future work.

The local structures of the simulations in this paper
have no topological characteristic that would make them
stand out if only the network graph was investigated. In-
stead, their main role was in introducing correlations be-
tween the assignment of network connections and the up-
date rules. This suggests that all local structures of inter-
est might not be found by looking only at the topological
structure of the network. As more accurate information of
genetic regulatory networks becomes available, it will be
of interest to see if the global dynamics of the networks
can be characterized in more detail utilizing abundances
of local dynamical structures of the kind considered in this
work. This, in turn, would pave the way towards deeper
understanding of information flow in biological systems
and, for example, support efforts of resolving the status of
the hypothesis that cells might have critical dynamics.
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ABSTRACT

We examine a proposed delay differential equation model
for a gene regulatory network involving hes1 mRNA and
its protein. This model reproduces reported oscillatory be-
haviour. By analysing the model we can a) explain pos-
sible dynamics of the biological system and b) inform the
corresponding inference problem in parameter estimation.
We extend published results to the case where mRNA and
protein degradation rates may be different. Using lin-
earisation, bifurcation theory and Lindstedt’s method, we
characterise the occurrence and nature of oscillatory solu-
tions in terms of the system parameters. The usefulness
of the results will be illustrated for the Bayesian inference
problem on synthetic data based on biologically realistic
data. Full details of the analysis and results on a real data
set will be made available in a forthcoming technical re-
port.

1. INTRODUCTION

The setting for our work is the biologically important in-
stance where the expression of a gene is down regulated
by its protein product. This arises, for example, with the
p53 tumor suprressor protein whose intracellular activity
is regulated through a feedback loop involving its tran-
scriptional target [1]. Hes1 and NF-κB are also com-
ponents of a short feedback inhibition loop [2] and [3].
We focus here on the case of the delayed Hes1 feedback
loop featuring hes1 mRNA and Hes1 protein where both
mathematical models and quantitative experimental data
are available [4] and [2]. Here Monk [4] argues that the
observed oscillatory behaviour is best accounted for by
the introduction of a delay parameter that models the non-
instantaneous nature of the transcription process, rather
than by introducing an unknown third agent [2].

Verdugo and Rand [5] gave a mathematical analysis
of Monk’s model [4] for the Hes1 feedback loop. In par-
ticular, they derived closed form approximations for the
amplitude and frequency of oscillation, where oscillatory
behaviour is assumed to arise through Hopf bifurcation in
the delay parameter. The analysis in [5] applies to the case
where the decay rates of hes1 mRNA and Hes1 protein,
key components of the feedback, are equal. In this work,
we study the more realistic case where the decay rates are
allowed to be different, also focussing on oscillatory be-

haviour. Our results are of interest in their own right as a
means to understand how the system dynamics are driven
by the model parameters and they can also be used to in-
form the corresponding Bayesian inference problem. In
this extended abstract, we summarise our main results and
apply them in a simple, controlled setting. Full details of
the analysis and more extensive computations, including
results for the data in Hirata et al. [2], will be made avail-
able in [6].

We remark that gene regulatory networks can be mod-
elled at several different levels [7], [8] and [9]. In the
case where molecule counts are low, it may be argued that
discrete and/or stochastic models are more realistic than
continuous-valued deterministic differential equations. How-
ever, in the context of inference, we believe that for the
type of sparse time series data available in [2], the tradi-
tional chemical kinetics viewpoint is entirely appropriate.

2. MONK’S MODEL

Hes1 represses the transcription of its own gene through
direct binding to regulatory sequences in the hes1 pro-
moter [2]. Figure 1 provides a schematic representation
of the Delayed Hes1 Feedback Loop. The Hes1 gene tran-
scribes mRNA which passes from the nucleus to the cyto-
plasm. Hes1 protein is synthesised by the translation of
hes1 mRNA. An interesting feature is that the protein re-
presses transcript initiation from the hes1 gene through
binding of Hes1 dimers to the promoter. Letting m (t)
and p (t) denote the concentration of hes1 mRNA and
Hes1 protein at time t, respectively, the model proposed
by Monk [4] for the Hes1 feedback loop takes the form of
a delay differential equation (DDE):

ṁ =
1

1 + (p (t− τ) /p0)
n − µmm, (1)

ṗ = m− µpp, (2)

where µm and µp are the rates of degradation of mRNA
and protein, respectively, p0 is the normalised repression
threshold and n is the hill coefficient. The constant τ rep-
resents a time delay. This model was able to explain, via
numerical simulations, the oscillation of hes1 mRNA and
Hes1 protein in cultured cells observed by Hirata et al.[2].



Hes1 protein

hes1 mRNAhes 1

Figure 1. Representation of the Delayed Hes1 Feedback
Loop. Transcription: Hes1 gene codes for mRNA which
passes from the nucleus to the cytoplasm, Translation:
Synthesis of Hes1 protein and Repression: Binding of
Hes1 dimers to the promoter. The dashed line denotes a
reaction involving a delay.

3. BAYESIAN APPROACH

We propose a Bayesian approach to the parameter fitting
problem which takes into account the inherent uncertain-
ity in the data and uses our a priori bifurcation analysis
to inform the choice of priors. Bayesian Inference and
Markov Chain Monte Carlo (MCMC) methods have been
recently advocated for the estimation of model parame-
ters from Ordinary Differential Equations (ODEs) [10].
A Bayesian approach links the quantity that we are in-
terested in, the probability that our parameters take cer-
tain values given the data, to two quantities that we can
assign, the probability that we would have observed the
measured data if the parameters took those values and
our prior biological knowledge or ignorance about these
parameters [11]. Whereas traditional parameter estima-
tion methods are deterministic and point valued (for ex-
ample COPASI [12]), these methods use Bayes’ Theorem
to assign probabilities to parameter values and can handle
noise inherently.

Using the Bayesian approach to parameter estimation
for nonlinear dynamical systems throws up several chal-
lenges, and these typically increase when time delays are
included. Key issues are

• Dimensionality: models may involve several unde-
termined parameters,

• Identification: different parameter combinations may
produce similar dynamics, for example increasing
a production rate may be almost equivalent to de-
creasing a decay rate,

• Local maxima: the likelihood function may have
many locally optimal values.
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Figure 2. Oscillatory behaviour occurs when µm and µp

lie within the bounded heart-shaped region. The dotted
line across this heart represents our estimate of the value
of µmµp, using analysis, from observed data.

MCMC methods [13] can go some way to addressing
these issues. In this work we show that a priori mathe-
matical analysis can also be an effective tool. Our focus is
on oscillatory time series, and we use bifurcation analysis
and Lindstedt’s method [14] in order to inform the choice
of priors, thereby simplifying and focussing the parameter
estimation process.

4. ANALYSIS

The work in [6] extends the results of Verdugo and Rand [5]
to the more realistic case where the decay parameters (µm

and µp) are not equal. The mathematical techniques in-
volved include linearisation, bifurcation theory and Lind-
stedt’s method. We summarize those results here and il-
lustrate their use.

4.1. Stability of Equilibrium

Following the approach of Verdugo and Rand [5], equi-
librium points for the system (equations (1) and (2)) are
found by setting ṁ = 0 and ṗ = 0. After elimination and
substitution, we obtain two expressions for p∗ and m∗. To
find out whether m∗ and p∗ are stable, we linearise about
these points and define ζ and η to be deviations from the
equilibrium. This results in a linear system which can
be written as a second order Delay differential Equation
(DDE). We look for periodic solutions of the form eλt and
obtain an expression for λ.

We then show that the equilibrium is stable for val-
ues of the time delay parameter τ below a critical value,
denoted τcr, and unstable for values of τ above τcr. We
obtain an explicit formula for ω, the oscillatory frequency
at τcr, and show that oscillatory solutions arising from a
Hopf bifurcation occur only when the difference between
decay constants is sufficiently small. For physically rea-
sonable solutions, we also require ω > 0 and τcr > 0. Us-
ing these conditions, it is possible to define a region where
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Figure 3. Typical system behaviour for parameters, from
Figure 2, lying within the bounded area (above) and out-
side the bounded area (below). µm and µp are as stated.
p0 = 90, n = 5 and τ = 19. The initial conditions were 3
for mRNA and 100 for protein and were assumed to hold
for all t < 0.

oscillations occur in terms of our system parameters. Fig-
ure 2 shows this region for p0 = 90, n = 5 and τ > τcr.
We see that this region is bounded, allowing us to consider
the possibility of setting mathematically informed priors.
Figure 3 compares behaviour for cases where parameters
µm and µp lie within the bounded area and outside the
bounded area. In the first case we see sustained oscilla-
tions and in the second the system moves towards a fixed
steady state.

4.2. Lindstedt’s Method

We summarise here the application of Lindstedt’s method
to our model. The Lindstedt method is a technique for uni-
formly approximating periodic solutions to ODEs when
regular perturbation approaches fail [14]. Given that the
time series is periodic, our goal is to find formulae that
are relevant for all t. The key idea is to regard the fre-
quency, ω, as unknown in advance, and to solve for it by
demanding that an appropriate series expansion contains
no secular terms. The result is closed form approximate
expressions for the amplitude and frequency of oscillation.
This information can be used to link τcr to the actual sys-
tem delay.

5. EXPERIMENT

We now illustrate how our analysis can inform the Bayesian
Inference approach to parameter estimation. We focus
here on the inference of µm and τ assuming that the other
parameter values are known. In [6] we show that µm is
highly correlated with µp and so poses problems for in-
ference. The time delay parameter τ is of interest because
it relates to an important biological process. We use the
analysis relating to the region of stability to set priors for
µm and τ . As our objective is one of proof of principle we
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Figure 4. Numerically simulated data. Parameter values
used: p0 = 90, n = 5, µm = 0.03, µp = 0.04 and
τ = 19. The initial conditions were 3 for mRNA and 100
for protein and are assumed to hold for t < 0.

propose to test our method using synthetic data which has
been generated knowing the underlying parameters.

5.1. Method

Data is numerically simulated from the mathematical model
describing the system equations (1) and (2). Indepen-
dent Gaussian noise (mean equals 0 and standard devia-
tion equals 0.2) is then added to make this data more re-
alistic. The data that we use in our inference experiment
comprises 49 mRNA values taken every 15 minutes from
t = 0 to t = 720 mins. See Figure 4 for details of the
parameter values used in the model to generate the data
points. We emphasise that although we show the corre-
sponding data points for the protein, our inference exper-
iment will be based on inferring all the parameters of the
system from the mRNA data points alone.

To proceed with the Bayesian Inference method, we
need a likelihood function and prior probability density
functions (pdfs). Following [10] we propose to base the
likelihood function on the normal distribution, which is
often used as a theoretical model for describing the noise
or imperfections associated with experimental data. Its
use is traditionally justified by appealing to the central
limit theorem [11]. Our prior pdfs reflect our knowledge
about our parameters and for this experiment we base our
proposed priors within the bounded region defined in Fig-
ure 2 and related analysis. This gives a uniform value for
0.0018 < µm < 0.1446 and 13.4 < τ < 55.6. In biolog-
ical terms these priors are extremely wide and we could
use further approximations from [6] to reduce these prior
ranges before MCMC methods are used. However, for il-
lustration, we will conduct a grid search over the full range
of parameters. Inference about the values of the unknown
system parameters µm and τ is provided by the posterior
pdf which according to Bayes Theorem can be obtained
by multiplying our priors by the likelihood function.
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5.2. Results

Figure 5 shows, as logarithms, the relative probabilities
of µm and τ given the data. Our best estimates for µm

and τ are 0.03 and 19 respectively. These correspond, up
to two significant figures, to our model parameters and so
our method has successfully recovered this input. How-
ever the method has not just provided a point estimate
but our evaluation of the parameters over a whole range
of feasible solutions. We see that τ has an approximately
uni-modal distribution but µm has several peaks. It is clear
that µm poses problems for MCMC methods in determin-
ing the posterior pdf as the MCMC chains could get stuck
within local maxima.

5.3. Summary from the Experiment

A Bayesian approach to parameter estimation can com-
bine biological information and mathematical analysis to
inform the choice of priors and predict not only the best
fit but also alternative plausible solutions.

6. CONCLUSION

In this extended abstract we have outlined results that ap-
ply to a gene regulatory network model with time delay.
Given that the biological system generates oscillatory so-
lutions, a priori mathematical analysis can be called upon
to focus the possible parameter range and hence improve
the choice of priors in Bayesian inference. Further details,
including fully Bayesian parameter estimates for the data
in [2] will be made available in [6].
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ABSTRACT

Transient rises in cytosolic calcium concentration play a
crucial role in initiating long-term depression (LTD) of
synaptic activity. Calcium release from endoplasmic retic-
ulum is particularly important in LTD. In Purkinje cells,
the release is mediated by inositol-1,4,5-trisphosphate(IP3)
receptors (IP3Rs) that are highly expressed in dendritic
spines. The small volume of spine and the small num-
ber of molecules involved increase stochasticity in bio-
chemical processes. We studied the effects of stochasticity
by comparing stochastic and deterministic simulations for
two different IP3R models. We found a significant differ-
ence between the responses when using small initial con-
centration of calcium or IP3. Deterministic simulations of
IP3R activation do not produce realistic results under all
conditions.

1. INTRODUCTION

Transient rises in the cytosolic Ca2+ concentration have
an important functional role in neurons. In cerebellar Purk-
inje cell (PC) dendritic spines, they are essential for gener-
ation of LTD of synaptic strength [1, 2]. These temporary
rises are due to Ca2+ entry from the extracellular space
and Ca2+ release from intracellular stores such as endo-
plasmic reticulum (ER). In PC spines, IP3Rs are respon-
sible for the Ca2+ release from the ER and are relatively
highly expressed.

Mathematical modeling is one of the important tools
when trying to understand the complex behavior of pro-
teins within networks and pathways. Several models have
been proposed to describe the behavior of IP3R (for a
comprehensive review, see, for example, [3]). All the
IP3R models and simulations were deterministic until re-
cent years. Deterministic models show the average behav-
ior of the system, i.e. do not include any kind of random-
ness. However, when biochemical reactions occur in very
small volumes, such as in dendritic spines, the number
of molecules is low even with fairly large concentrations.
The small number of molecules increases the possibility
for stochastic effects in reactions. Both the randomness
of molecular encounters and the fluctuations in the tran-
sitions between the conformational states of proteins be-

come relevant. Given the small volume of the PC spine,
it is of interest to test the stochastic nature of the system
and to take the stochasticity into account to obtain biolog-
ically realistic simulations. Even though the deterministic
approach is adequate in some cases, it fails to reflect the
detailed nature of the biological system.

The aim of this work was to study the concentration
levels at which the effects of stochasticity on the func-
tion of IP3R can not be ignored. Among many mathe-
matical models of IP3R two recent ones were chosen as
test cases. The models were implemented into two differ-
ent software, GENESIS/Kinetikit [4, 5] for deterministic
simulations and STEPS [6] for stochastic simulations, to
perform two types of simulations, open probability simu-
lations and dynamic simulations.

2. MATERIALS AND METHODS

2.1. IP3R models

2.1.1. Model of Doi et al.

The IP3R model of Doi et al.[7] was originally published
as a part of a larger model for Ca2+ dynamics in the cere-
bellar PC spine and parameter values of this model were
determined based on experimental data from Purkinje cells
[7]. The model was originally implemented as determin-
istic. A schematic representation of the model is shown in
Figure 1a.

All the reactions and their rate constants can be found
in Supplemental material of the original article [7]. Briefly,
in this model IP3R needs to bind both IP3 and Ca2+ to
open and thus provide Ca2+ flux from ER lumen to cy-
tosol. IP3R has only one open state, RIC, in this model.

2.1.2. Model of Fraiman and Dawson

The IP3R model of Fraiman and Dawson [8] (see Figure
1b) is the only model that has a Ca2+ binding site inside
the ER in addition to the cytosolic binding sites found in
other models. The parameter values used in this work can
be found in Errata for the original article [8]. This model
was originally simulated stochastically, as a Markov pro-
cess.



(a)

(b)

Figure 1. Schematic representation of the states and tran-
sitions of the IP3R models. (a) Doi et al. (b) Fraiman and
Dawson.

Originally, the six states, Oa, Ob, Oc, Pa, Pb, and Pc,
are considered as open. However, IP3R needs IP3 to reach
a stable open conformation [9, 10]. For this reason, three
of the original open states were neglected in the present
work and only states Oa, Ob, and Oc were considered as
open. Also in the original article [8], the rate constant
of the transition from A10 to A00 is defined as ’detailed
balance’. We fixed the parameter by testing three values
with deterministic open probability simulations (data not
shown). Simulations were done as described in Section
2.3.1. The parameter values of 0 s−1 and 200 s−1 pro-
duced identical results while the value of 2000 s−1 slightly
upraised the left side of the open probability curve. Based
on these test simulations the value of 200 s−1 was chosen.

2.2. Simulation software

2.2.1. Genesis/Kinetikit

The GENESIS (GEneral NEural SImulation System) [4]
simulation environment can be extended with Kinetikit
[5] that is an extension for simulating reaction kinetics in
well-mixed conditions. GENESIS/Kinetikit can be used
to model and simulate the behavior of molecular networks
and pathways. In this work, GENESIS version 2.2.1 for
Cygwin and Kinetikit version 10 were used to obtain de-
terministic simulation results. Deterministic versions of
the IP3R models used are based on the law of mass action.
The differential equation system was numerically solved
(simulated) with the Exponential Euler method [4].

2.2.2. STEPS

STEPS (STochastic Engine for Pathway Simulation) [6]
performs full stochastic simulation of reactions and diffu-
sion of molecules in three dimensions. It extends the sto-
chastic simulation algorithm (SSA) described by Gillespie
[11]. In this work, STEPS developmental version 0.1.3
was used. Simulations were run both on a computer clus-
ter and in a Cygwin environment on a standalone machine.

In the SSA, all reactions must be unidirectional. For
this reason forward and backward parts of reversible reac-
tions are defined as two separate reactions in the STEPS
input file. In this early version of the software, the com-
partments of the modeled system are geometrically mod-
eled as cubic shapes that are then discretized into small
voxels. It is possible to define walls or surfaces between
voxels that belong to different compartments. This en-
ables modeling of surface bound molecules, such as ion
channels, in their natural location.

2.3. Simulations

2.3.1. Open probability simulations

It has been experimentally shown that the open probabil-
ity of IP3R is dependent on the cytosolic Ca2+ concentra-
tion ([Ca2+]) [12]. This dependence is bell-shaped with
logarithmic x-axis. Originally, both models were built to
reproduce this dependency.

In the deterministic open probability simulations, the
behavior of a single IP3R is simulated in an environment
with constant [Ca2+] (several points, see Figure 2) and
[IP3] (10 µM) until steady-state is achieved. The cytosol
and also the ER had a volume of 0.1µm3 which is an ex-
perimentally defined average volume for PC spine cytosol
[13]).

Deterministic simulations, using GENESIS/Kinetikit,
were run for 5 or 15 s with a time step of 1µs. The open
probability of IP3R was obtained at the end of simula-
tion. In stochastic simulations with STEPS the models
were simulated for 20 s using a sampling frequency of 0.1
s. In stochastic simulations the steady-state was achieved
before 10 s time. For each initial Ca2+ concentration,
100 simulations were run with different seed values for
the random number generator. The open probability was
calculated as an average of the open IP3Rs for the time
interval 10-20 s over the 100 iterations.

2.3.2. Dynamic simulations

A cell is a constantly evolving dynamic system. It is there-
fore important to study the dynamic behavior of intracel-
lular functions in addition to steady-state properties. In
this work, we studied the cytosolic Ca2+ concentration as
a function of time. In the dynamic simulations, the Ca2+

flux through the open IP3R was modeled in addition to
IP3R state transitions. In GENESIS/Kinetikit, the flux is
modeled using thekchan entity which describes a ligand-
gated channel. The equation for flux behindkchan is not
published, but it is known to depend on the concentration
gradient over the membrane and the rate of the flux is con-
trolled with a parameter defined by the user. In STEPS,
the flux is also dependent on the concentration gradient.
Based on test simulations (data not shown) the equations
for the flux are almost identical in GENESIS/Kinetikit and
in STEPS.

Rate parameters of the flux were estimated for both
simulators separately. It is estimated that 5400 Ca2+ ions
go through open IP3R during one opening and that the



Table 1. Initial conditions for dynamic simulations.

Species
Value

Number of IP3Rs
(naive state)

16

[IP3] 0.1µM, 0.2µM, 0.5µM, 1.0
µM, 5.0µM

[Ca2+]cyt 0.01µM, 0.05µM, 0.1 µM,
0.2µM, 0.5µM, 1 µM

[Ca2+]ER 150µM

mean open time of IP3R is 3.7 ms in physiological condi-
tions [14]. The estimated parameter values for flux func-
tions were 595 (unit not known) for GENESIS/Kinetikit
and 5.8·108 M−1s−1 for STEPS.

The compartments in these dynamic simulations had
the same volume as in open probability simulations and
the volumes were considered as well-mixed (i.e diffusion
was not taken into account). The initial conditions used
in dynamic simulations are given in Table 1. The average
number of IP3Rs in a PC spine has been estimated to be
16 (see Supplemental material of [7]). There are five dif-
ferent initial concentrations for IP3 and six for cytosolic
Ca2+. All combinations of the initial concentrations were
used in simulations. A deterministic simulation response
and 100 stochastic simulation responses were obtained for
each situation. Data analysis was done with MATLABr.

3. RESULTS

3.1. Open probability simulations

The results from open probability simulations are presented
in Figure 2. The open probability curves obtained from
deterministic (GENESIS/Kinetikit) and stochastic simula-
tions (STEPS) are consistent. This expected result shows
that both models were correctly implemented in both sim-
ulation environments.

3.2. Dynamic simulations

To study the dynamic behavior of the two IP3R models,
cytosolic [Ca2+] was followed as a function of time. Ex-
amples of simulation results with both IP3R models are
shown in Figure 3. The 100 individual stochastic itera-
tions are shown as thin gray curves, their mean as thick
solid curve, and the deterministic curve as dashed line for
comparison. The variation in stochastic simulations in-
creases, i.e. the gray curves are more spread out, when
initial [IP3] and [Ca2+] are decreased.

The data was examined in two ways. First, the maxi-
mum Ca2+ concentration reached during simulations was
measured as a function of the initial [IP3] and initial cy-
tosolic [Ca2+] (data not shown) for the deterministic and
for the mean of the stochastic cases. Second, the time at
which half of the maximum cytosolic Ca2+ concentration
was reached was measured as a function of the initial [IP3]
and initial cytosolic [Ca2+]. This is a convenient way to
compare the curve slopes at the steepest region.
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Figure 2. Results of open probability simulations. (a) Doi
et al. (b) Fraiman and Dawson.

The maximum cytosolic Ca2+ concentration attained
in the deterministic simulations with both models is de-
pendent only on initial [IP3], not on initial [Ca2+]. The
latter might be due to the quick response to the rising
[Ca2+]. [Ca2+] rises when the channel opens and so the
initial concentration does not have much influence on the
maximum concentration. In the stochastic simulations,
the results are similar to the deterministic ones above ini-
tial cytosolic [Ca2+] of 0.1 µM. Below this concentration
value, the maximum [Ca2+] might be also dependent on
the initial [Ca2+]. This concentration threshold is identi-
cal for both models.

The time at which half of the maximum cytosolic Ca2+

concentration was reached is dependent on the initial [IP3]
in deterministic and stochastic simulations. However, in
the deterministic simulations, only a minor dependence
on the initial [Ca2+] can be seen, whereas, in stochastic
simulations, dependence on the initial [Ca2+] is more em-
phasized. In stochastic simulations, the dependence on
both [IP3] and [Ca2+] is evidently seen. These results are
consistent in both models.

To study the difference between deterministic and sto-
chastic simulation results in times at which half of the
maximum cytosolic Ca2+ concentration was reached the
deterministic plots were subtracted from the stochastic plots
for both models. The difference between stochastic and
deterministic simulation results is shown in Figure 4. Fur-
thermore, a threshold, below which the effect of stochas-
ticity seems to be significant, can be determined from these
plots. In the case of IP3R model of the Doi et al. the
thresholds for the initial [IP3] is around 1.0µM and for
the initial cytosolic [Ca2+] between 0.1µM and 0.2µM.
In the case of the IP3R model of Fraiman and Dawson the
thresholds are slightly lower, namely 0.5µM for [IP3] and
0.1 µM for [Ca2+]. Our work implies that there is a dif-
ference when having 100 or less molecules. An important
thing to notice is that the thresholds for [Ca2+] are close
to the resting level of Ca2+ concentration, 70± 29 nM, if
we apply results from hippocampal pyramidal neuron [15]
to PC spines.

4. CONCLUSIONS

In this work, the importance of stochasticity in simulation
of IP3 receptor function was determined. The stochas-
tic simulation algorithm gives more realistic results than
the deterministic one because it takes random fluctuations
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Figure 3. Examples of dynamic simulations. Results
from deterministic simulations (dashed) and the mean
value (solid) of 100 stochastic simulations (thin gray) are
shown. Initial concentrations:[IP3] = 0.2 µM, [Ca2+] =
0.1µM. (a) Doi et al. (b) Fraiman and Dawson.
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Figure 4. Difference (gray scale) between deterministic
and stochastic simulation results as a function of initial
[IP3] and [Ca2+]. (a) Doi et al. (b) Fraiman and Dawson.

into account. Based on dynamic simulation results of both
models, we evaluated that there exists a threshold for ini-
tial IP3 and cytosolic Ca2+ concentrations below which
the effect can not be neglected. The threshold for Ca2+

concentration is close to the resting level of Ca2+ concen-
tration in spines and thus it corresponds to the resting state
of a spine before Ca2+ signals are induced. The present
study strongly advocates for stochastic modeling and sim-
ulation of protein function.
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ABSTRACT 

Liver regeneration is a complex process, having evolved 
to protect animals from the consequences of liver loss 
caused by food toxins. We establish a computational 3D 
single-cell-based model of the liver lobule regenerating 
after intoxication by CCl4. In order to constitute a statis-
tically representative liver lobule, we assemble informa-
tion from light and confocal microscopy analyzed by an 
image processing chain. Furthermore we reconstruct the 
lobule sinusoidal blood vessel system and use direct 3D 
volume visualization to verify our results.  This lays the 
foundation for understanding the complex regeneration 
dynamics through iterated experimentation, modeling 
and predictions. Preliminary simulations identified a suf-
ficiently large cellular motility, necrotaxis as being bene-
ficial and rapid cellular reorientation and polar cell-cell 
adhesion after division as essential for successful liver 
regeneration. 

1. INTRODUCTION 
Liver regeneration counteracts the consequences of loss 
of hepatic tissue caused by food toxins [1]. Such damage 
to hepatic tissue may experimentally be mimicked by 
administration of hepatic toxins. Carbon tetrachloride 
(CCl4) is often used for that purpose ([2], [3]). It causes 
hepatocyte necrosis primarily in the peri-central areas of 
the liver lobules. The liver lobules are the building 
blocks of the liver. A human has about one million, a 
mouse about 1000 liver lobules. 

Liver regeneration is a complex but precisely defined 
process in which the loss of hepatic tissue is balanced by 
proliferation of the existing mature hepatocytes, the pa-
renchymal cells of the organ. In addition the other hepat-
ic cell types, namely biliary epithelial cells, fenestrated 
endothelial cells, Kupffer and Ito cells, proliferate and 
regenerate lost hepatic tissue. Importantly, liver regene-
ration after toxic insult is not only a matter of hepatocyte 
proliferation but also of the capacity of the new cells to 
organize themselves within the characteristic three-
dimensional liver lobule architecture that is tightly 
linked to liver function. A lobule has an approximately 
hexagonal shape. It contains microscopic branches of 
three types of vessels: the portal vein (transporting blood  

Figure 1: (A) Schematic illustration of a liver lobule 
(image from [11]), (B) Volume representation of the si-
nusoidal network after image/volume processing steps 
(1)-(6), (C) statistically representative liver lobule used 

as initial state for model simulations, (D) Area of central 
necrosis over time in experiment and model. 

 
from the intestine to the liver), the hepatic artery (bring-
ing in highly oxygenated blood),and bile ductules (carry-
ing bile away to larger bile ducts) [1] (Figure 1A). 

On average, each lobule is supplied by three portal 
veins. In order to guarantee liver function the lobule ar-
chitecture has to insure that (i) the blood can freely flow 
from the portal veins through the sinusoids to the central 
vein localized in the center of each lobule, and that (ii) a 
one-to two-cells thick wall between the sinusoids form 
to permit maximum exchange of metabolites between 
the blood and the hepatocytes. Since the same processes 
occur in all liver lobules, it is sufficient to consider the 
regeneration of a single lobule. 

In this paper we describe a process chain which we 
believe reflects the necessary steps in the systems biolo-
gy of multi-cellular tissues: (i) the experiments that mon-
itor spatial-temporal information of the liver tissue, (ii) 
then the image processing chain to extract information 
on key lobule parameters in 3D from confocal microsco-



py. Considering further experimental data from light mi-
croscopy, we are able to set up a statistically representa-
tive liver lobule. (iii) Finally we present a mathematical 
spatial-temporal model of liver lobule regenerating after 
CCl4 intoxication.  
The basic unit of our model is the individual cell. Such 
single-cell-based models (reviewed in [5]) are particular-
ly suited to represent the spatial-temporal multi-cellular 
organization processes within the complex architecture 
of liver lobules since they permit to represent spatial 
structures that vary on the scale of individual cells (e.g. 
one-cell-thick layers [6]). Intracellular processes can 
easily be integrated into single-cell-based models [7].  

The presented model belongs to the class of off-
lattice models [8]. In contrast to cellular-automaton 
models where cells are represented as objects on a dis-
crete lattice [9], cell positions in off-lattice models can 
gradually change and biomechanical influences can di-
rectly be represented. This makes off-lattice models be-
ing particularly suited to mimic the dynamics of cells in 
complex spatial. Within our model each individual cell 
is controlled by a limited number of effective parame-
ters, such as for instance the probability of proliferation 
or the velocity of cellular reorientation after division. 
We use the presented model of a liver lobule regenerat-
ing after CCl4 intoxication to study which parameters are 
most relevant for the regeneration process. 

2. EXPERIMENTS 

The left liver lobes of male C57BL/6N mice were used. 
50 – 100µm thick vibratome slices were prepared for 
immunostaining as described in [10]. Briefly, sinusoidal 
lining cells were stained by an anti-CD31 antibody and a 
Cy3-conjugated secondary antibody. The nuclei were 
stained with 2.35µg/mL 4',6 diamidino 2 phenylindole 
(DAPI) for 5min resulting in blue fluorescence [10]. 
Central veins were identified by glutamine synthetase 
immunostaining [11]. Liver damage was induced by 
intraperitoneal injection of CCl4 (1.6 mg/kg body 
weight). Mice were analyzed 12h, 1d, 2d, 3d, 4d, 8d and 
16d after injection of CCl4. Three mice were analyzed 
per time point. Data on cellular proliferation was inves-
tigated by BrdU incorporation as described in [11] and 
later was used to parameterize our model.  BrdU was in-
jected 6, 4 and 2h before preparation of the livers. Im-
munofluorescence was investigated by means of a con-
focal laser scanning microscope (LSM Meta 510; Zeiss, 
Oberkochen, Germany). 

3. IMAGE/VOLUME PROCESSING CHAIN 
The confocal microscope records spatially consecutive 
images of multi-stained (CD31 and DAPI) liver lobule 
slices into TIFF files with 32 bits per pixel (bpp) and 
RGBA color space. One dataset of a specific lobule con-
sists of 50-100 layers of effectively 1 µm offset. In a 
first image/volume processing chain of six sub-steps we 
reconstruct the lobular vessel network. Initially, we fo-
cus on the red-channel (8 bpp) which yields the CD31-
staining that accentuates endothelial cells enwrapping 
vessels in red. To enhance the contrast, we (1) rescaled 

the amplitude of the source images using a window-level 
transformation and an adaptive histogram equalization 
technique. We further applied (2) a non-linear 5x5 me-
dian filter [12] to reduce inherent noise. After (3) dis-
carding consecutive, virtually empty slices (with only 
very few pixels above the signal threshold of ψ = 128), 
we import the remaining images into our software Cell-
sys for volume processing. We apply (4) three-
dimensional non-linear anisotropic diffusion filtering 
[13] to perform edge preserving smoothing of the vo-
lume data and (5) delete remaining isolated structures. 
To limit computational complexity, we (6) binarize the 
volume data (1 bpp). The resulting volume representa-
tion (for an example see Figure 1B) of the lobular vessel 
network is used to detect the exact position and spatial 
orientation of the central vein and the sinusoidal vessel 
network. Both are integrated into a graph representation 
(the vessel graph) by first searching the volume for ac-
cumulated voxels (nodes) and then testing the connectiv-
ity of nodes in vicinity (edges). The vessel graph is fur-
ther optimized e.g. to exclude parts where the staining in 
the experiment may have failed. We then use the con-
structed vessel graph to extract statistical information for 
example on the mean vessel radii, the mean minimal or-
thogonal sinusoid distance and specific sinusoidal 
branching properties. 

A second similar image/volume processing chain is 
used to obtain the positions of the hepatocyte nuclei. 
Here, we focus on the blue-channel (8 bpp) which yields 
a DAPI-staining accentuating hepatocyte nuclei in blue 
color by forming fluorescent complexes with natural 
double-stranded DNA. The steps (1) - (6) are applied us-
ing an adjusted signal threshold of ψ = 60. The resulting 
volume representation of the hepatocyte nuclei is trans-
formed to a set of points (nodes) in 3D by searching the 
volume for accumulated voxels. This point set is used to 
obtain statistical information for example on the mean 
hepatocyte position, volume, size and shape and the 
mean neighbor distances using three-dimensional Voro-
noi tesselation. This secondary volume analysis inte-
grates knowledge from first processing chain for exam-
ple to properly rescale the calculated mean hepatocyte 
volume by subtracting the volume of the vessel network. 

We applied equivalent processing chains to confocal 
micrographs of six different lobules to obtain a repre-
sentative parameterization as a starting point for our 
model simulations (Figure 1C). 

4. MODEL 
The basic model unit is an individual cell. Since freshly 
isolated hepatocytes in suspension (Figure 2A) have a 
spherical shape, we assume each model cell to be spheri-
cal in isolation. We subdivided the interphase into G1, S 
and G2-phase. Similarly as determined in [14], we as-
sume that a cell after it receives a stimulus to enter the 
proliferation phase needs on the average 10 hours to en-
ter the S-phase which in our simulations has a length of 
8 hours. Cell growth is modeled by a gradual increase of   
cell volume until the cell has doubled its volume at the 
end of the G2-phase (Figure 2B). Hence, cell divisions 



  
Figure 2: (A) Isolated hepatocytes cultured in suspen-
sion, (B) Illustration of cell division in model, (C) Iso-

tropic cell-cell adhesion, (D) Polar cell adhesion; (C+D) 
"+": adhesive, "-": non-adhesive surface, dark grey: cell-

cell contact area. 
 
are accompanied by an increasing requirement of space. 
We assume an average intrinsic cell cycle time τ to be 
influenced at the level of individual cells by regulatory 
factors and mechanical stress. The spatial-temporal pro-
liferation pattern is directly inferred from experiments 
with BrdU label (S-phase marker). We further assume 
that a cell may sense the degree of its deformation [15]. 
In our model, a cell can enter the cell cycle only if it is 
not deformed greatly, mimicking contact inhibition of 
growth.  

We model the attractive and repulsive interactions 
utilizing an extended Hertz-model that yields an appro-
priate description of the cell-cell interaction [8,16,17]. 
This model approximates cells as homogeneous, isotrop-
ic, elastic and adhesive spheres. Once cells get into con-
tact, cell-cell adhesion initially leads to an increase of 
the interaction area accompanied by an increasing de-
formation of the cell until adhesion and deformation 
forces are balanced. The interaction energy Vij contains 
the cell stiffness, its compressibility, the density of cell 
surface receptors involved in the contact between hepa-
tocytes and the bond energy of a single receptor. We dis-
tinguish between two cases: (a) Isotropic (non-polar) 
cells. The force between adjacent cells here depends on-
ly on the distance but not on the orientation of the cells 
(Figure 2C). (b) Polar cells. For polar cells we assume 
that cell adhesion molecules are placed only in certain 
membrane regions of the cell surface. The force between 
adjacent cells is proportional to the overlap area of the 
membrane regions that are covered with adhesion recep-
tors: 1pol adh

ij ij ij ijF A A F−= , where adh
ijA  is the overlap area 

of the adhesive membrane regions, ijA  the total contact 
area and ijF  the interaction force if the cells were iso-

tropic.  pol
ijF is the interaction force of polar cells. The 

overlap of the adhesive surface areas in 3D depends on 
the angles Φ1 (on x-y-plane) and Φ2 (orthogonal to x-y-
plane) between two polar hepatocytes (Figure 2D). Note 
that adhesion reaches a maximum if adhesive regions 
completely overlap (e.g. if Φ1=0 and Φ2=0). 

In the absence of chemotactic signals, cultured hepa-
tocytes perform a random walk-like movement that we 
characterize by the cell diffusion constant. While in me-

chanical contact with other cells, proliferating cells exert 
a pressure on their neighbors. The neighboring cells try 
to escape this pressure by moving against the friction 
caused by other neighbor cells and extracellular material 
(e.g. extracellular matrix). The movement could be part-
ly passive, due to pushing, and active, if cells migrate in-
to the direction into which they escape the mechanical 
stimulus [17]. The cell migration dynamics is modeled 
by an equation of motion (Equation 1) for each individ-
ual cell that summarizes active and passive forces. For 
each cell it follows the equation of motion [17]: 
     2( ) ( ( ) ( )) 2 ( )i ij j i ij i

j j

v t v t v t F D tς ς ς η= − + +∑ ∑    (1) 

( )iv tς denotes the velocity of movement of cell i, the 
first term on the rhs the friction between adjacent cells, 

ij
j

F∑ is the force between cell i and its neighbor cells j 

and the last term the random component of the cell 
movement. ς denotes the effective friction between a 
cell i and its surrounding extra-cellular matrix, ijς  the 
friction between adjacent cells. ( )iv t denotes the velocity 
of cell i. ijF summarizes adhesive and repulsive forces 
between cells i and j, ( )i tη  is a “noise” term that sum-
marizes the random component in the cell movement.  

For polar cells we permit cell orientation changes. 
For simplicity we model such reorientation by energy 
minimization which can be shown is an alternative to a 
forced-based single-cell dynamics [8].  

Our model is parameterized by measurable quanti-
ties. However, not all parameters for cells in the liver lo-
bule are precisely known. This is why we estimated the 
model parameters partly from experiments, partly from 
published data: L = 23μm, τ = 24h, elastic modulus E = 
400 Pa, Poisson ratio ν = 0.4, density of surface recep-
tors ρ = 1015/m2, effective friction ς  = ~0.1kg/s, cell dif-
fusion rate D~10-11cm2/s. FT = 10-16 J. (See also [15] for 
published data on biophysical and cell-biol. parameters.) 

5. SOFTWARE 
For all model simulations and image/volume processing 
we use the software Cellsys developed by our group 
(http://ms.izbi.uni-leipzig.de/). Cellsys is an object-
oriented software approach comprising modeling, simu-
lation, measurements, visualization and specialized im-
age processing capabilities for multi-cellular systems. It 
is written in portable ANSI C++ and thus works with all 
versions of Microsoft Windows and Linux operating 
systems. Cellsys utilizes the free and portable libraries 
zlib (www.zlib.net), libtiff (www.libtiff.org) and the 
OpenGL programming interface (www.opengl.org) for 
producing real-time 3D graphics. 

The software is able to visualize and quantify mea-
surements, obtain screenshots and videos of the simula-
tions and produce compressed state saves in predefined 
intervals. State saves can later be loaded and used to ex-
amine simulated liver lobules in real-time 3D using the 
interactive user interface. Cellsys is also able to output 



scene description files e.g. for the popular open-source 
raytracer Povray (www.povray.org) to create high reso-
lution images (Figure 1C). The core algorithms in Cell-
sys are parallelized using OpenMP (www.openmp.org) 
to exploit the computational power of modern shared 
memory multi-core multi-processor machines. The solu-
tion of the stochastic equations of motion is supported 
by the multithreaded version of SuperLU for shared-
memory parallel machines [18]. The calculation of 
neighboring cells essential to short-range cell-cell inte-
ractions is implemented based on spatial hashing. To 
further accelerate the calculation we use inline assembly 
for intensely called functions as float to int conversions. 
We find the solution of the equations of motion and the 
neighbor detection to be the major performance bottle-
necks of our model simulations. However, on a typical 
Intel Core2 E6500 system with 2 GB RAM a characte-
ristic model simulation in 3D of a lobule intoxica-
tion/regeneration experiment spanning 21 days com-
pletes in ~26 hours. 

6. DISCUSSION 
We were able to set up a statistically representative liver 
lobule in 3D using experimental data and imagery from 
light and confocal microscopy. The assembly of such 
images to 3D volume data and subsequent image/volume 
processing steps enabled us to determine numerous pa-
rameter values inaccessible to common measurements 
using only 2D slices. However, knowledge of those pa-
rameters as the specific branching structure of the sinu-
soidal network, the mean radius of a sinusoidal vessel 
(3.6 µm) or the mean orthogonal minimal sinusoid dis-
tance in 3D (14.1 µm) is essentially needed to construct  
a representative liver lobule in 3D that may serve as an 
initial state for subsequent modeling. 

Based on this representative lobule we established a 
single-cell-based, lattice-free model in 3D for the rege-
neration process after CCl4 intoxication. Conditions for 
modeling were chosen to reflect the in vivo situation as 
closely as possible such that computer simulation and 
experimental observation of many aspects (hepatocyte 
number and density, number of BrdU positive cells, key 
properties of the sinusoidal network, area of the central 
necrosis) are in good agreement for all observed time 
points (for an example refer to Figure 1D). 

We are aware that several details of our current mod-
el deviate from genuine liver lobules. For instance the 
size of hepatocytes varies and non-parenchymal cells 
have not yet been included. Nevertheless, preliminary 
simulations of different experimental scenarios show a 
very good agreement with the experimental situation and 
demonstrate predictive power. 

Although an exhausting and detailed study of the in-
fluences of all key parameters in the complex process of 
liver regeneration after intoxication is still pending and 
will be published in [19], preliminary simulations found-
ing on the basics described in this paper identified a rap-
id cellular reorientation (towards the direction of the 
central vein) after cell division and polar cell-cell adhe-
sion as essential for a successful regeneration of the cha-

racteristic lobule architecture. Moreover, a sufficiently 
large cellular motility and necrotaxis (cellular movement 
towards a cytokine gradient) turned out to be largely 
beneficial for a complete lobule regeneration.   
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ABSTRACT 

The balance between maintenance of the stem cell state 
and terminal differentiation is influenced by the cellular 
environment. The switching between these states has 
long been modeled as a transition between stable attrac-
tor states defined by molecule networks. Herein stochas-
tic fluctuations are either suppressed or can trigger tran-
sitions between deterministic attractors but they do not 
play a governing role. We present a novel mathematical 
concept in which stem cell and progenitor population 
dynamics are described as a probabilistic process that 
arises from cell proliferation and small fluctuations in 
the state of differentiation. These state fluctuations re-
flect random transitions between different activation 
patterns of the underlying regulatory network. Impor-
tantly, the associated noise amplitudes are assumed to be 
set by the environment in a state-specific manner and it 
is their variability that actually governs population dy-
namics. We suggest that state-specific noise modulation 
by external signals can be instrumental in controlling 
stem cell and progenitor population dynamics. 

 

1. INTRODUCTION 

A growing body of evidence indicates that noise is not 
generally detrimental to biological systems but can be 
employed to generate genotypic, phenotypic, and behav-
ioral diversity. In particular, noise-driven solutions are 
expected to prevail in cellular adaptation to variable en-
vironments [1, 2]. It has been proposed that biological 
systems have built-in molecular devices for noise control 
[1, 2]. These mechanisms are of specific importance in 
developing organisms [2]. This view is supported by 
experimental findings demonstrating that noise is down-
regulated in embryonic stem cells [3] and fluctuations of 
Nanog predispose cells towards differentiation [4]. The 
results of the present study suggest that noise regulation 
can be an effective strategy in stem cell differentiation. 
Stem cells are characterized by their ability to self-
maintain and generate differentiated cell types and func-
tional tissues. Moreover, they show flexibility and re-
versibility in their use of these options [5]. Populations 
derived from these cells, subsequently denoted as ‘stem 
cell populations’, comprise stem cells, progenitors, and 
differentiated cells. The structure of these populations is 

strongly influenced by environmental factors such as 
specific cell-cell interactions [6], growth factor and oxy-
gen supply [7], as well as the geometry and mechanical 
properties of the local environment [8]. Changing these 
factors results in either cell death or adaptation within 
days [9, 10]. Recently, progress has been made in the 
modeling and understanding of these processes on dif-
ferent levels of complexity [11, 12].  
Our previous studies on stem cell population dynamics 
focused on the reversibility and stochasticity of cellular 
fate decisions [13]. In the model of Roeder et al. [12] 
individual cells gain and loose stem cell properties de-
pending on whether they localize inside or outside a spe-
cific niche environment, respectively. Thus, the envi-
ronment directs the cellular fate and the reversibility of 
cell fate decisions is enabled by probabilistic switches 
between different micro-environments. The model well 
described several experimental data sets on the in vivo 
organization of normal and malignant hematopoietic 
stem cell populations [12]. However, even within homo-
geneous in vitro environments stem cells are capable of 
expanding and maintaining the aforementioned stem cell 
populations. For modeling these systems the present 
study expanded the ideas of Roeder et al. [12] by assum-
ing that cells gain and loose stem cell properties accord-
ing to a probabilistic process whose state-specific ampli-
tudes are set by the environment. Within this approach 
cell fate decisions are basically reversible. The assumed 
cell state fluctuations can be hypothesized to be gener-
ated by intra- and extracellular noise triggering random 
transitions between different regulatory network activa-
tion patterns. This concept is in agreement with experi-
mental findings demonstrating that epigenetic gene si-
lencing, known to be instrumental in cell differentiation 
and fate control, has a strong stochastic component [14].  
The regularity of biological development in spite of the 
ubiquitous presence of noise has raised the concept of a 
‘potential energy landscape’ or ’attractor landscape’ 
explaining cell differentiation and phenotypic diversifi-
cation in terms of non-linear systems theory and equilib-
rium thermodynamics [15]. In this concept, cells visit 
their accessible states driven by the potential gradient 
and non-state-specific so-called additive noise. Potential 
minima constitute attractive states corresponding to 
population density maxima in equilibrium. The alterna-
tive concept put forward in the present study assumes 



that noise is predominant in most parts of the cellular 
state space. Its essence is that the population density is 
determined by state-specific so-called multiplicative 
noise forming a ‘noise landscape’, with low noise states 
representing the attractive states. Cells subjected to an 
environment not matching their internal state are as-
sumed to be destabilized by a high noise amplitude. 
They subsequently adapt to this environment by travel-
ing towards low noise states. 

 

2. MODEL 
The present study focuses on the degree of differentia-
tion as the basic cellular attribute of interest. It is defined 
as the loss of stem cell properties and goes along with 
but is not identical to lineage commitment. Cell differen-
tiation is quantified by a variable α taking values be-
tween zero (full stem cell potential) and one (complete 
cell differentiation). Each value of α may stand for a set 
of regulatory network activation patterns. Physically, α 
depends on the abundance and sub-cellular localization 
of proteins and RNAs, as well as other types of signaling 
and metabolic molecules. The α-dynamics of a single 
cell can be modeled according to a one-dimensional 
Langevin equation:  

 
                    (1) 

 
with f(α) representing the deterministic part of the dy-
namics and g(α)ξ(t) denoting the usual Gaussian white 
noise term (< ξ(t) > = 0, < ξ(t)ξ(t’) > = δ(t-t’)). In apply-
ing Equation 1 one may focus on deterministically domi-
nated (|f(α)| > g(α)) or noise modulation-dominated 
(|f(α)| < g(α)) dynamics, both of which can give the 
same equilibrium distribution of α-values when sampled 
over time. In the following, we concentrate on noise 
modulation-dominated dynamics. Carrying the predomi-
nance of noise to an extreme we completely neglect any 
deterministic dynamics in our model (f(α) = 0, corre-
sponding to globally equivalent deterministic potential 
energy states) and simulate stem cell differentiation as a 
result of noise modulation alone. 
In order to simulate population dynamics in terms of the 
number of cells in state α we transfer the general ideas 
of the Langevin approach equation (1) to a classical 
population dynamics model which is similar in structure 
to a master equation for a composite Markov process 
[16]. The model assumes each cell’s α-value to ran-
domly fluctuate according to a state-specific noise am-
plitude σ(α). Starting from an initial value α a cell as-
sumes a new value α´ drawn from a Gaussian distribu-
tion p(α’|α) that is centered around α and has standard 
deviation σ(α). The frequency of this random transfer is 
determined by the randomization rate R(α) defining the 
number of random events per time. We assume R(α) to 
increase linearly with the cell proliferation rate r(α) ac-

counting for cell division as a major source of randomi-
zation [17]. Finally, the dynamics of the average number 
of cells N(α) in state α is governed by the random trans-
fer towards and away from α, and by cell proliferation: 
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As a consequence of experimental findings we replaced 
the proliferation term in equation (2) by the cell cycle 
model of León et al. [18] assuming cell cycle progres-
sion to be a multi-step process (five cell cycle steps were 
used in all simulations). Figure 1 illustrates the general 
principle of state-specific (multiplicative) noise-driven 
dynamics. Directional movement results from differ-
ences in the step sizes of successive forward and back-
ward jumps. 
 

  
Figure 1. Multiplicative noise-driven dynamics. Upper 
panel: state-specific noise amplitude (standard deviation)  
σ(α) of the Gaussian conditional probability density 
function (cpdf) p(α´|α) assumed to be a linear decreas-
ing function of α. The pictogram shows a cell with 
α = 0.4 being scattered towards α = 0.2 and 0.6, respec-
tively (upper row). The subsequent scatter starting at 
α = 0.6 has a smaller range (lower row). This results in 
an average rightward drift of the cell. Lower panel: 
Gaussian cpdf p(α|α´) as a function of α for α´ = 0.4 
(left) and  α´ = 0.6 (right). The corresponding standard 
deviations are σ(0.4) = 0.15 and σ(0.6) = 0.10. 
 

2.1. Basic assumptions 
Figure 2 shows simplified noise amplitudes σ(α) and 

proliferation rates r(α). The functional form of the noise 
amplitudes σ(α) is assumed to be determined by the en-
vironment. The stem cell maintaining environments S1 
and S2 stabilize stem cell-like states with low α-values 
whereas the differentiation promoting environments D1 
and D2 stabilize committed states with large values of 
α by the assignment of low noise levels. The noise am-
plitudes are assumed to be linear functions of α for sim-
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plicity. Stem cells and differentiated cells are mostly 
quiescent whereas progenitors are proliferative. This is 
reflected by the bell-shaped proliferation rates r(α) being 
zero at the interval boundaries and assuming their maxi-
mum value rmax > 0 halfway in between. Under these       
assumptions and with R(α) > 0, an initial distribution of 
α-values evolves towards a stationary distribution repre-
senting a growing cell population. 
 

  
Figure 2. Noise amplitude σ(α) (left) and proliferation 
rate r(α) (right) as a function of cell differentiation α. 
The noise amplitude is shown for four idealized envi-
ronments: i) two stem cell maintaining environments (S1 
and S2) stabilizing stem cell states and ii) two differen-
tiation promoting environments (D1 and D2) stabilizing 
differentiated states. The proliferation rate is zero (qui-
escence) at the interval boundaries for pure stem cells 
and differentiated cells, respectively, and assumes its 
highest values at intermediate α. The maximum pro-
liferation rates rmax = 0.1, 0.2, and 1.0 · ln2/d correspond 
to minimum cell cycle times of τmin = 10, 5, and 1 days, 
respectively. 
 

3. RESULTS 

In the following, the general behavior of our model is 
illustrated for different parameter settings. The displayed 
graphs characterize the respective stem cell populations 
in terms of the numerically calculated relative frequen-
cies P(αi) = Ν(αi)/∑jΝ(αj) with Ν(αi) denoting the num-
ber of cells in the respective differentiation state interval 
centered at αi. 

3.1. Environmental adaptation 

Figure 3 shows the adaptation dynamics for two cell 
populations being transferred from a stem cell maintain-
ing environment S to a differentiation promoting envi-
ronment D. The timescale of the equilibration processes 
is of the order of days consistent with experimental data 
[9, 10]. In both cases, the S and D environments fully 
stabilize pure stem cells (α = 0) and differentiated cells 
(α = 1), respectively. However, in the S2 and D2 envi-
ronments these states can hardly be accessed dynami-
cally because the associated cumulative sum of directed 
steps is too small on average. This dynamical hindrance 
together with the stronger stabilization of proliferative 
progenitor states results in equilibrium distributions that 
are peaked at intermediate α-values. Generally, exten-

sive low noise domains of the state space can hardly be 
accessed from outside these domains.  

  
Figure 3. Adaptation dynamics of a stem cell population 
after instantaneous switching from a stem cell maintain-
ing environment S to a differentiation promoting envi-
ronment D. Left panel: S1 to D1. Right panel: S2 to D2. 
Snapshots are taken at the time of switching and 1, 3, 
and 20 days, respectively, after switching. R0 = 0.3/d, 
R1 = 0.9, rmax = 1.0 · ln2/d. 
 

3.2. Randomization rate 

The influence of the noise parameter R1 on the frequency 
distribution of α-states is illustrated in the left panel of 
Figure 4 for the S2 environment. A high value of R1 dis-
perses the cells away from the most proliferating states 
around the mid-interval towards the noise-reduced states 
at low α-values. The effect of the background noise pa-
rameter R0 is similar but without the state-specific modu-
lation by the proliferation rate r(α). It drives the cells 
into the low-noise attractors when proliferation is down-
regulated. This is demonstrated in the right panel of Fig-
ure 4 for different values of rmax. The equilibrium distri-
bution of non-proliferating cells (rmax = 0) would be a 
delta peak at α = 0. Conversely, in the absence of noise 
the population would converge to a delta peak at α = 0.5 
when starting from an equal distribution. In summary, 
randomization and proliferation act as antagonists in 
modulating the cell state distribution, with proliferation 
enabling the maintenance of subpopulations in environ-
mentally unfavored states. 

 
 

 
Figure 4. Impact of the noise parameter R1 (left panel) 
and the maximum proliferation rate rmax (right panel) on 
the stationary distributions for the S2 environment. A 
high value of R1 disperses the cells away from the cen-
tral proliferation zone towards the more noise-reduced 
states. A small cellular growth as expressed by low val-
ues of rmax lets noise dominate over proliferation even in 
the presence of a dynamic hindrance in approaching the 
noise-reduced states (see text). The parameters are iden-



tical to those of Figure 3, except for R1 in the left panel 
and rmax in the right panel.  

4. DISCUSSION 
Noise is ubiquitous in biological systems and must be 
controlled to ensure reliable cell functioning, at least in 
higher multicellular organisms that feature noise-
sensitive processes like alternative splicing and epige-
netic regulation of gene expression. Noise regulation is 
most economic if applied only to those cellular states 
that are relevant under the prevailing environmental 
conditions. Noise regulation is thus expected to depend-
ent on the match between the internal state of a cell and 
its environment. In the present study we introduced a 
simple few-parameter model of stem cell and progenitor 
population dynamics that is explicitly based on noise 
regulation. It assumes that state-specific noise regulation 
in response to environmental signals serves as a selector 
of certain differentiation states representing specific 
functional cellular programs. This noise-driven selection 
scheme appears to be an economic general purpose 
mechanism for environmental adaptation and diversifica-
tion. 
 

5. CONCLUSIONS 
In conclusion, we suggest that noise regulation can be 
effective in cellular development and environmental 
adaptation. It is expected to be relevant especially in 
higher multicellular organisms that comprise exposed 
noise-sensitive phenomena. Decoding the ’noise land-
scape’ will be essential for the understanding of cell 
functioning. 
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ABSTRACT

The time evolution of chemical systems is traditionally
modeled using deterministic ordinary differential equa-
tions. Chemical reactions, however, are random in na-
ture, and the deterministic approach is valid only for a
restricted class of systems. Stochastic models take ran-
dom fluctuations into account and are thus more realistic.
In this work, we simulate an inositol trisphosphate recep-
tor model using ordinary differential equations, stochastic
differential equations, and the Gillespie stochastic simu-
lation algorithm. The main goal of this work is to study
the applicability of these methods for a system containing
small numbers of molecules and ions. We concentrate es-
pecially on the SDE approach and investigate how well it
models systems with small numbers of chemical species.

1. INTRODUCTION

Biochemical reactions can be modeled stochastically us-
ing numerous different methods [1, 2]. An ideal model
would have the following three important properties. First,
the model should be as realistic as possible, second, the
mathematical method should be easily implementable as
a computer algorithm, and third, the algorithm should be
computationally effective. Some realistic modeling ap-
proaches can be derived directly from chemical kinetics
without making any approximations. Such approaches
are called exact. A good example of an exact modeling
approach is the stochastic simulation algorithm (SSA) de-
veloped by Gillespie [3, 4]. The SSA is applicable when
the molecular populations in the system are small, but it
becomes computationally inefficient when the numbers of
molecules increase [4].

In order to construct stochastic models that can be ef-
fectively simulated, new mathematical approaches have
to be explored. As an approximate method also stochas-
tic differential equations (SDEs) have been considered a
promising way to model biochemical reactions stochas-
tically [5]. The SDE approach is attractive especially if
we consider a system for which the SSA is computation-
ally inefficient and the traditional deterministic ordinary
differential equation (ODE) approach cannot be used as a
good approximation.

In this study, we simulate the inositol trisphosphate re-
ceptor (IP3R) model containing small numbers of chemi-

Figure 1. States and transitions of the IP3R model.

cal species. The SSA is evidently the most efficient mod-
eling approach in this case. However, our goal is rather to
study the typical characteristics of different approaches.
This kind of knowledge is extremely valuable when the
modeling approaches are applied for larger systems.

2. SYSTEM AND METHODS

Several models have been proposed for the IP3 receptor
(for a review, see, e.g. [6]). In this study, we use the model
of Doi et al. [7] which was originally published as a part
of a larger model for calcium ion (Ca2+) dynamics in the
cerebellar Purkinje cell spine. The graphical illustration
of the model is given in Figure 1. The transitions between
the states are described by reversible chemical reactions
of the form

A + B
kf

⇋

kb

C, (1)

where A, B, and C are chemical species, andkf andkb

arerate constants for forward and backward reactions, re-
spectively. The reactions of the model are given in Table
1. The rate constants of these reactions have been deter-
mined from experimental data [7]. The used volume of
cytosol is0.1 µm3. In the following, [X] denotes the con-
centration of species X.

The IP3R model involves one open state (i.e. RIC).
Once the IP3R channel structure is open, Ca2+ flux from
the endoplasmic reticulum (ER) to the cytosol starts. In
this study, we model the Ca2+ flux using the differential
equation

d[Ca2+]cyt

dt
= −

d[Ca2+]ER

dt

= k[RIC]([Ca2+]ER − [Ca2+]cyt), (2)

when[Ca2+]ER − [Ca2+]cyt > 0, otherwise0,



Table 1. Reversible reactions, reaction rates, and rate constants for the IP3R model of Doi et al. [7]
Reaction Reaction rate kf kb

R1 RI + Ca2+
k

R1
f

⇋

k
R1
b

RIC vR1 = kR1

f [RI][Ca2+]cyt − kR1

b [RIC] 8 × 109 1
Ms 2000 1

s

R2 R + IP3

k
R2
f

⇋

k
R2
b

RI vR2
= kR2

f [R][IP3] − kR2

b [RI] 109 1
Ms 25800 1

s

R3 R + Ca2+
k

R3
f

⇋

k
R3
b

RC vR3
= kR3

f [R][Ca2+]cyt − kR3

b [RC] 8.889 × 106 1
Ms 5 1

s

R4 RC + Ca2+
k

R4
f

⇋

k
R4
b

RC2 vR4
= kR4

f [RC][Ca2+]cyt − kR4

b [RC2] 2 × 107 1
Ms 10 1

s

R5 RC2 + Ca2+
k

R5
f

⇋

k
R5
b

RC3 vR5
= kR5

f [RC2][Ca2+]cyt − kR5

b [RC3] 4 × 107 1
Ms 15 1

s

R6 RC3 + Ca2+
k

R6
f

⇋

k
R6
b

RC4 vR6
= kR6

f [RC3][Ca2+]cyt − kR6

b [RC4] 6 × 107 1
Ms 20 1

s

wherek is rate parameter,[RIC] is the concentration of
open channels, and Ca2+ denotes calcium ions passing
through the open channel. Fork, we use the value5.8 ×
108 1

Ms, and the initial value for[Ca2+]ER is 150 µM (cf.
[8]).

2.1. Ordinary differential equation modeling

A set of chemical reactions can be modeled deterministi-
cally using the law of mass action and ODEs. According
to the law of mass action, we can determine thereaction
rate v of the reaction in Equation 1 by means of the equa-
tion

v = −
d[A]

dt
= −

d[B]

dt
=

d[C]

dt
= kf [A][B] − kb[C]. (3)

If we consider a system ofn speciesXi, i = 1, . . . , n, and
m reactions Rj , j = 1, . . . , m, the time evolution of the
ith species is described by the equation

d[Xi]

dt
=

m∑

j=1

sijvj , (4)

wheresij is the stoichiometric coefficient andvj is the
reaction rate of thejth reaction. The stoichiometric coef-
ficientsij ∈ Z describes how many molecules of a certain
kind are involved in a certain reaction. It is positive if
the amount of the molecule is increasing, negative if the
amount is decreasing, and0, if the amount is not changing
in the reaction.

We now have a set of coupled ordinary differential
equations that can be written in the form

dX(t)

dt
= Sv(K,X(t)), (5)

whereX(t) : [0,∞) −→ R
n consists of the concentra-

tions of the chemical speciesXi, i = 1, . . . , n, v(K,X) :
R

n −→ R
m describes the reaction rates,S ∈ R

n×m

is the stoichiometric matrix including the stoichiometric
constants, andK is a vector including the rate constants.

2.2. Stochastic differential equation modeling

SDE modeling is based on the theory of stochastic inte-
gration. If we consider then-dimensional deterministic
ODE model introduced in Subsection 2.1, we can obtain
an SDE model by incorporating an Itô integrable stochas-
tic term in Equation 5. As a result, we have the equation

dX(t) = Sv(K,X(t))dt + SPV(X(t))dB(t), (6)

whereB(t) ∼ N(0, tI) is them-dimensional Brownian
motion,P ∈ R

m×m is a diagonal matrix describing the
parameters,V : R

n −→ R
m×m is a diagonal matrix in-

cluding reaction rates without rate constants, andX,S,
andv are as in the ODE model described by Equation 5
[5]. If we want to incorporate randomness in each reaction
rate constant separately, we just consider one reversible
reaction as two separate non-reversible reactions and use
the same technique as described above.

Equation 6, describing a stochastic process, can also
be written in the form

X(t) = X0 +

∫ t

0

Svds +

∫ t

0

SPVdB(s), (7)

whereX0 is the initial state, the first integral is the Rie-
mann integral, and the second integral is the Itô integral
[9]. The expected value and the variance of this process
are usually difficult to solve. Simulation studies are thus
needed. Parameters included inP should be estimated us-
ing some estimation algorithm.

2.3. Stochastic simulation algorithm

The stochastic simulation algorithm (SSA) is a Monte Car-
lo procedure, which is used to generate numerically the
time evolution of a chemically reacting system [3]. It
treats chemical species discretely and simulates every re-
action one at a time [3, 4]. In the following, the basic idea
of the SSA is presented.



Let us consider the system ofn species andm reac-
tions introduced earlier in Subsections 2.1 and 2.2, and let
X(t) : [0,∞) −→ Z

n be a vector containing the num-
bers of molecules of each species at timet. Each reaction
Rj , j = 1, . . . , m, in the system can be characterized by
a propensity function aj(X) which depends on the cur-
rent state of the system. Astate change vector vj ∈ Z

n

describes the stoichiometry of the reaction Rj . In the sim-
ulation algorithm, the propensity functions are used for
determining the distributions of the next reaction to hap-
pen (j) and the time to the next reaction (τ ). These dis-
tributions are then sampled and the state of the system is
updated by state change vector. The SSA consists of the
following steps:

1. Initialize the timet = t0 and the state of the system
X(t) = X0.

2. Evaluateaj(X(t)), j = 1, . . . , m, and
a0(X(t)) =

∑m

k=1 ak(X(t)).
3. Generate two uniformly distributed random variables

r1 andr2 and takeτ = (1/a0(X(t))) ln(1/r1) and
j such that∑j−1

k=1 ak(X(t)) < r2a0(X(t)) ≤
∑j

k=1 ak(X(t)).
4. ReplaceX(t + τ) = X(t) + vj andt = t + τ .
5. Return to step 2 or end the simulation.

3. RESULTS

We simulate the IP3R model using ODEs, SDEs, and the
SSA. All simulatios are run in MATLABr. The Ca2+ flux
described by Equation 2 is modeled simply as a part of the
set of differential equations in the ODE and SDE imple-
mentations. In the SSA simulations, the flux is described
as a forward reaction for which the propensity function is
determined by the number of open channels and by the
number of Ca2+ ions in the cytosol and ER.

3.1. ODE and SSA

When modeling biochemical systems, the selection of the
model plays an important role. The model should describe
the natural phenomenon as rigorously as possible, but ig-
nore the details that are not essential for system level be-
havior. After a proper model has been selected, the next
step is to choose the formalism to describe the model and
find out how to implement the model as an algorithm.

Previous computational studies considering the IP3R
model show that the traditional ODE approach provides
us with a satisfactory approximation only in the case in
which the concentrations are relatively large (see e.g. [8]).
When the numbers of chemical species are small, the rela-
tive amount of random fluctuations in the system is greater.
In this case, we have to use modeling methods that are ca-
pable of taking these fluctuations into account. In the fol-
lowing, we concentrate on the cases in which stochastic
methods are needed.

When the IP3R model is simulated stochastically us-
ing the SSA, the results differ notably from the results of
the ODE simulations (Figure 2(a)). The main reason for
this is that the SSA simulation quite often leads to a closed
receptor state. This means that there is no open channel

for Ca2+ flux from the ER and thus the number of Ca2+

ions in the cytosol does not increase. The SSA simula-
tions also support the intuitive assumption that the two re-
actions leading to the open state of the receptor are the
most essential when the stochastic nature of the model is
concerned.

It is clear that the SSA is the most efficient approach
when it comes to computational time if the numbers of
chemical species are small. However, it is also useful to
study approximative methods in order to learn about their
properties and behavior. It is clear that many continu-
ous time approximations of the SSA cannot be applied.
For example, the use of the chemical Langevin equation
(CLE) requires certain conditions to be fulfilled [4]. First,
several reactions must occur during one time step, and sec-
ond, the time step should be small enough. When we take
a closer look at our SSA simulations, we observe that both
of these conditions cannot be satisfied at the same time.

3.2. SDE

In biological systems, the concentrations of chemical spe-
cies are often very small and the SDE modeling is thus
challenging. The possibility of negative concentrations
and the risk of an unstable model are always present. This
means that although the model would be mathematically
correct, it might not be biologically realistic. Therefore,
the type of the SDE model, the model parameters, and the
numerical method for solving the SDE have to be chosen
carefully.

The SDE models tested in this study are built on the
basis of the results obtained from the SSA simulations.
As mentioned already in Subsection 3.1, the two reactions
leading to the open state of the IP3 receptor (R1 and R2 in
Table 1) are the most significant when we study the Ca2+

levels in the system. When the SDE model is tuned so that
randomness is incorporated only in these two reactions,
the model is incabable of producing similar results as the
SSA. The problem is that in order to avoid negative con-
centrations, we have to adjust the model parameters and
the time step so that variance in the rate constants is very
small. Thus, the system is always driven towards the open
state and consequently the Ca2+ concentration in the cy-
tosol increases. The same result is obtained if randomness
is incorporated in all rate constants.

In addition to the two reactions leading to the open
state, also the Ca2+ flux has an essential role in the model.
When the whole model is constructed using the SDE, we
are able to allow a greater variance of the fluctuations in
the rate parameter of the flux. The drawback of this ap-
proach is that random fluctuations in the flux overpower
the fluctuations in the other rate constants. This shows
that the same results can be obtained using an SDE model
in which randomness is incorporated only in the flux.

In order to illustrate the results, we show in Figure
2(a) the sample mean of[Ca2+] from thousand SSA and
SDE model (randomness only in the flux) runs, and the
deterministic ODE model response. In the simulations,
the initial concentrations for Ca2+, IP3, and R were0.05
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(b) Boxplot illustration of the distribution of SDE paths.

Figure 2. (a) Sample mean of Ca2+ concentration in IP3R model simulated with SDE (· · · ) and SSA (−−), and deter-
ministic response of the ODE (—). (b) Boxplot illustration of the distribution of SDE paths.

µM, 0.2 µM, and0.2657 µM, respectively. Other initial
concentrations were equal to zero. We see clearly that
the SSA differs from the deterministic response, whereas
the SDE model converges to it. Figure 2(b) illustrates the
distribution of the solution of the SDE model. Similar
analysis for the SSA reveals the great variance of the SSA
paths (not shown). The deterministic response is solved
numerically using the Euler method with time step2 ×
10−6 s and the SDE model is simulated using the Euler-
Maruyama method with the same time step.

4. CONCLUSION

In this study, three approaches to the modeling of chem-
ically reacting systems are introduced. The modeling ap-
proaches, namely the deterministic differential equation
modeling, stochastic differential equation modeling, and
the stochastic simulation algorithm, are then applied in the
modeling of an IP3 receptor model. The simulations show
that when the numbers of molecules in the system are
small, realistic results can be obtained only using stochas-
tic modeling approaches. In addition, it is concluded that
stochastic differential equation modeling might lead to an
unstable model when the numbers of molecules are small.
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ABSTRACT

To predict the spread of Avian Influenza we propose a
synchronous Susceptible-Infected-Recovered-Susceptible
(SIRS) Boolean network of poultry farms, using proba-
bilistic Boolean rules. Gravity models from transportation
theory are used for the probability of infection of a node in
one time step, taking into account farm sizes, distances be-
tween farms, and mean distance travelled by birds. Basic
reproduction numbers are computed analytically and nu-
merically. The dynamics of the network are analyzed and
various statistics considered such as number of infected
nodes or time until eradication of the epidemic. We con-
clude that mostly when large farms (eventually) become
infected the epidemic is more encompassing, but for a
farm that does not have a very large poultry population,
the epidemic could be contained.

1. INTRODUCTION

The spread of Highly Pathogenic Avian Influenza (HPAI)
H5N1 viruses across Asian and European countries has
devastated domestic poultry industries. The development
of strategies to moderate the spread of influenza among
poultry flocks and humans is a top government priority. To
investigate the spread of HPAI between poultry farms we
propose a Susceptible-Infected-Recovered-Susceptible
(SIRS) Boolean network model.

Various individual-based models have been success-
ful in modelling real-world epidemics and understanding
mechanisms of epidemic outbreaks [1]. The field of com-
plex networks has now been recognized as an important
line of study for epidemiology. For example, Barthélemy
et.al. [2], or May and Lloyd [3], have published a num-
ber of papers on epidemics in scale-free networks. A large
class of physical, biological, chemical networks have been
modelled as Boolean networks in recent years (e.g. [4],
[5], [6], [7]). General interest in Boolean networks and
their applications started much earlier with publications
such as the one by Kauffman [8], whose work on the
self-organization and adaptation in complex systems has
inspired many other research studies.

The spread of HPAI among poultry farms has not yet
been investigated in the context of Boolean networks. We

propose a new model in which each farm is considered a
node of a Boolean network and can be in one of two states,
”infected” or ”not infected” by the disease. A node can
become infected based on the number of other infected
nodes in its neighborhood, their distance from the node
under consideration (small distances allow for an easier
spread of infection through wild bird or workers inter-
action of neighboring farms through the common market
places), the size of the nodes (large farms have a bigger
chance being infected through the synanthropic birds in-
teraction and humans and equipment movement), and the
distance travelled by birds in one time step. To define the
probability of infection in one time step we use an ap-
proach similar to Xia et. al. [9] who have implemented a
gravity model from transportation theory [10] to epidemi-
ological coupling and dynamics using a transient force of
infection exerted by infecteds in one location on suscep-
tibles in a different location, proportional to the number
of susceptibles and the number of infecteds, and inverse
proportional to the distance between the locations. This is
similar to Newton’s gravitational law.

2. THE BOOLEAN NETWORK MODEL

In this section we describe the SIRS Boolean model. Con-
sider a network withN nodes (farms). Each nodecn can
take on two values0 (not infected) or1 (infected). The
synchronous evolution of the nodes from timet to time
t + 1 is given by a Boolean rule which is considered the
same for all nodes, but depends on varying parameters
from one node to another. Initially all the nodes are con-
sidered susceptible (S). If a node is infected (I), it under-
goes a period of cleaning and quarantine during which it
could spread the disease to other nodes in its neighbor-
hood; however the force of infection decreases with time,
and the node recovers (R) completely eventually. After the
quarantine the node becomes again susceptible (S), unless
it goes out of business.

Let cn(t) be the value of the nodecn at timet. Define
the Boolean rule

cn(t+1) = X(t) ·χ{0}(cn(t))+Y (t) ·χ{1}(cn(t)) (1)

whereX(t) is a Bernoulli random variableX with param-



eterpn(t) representing the probability that the susceptible
nodecn becomes infected at timet, andY (t) = 1 if the
node is infectious at timet + 1, andY (t) = 0 if the node
is noninfectious at timet + 1. Hereχ{a}(b) = 1 if a = b
and zero otherwise. Ifcn(t) becomes0 at timet during
quarantine, then we setY (t) = 0 automatically until the
end of quarantine. On the other hand, if a node goes out of
business after an infection, thencn = 0 permanently. To
definepn(t) let Bn denote the size of the nodecn, that is
Bn is the number of poultry at locationcn. Let ĉn denote
the collection of all the farms in the neighborhood of node
cn (excluding the node itself). ThenB(n) =

∑
ck∈ĉn

Bk

is the total number of poultry in the neighborhood of node
cn. Let dnk denote the physical distance between nodes
cn andck, with k ∈ {1, 2, 3, . . . , N}. We define the prob-
ability pn(t) that the nodecn becomes infected at timet
as follows:

pn(t) =
∑

ck∈ĉn

ck(t) (Bk/B(n))τ 1
1 + (dnk/d0)

ρ f(t).

(2)
Here d0 represents the mean distance the infected wild
birds are able to cover in one time step. The function
f(t) ∈ [0, 1] is a random factor that accounts for a re-
duction of the probability of infection from the infectious
nodeck while cleaning and disinfection take place. The
factorBk/B(n) = BnBk/

∑
ck∈ĉn

BnBk is a version of
the size terms and1/ (1 + (dnk/d0)

ρ) is a version of a
distance kernel in the gravity model of [9]. Hereτ deter-
mines how the transient “emigration” probability scales
with the donor population size, whileρ quantifies how at-
traction decays with distance.

In the next sections we analyze the actual network of
farms and discuss the parameters of the model. Then we
study the evolution of the disease in the network and we
compute some related statistics.

3. THE NETWORK OF FARMS

Information regarding the poultry farms are taken from the
National Agriculture Statistics Service USDA (www.nass.
usda.gov) and topographic maps (1 : 100, 000 Digital Raster
Graphics; Conservation and Survey Division; School of
Natural Resources; University of Nebraska-Lincoln). To
simulate a network of farms we identify the geographical
center of each county and compute the distances between
these centers. We approximate each county by a square
centered at the county center. In each square we apply
a uniform geographical spread of the farms. The size of
each farm is obtained as a random number from a Pois-
son distribution with mean equal to the average number
of poultry per farm in each county. In Figure 1, we pro-
vide a network of 1198 poultry farms generated as above.
This network is used further in the paper. We observe that
Butler county accounts for about63% and Polk county for
about32% of the poultry population of Nebraska.

We provide a boxplot for the node sizes in Figure 2
(a). The frequencies of the distances between nodes are in
Figure 2 (b).

Network of Farms

Figure 1. Geographical spread of the network.
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Figure 2. Boxplot of node sizes and distance frequencies.
Most of the nodes have a rather small size, except farms
in Butler and Polk counties, provided separately.

4. THE PARAMETERS OF THE MODEL

Recent studies have shown that the human influenza has
an average time interval from infection of one individual
to when their contacts are infected of about two days [11].
This number has been used by various authors in assessing
the potential impact of a human pandemic of HPAI. At the
same time time two days is the minimum time needed to
get preliminary results back from a diagnostic center for
HPAI. Consequently we assume that the basic time step
is two days, so the infections within a time step are sec-
ondary cases from infected nodes in the previous time step
within a neighborhood. The basic neighborhood is consid-
ered a circle of radiusR km centered at each node. Given
an infected node, the probability that it will infect nodes
outside its neighborhood is equal to zero. We will use
mostlyR = 100 km, but the impact of the value ofR will
be considered in the analysis. The parametersτ andρ will
be varied to understand the impact of how the transient
“emigration” probability scales with the donor population
size, and how attraction decays with distance. We do not
posses real data to estimate these parameters. The parame-
terd0 is roughly estimated to3.1 km from available infor-
mation on home ranges for permanent resident birds and
migrating birds of Nebraska. However, due to incomplete
data, we believe that this number underestimates the true
value ofd0 and therefore we use values ofd0 ≥ 10 km.

The government quarantines an infected location for
Q = 21 time steps as specified in the USDA national
response plan. During this process the disease can still
spread to other locations due to migration of synanthropic



birds, rodents, humans and equipment movement, but the
probability of infection decreases with time. To account
for this, the random factorf(t) in formula 2 is set equal
to 1 during the first time step after infection, and is subse-
quently given for all nodes by a Beta distributionβ(1, h(T ))
whereT is the number of time steps since the beginning
of the quarantine, andh(T ) is an increasing function of
T (h(T ) = T in simulations). We setcn(t) = 0 after
15 time steps of quarantine. After the quarantine the node
re-enters the normal process if the location is repopulated.
Small farms are assumed to have a50% chance of going
out of business versus repopulation.

Next we provide a formula for computing the basic
reproduction numbers and generate simulations that allow
us to understand the impact of a change in parameters on
this quantity.

5. BASIC REPRODUCTION NUMBERS

Consider now the infection probability given by formula
2, used to compute the basic reproduction numbers, or the
average amount of secondary infections generated by a
primary infection. We assume that exactly one node, say
cK , is infected at timet = 0, that iscK(0) = 1. We want
to see what is the distribution of the number of infected
nodes at timet = 1.

Let cn be a node in the neighborhood of nodecK .
Thenpn = (BK/B(n))τ

/ (1 + (dnK/d0)
ρ). This is the

probability thatcn(1) = 1 given thatcK(0) = 1 and
ck(0) = 0, for all nodesck, k 6= K. Thus, at timet = 1
the numberm of nodes that are turned ON can vary from0
to the numberMK of nodes in the neighborhood of node
cK (not including the nodecK). So if p1, p2, . . . , pMK

are the probabilities corresponding to theMK nodes of
the neighborhood of nodecK , then the probabilityqK(m)
that exactlym nodes are infected at timet = 1 is given
by qK(m) =

∑
pi1pi2 . . . pim

∏
j(1 − pj), where the

sum is over all possible combinations ofm nodes out of
MK , 1 ≤ i1 < i2 < · · · < im ≤ MK , and j =
1, 2, . . . , MK , j 6= il, l = 1, . . . ,m. Thus the random
variable giving the number of nodes that are infected at
time t = 1 is: P (m infected nodes) = qK(m),m =
0, 1, . . . , MK . Then

∑MK

m=0 qK(m) = 1 by the follow-
ing result.

Remark 2. For any integerk > 0 and any real num-
bersa1, a2, . . . , ak, we have that

∑k
l=0

∑
ai1ai2 . . . ail

·∏
j(1 − aj) = 1, where the sum is over1 ≤ i1 < i2 <

· · · < il ≤ k, andj = 1, 2, . . . , k, j 6= in, n = 1, 2, . . . , l.
We make the convention thatl = 0 means that there is
only one term in the inside sum and all the factors of this
term are of the type(1− aj).

Proof: The proof is by induction onk. Let Sk denote
the sum in Remark 2. ClearlyS1 = a1 + (1 − a1) = 1.
Also Sk+1 = Sk · ak+1 + Sk · (1− ak+1) = Sk. ♦

Then the average number of infected nodes given only
one infected node at timet = 0, cK(0) = 1, is AK =∑MK

m=0 m · qK(m).
Remark 3. For any integerk > 0 and any real num-

bersa1, a2, . . . , ak, we have that
∑k

l=0 l
∑

ai1ai2 . . . ail
·

Figure 3.Plot of the average number of infected nodes in one time step,AK ,
versusK, the index of the initial infected node. This is done in four different
scenarios corresponding to the variation of one of the parameters ( (a)τ , (b) ρ,
(c) d0, (d) R) while keeping the other ones fixed as mentioned in the titles of the
subplots. Observe thatAK is decreasing as a function ofτ , ρ or R, and increasing
as a function ofd0. The two peaks correspond to Butler and Polk counties. The
values ofAK are impacted most dramatically by changes inτ . WhenR increases
there is an approximate threshold value beyond which the neighborhood size makes
no difference since far away farms will not be infected.

∏
j(1− aj) = a1 + a2 + · · ·+ ak, where the sum is over

1 ≤ i1 < i2 < · · · < il ≤ k, andj = 1, 2, . . . , k, j 6=
in, n = 1, 2, . . . , l.

Proof: The proof is by induction onk. Let Sk denote
the sum in Remark 3. Observe thatS1 = 0 · (1 − a1) +
1 · a1 = a1. Also Sk+1 = Sk · (1− ak+1) + Sk · ak+1 +
ak+1 ·

∑k
l=0

∑
ai1ai2 . . . ail

∏
j(1−aj) where the second

sum is over1 ≤ i1 < i2 < · · · < il ≤ k, and j =
1, 2, . . . , k, j 6= in, n = 1, 2, . . . , l. Thus,Sk+1 = Sk +
ak+1 · 1 = a1 + a2 + · · ·+ ak+1. ♦

So the average number of nodes infected at timet = 1
or the basic reproduction numbers givencK(0) = 1 are

AK = p1 + p2 + · · ·+ pMK
K = 1, 2, . . . N. (3)

We graphAK versusK and one other parameter (τ ,
ρ, d0, andR respectively) in Figure 3. A modification
of the fixed parameters mentioned in the titles of the plots
does not change the shape of the graphs, only the values
of AK . For example, whenτ is varied, an increase in the
fixed ρ generates overall smaller values ofAK due to the
fact that the distance kernel in formula 2 decreases.

Now we can focus on one parameter combination and
analyze the average number of infected nodes by time
steps and time until eradication of the epidemic.

6. NETWORK EVOLUTION AND SOME
STATISTICS

We set the parameters as follows:τ = 1.5, ρ = 0.95, d0 =
30 km, andR = 100 km which yields an average of195
farms per neighborhood. In the next graph we list the
nodes horizontally (in the alphabetic order of the coun-
ties) and represent the infected ones by dots. We iterate
formula 2 exactly 50 time steps. In Figure 4 we start with
one infected node in Butler county and we plot dots for
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Figure 4. Sample spread of the infection starting with one infected node in
Butler county. The infected nodes are listed: Butler, Howard, Lancaster, and Pierce
counties, followed by the rest of the listed counties at various times.

all the nodes infected at each time step listing their names.
Note that Butler is followed by Howard, Lancaster, Pierce,
and then the rest of the listed counties at various times. A
total of 34 nodes are infected and the infection is con-
tained during the50 time steps.

The quantityI(t) =
∑N

n=1 cn(t) is the number of
infected nodes at timet. We generate frequency plots of
I(t) for t = 1, 2, . . . 60, starting with one infected county.
For example the first graph of Figure 5 corresponds to the
infection of Butler. We observe that small and large values
of t correspond to mostly small values ofI(t), while for
medium values oft there are higher frequencies of larger
values ofI(t). The epidemic may not be contained. For
smaller counties, the plots are concentrated around small
values ofI(t) for all t.

Now consider the time until the eradication of the dis-
ease starting with one infection, averaged over multiple
sample evolutions. The results are in the second graph of
Figure 5. The two peaks are for Butler and Polk counties.
The overall network average is about18 time steps.

We note that the infection of small counties has little
impact on the network, unless they are close enough to
one of the bigger nodes. When the spread of the disease
is more encompassing, the bigger nodes are infected and
spread the disease to other nodes faster and throughout a
wider area. However, for a medium node the disease could
be contained rather fast. On the other hand, it could be
that even small nodes spread the disease to bigger nodes
and produce an outbreak. However, for most cases the
infection spreads to only a few or no other nodes.
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ABSTRACT 

Gastrointestinal stromal tumor (GIST) and leiomyosar-
coma (LMS) are both tumors of gastrointestinal tract. 
Genetic events leading to these malignancies are not yet 
fully understood. In this paper, we analyze two types of 
genomic data, collected from GIST and LMS primary 
tumors. Data from gene expression and array compara-
tive genomic hybridization (aCGH) measurements are 
co-analyzed by studying their correlations and identify-
ing differentially expressed genes. Relationships be-
tween gene expression and genomic aberrations provide 
an insight into the underlying genetic events. We use 
gene ontology enrichment analysis to identify the bio-
logical processes that are affected by both a copy num-
ber aberration in the DNA and differential expression in 
the gene expression level. 

1. INTRODUCTION 

In many cases cancer development initiates from altera-
tions in the function of key regulatory processes in cells. 
Accumulation of genetic aberrations in chromosomal 
segments can lead to abnormal mRNA transcript levels 
and results in the malfunctioning of cellular processes 
[1]. Processes crucial to carcinogenesis include those 
which help cells to increase in number or affect the cell 
differentiation and maturation [2]. 

High-throughput methods such as microarray tech-
nologies have significantly extended the possibilities of 
biological research due to their efficiency and quickness. 
Gene expression data from DNA microarrays have been 
widely analysed to quantify the changes in mRNA levels 
of genes, for example on tumor samples. To examine 
genomic aberrations, a technique called comparative 
genomic hybridization (CGH) [3] can be used. Array 
comparative genomic hybridization (aCGH) [4] allows 
the high-resolution mapping of DNA aberrations at tens 
of thousands of locations distributed throughout the ge-
nome. These technologies have been successfully used 

in studying the genetic profiles of different kinds of can-
cer types. 

To get a better view to genetic events leading to for-
mation of malignancies, it is advantageous to measure 
both gene expression and CGH data from the same tu-
mor samples. In this way one can quantify the effects of 
genetic aberrations on the expression of genes. This kind 
of co-analysis has already been performed for many can-
cer types. Mostly, the analyses have been concentrated 
on identifying genes which are both over-expressed and 
have change in copy number [5]. In some studies, the 
correlations between copy number and gene expression 
have been studied [6]. Co-analysis has also been used to 
understand how the aberrations influence cancer patho-
physiologies [7] and to identify relationships between 
DNA copy number, gene expression, and drug sensitiv-
ity [8]. 

Human gastrointestinal stromal tumors (GIST) and 
leiomyosarcomas (LMS) of the abdominal cavity and 
retroperitoneum are unusual malignancies that, until 
recently, were classified histologically together as LMS 
because of their similarities on light microscopy [9]. 
Advances in histopathology later provided ultrastructural 
evidence that GIST are distinct from muscle tumors [10]. 
In addition, the distinction of GIST and LMS based on 
microarray data has been reported [11]. 

In this work, we systematically co-analyze gene ex-
pression and aCGH data measured from GIST and LMS 
tumors. We study the similarity of the gene expression 
and array CGH measurement profiles over all measured 
genes. We identify highly expressed genes from gene 
expression data and genetic aberrations from array CGH 
data. These lists of highly expressed genes and genetic 
aberrations are then compared to uncover the degree of 
overlap between these two types of data. Gene Ontology 
enrichment analysis is used to investigate which biologi-
cal processes are affected by genetic aberrations and 
high mRNA levels. Finally, we compare different cancer 
samples at the system level by computing correlation 



between the chromosomally ordered expression and 
copy number data. 

2.  METHODS 

2.1. Data 

Primary tumors, 20 GIST and 20 LMS, were used to 
obtain DNA for aCGH experiments. Each tumor sample 
was hybridized against normal DNA. Agilent Human 
Genome CGH Microarrays (4x44k) were used in this 
study. Data was extracted from microarrays using 
Agilent feature extraction software version 9.5 with de-
fault settings. Finally, data were imported to Matlab and 
Lowess normalized to compensate for dye bias. 

For gene expression experiments, mRNA from 68 
primary tumor samples, 37 GIST and 31 LMS, was used. 
37 of these 68 arrays were made using the genetic mate-
rial from the same tumors that were used on aCGH ar-
rays. Agilent human whole-genome microarray chips 
(44k) were used to measure the gene expression levels. 
Agilent feature extraction software version 8.0 was used 
to extract the data. Data were imported to Matlab and 
Lowess normalized to compensate for dye bias. Data 
was further quantile normalized to standardize the inten-
sity distributions. 

2.2. Determining highly expressed genes from gene 
expression data 
 Highly expressed genes were identified by finding the 
probes, whose intensity value is among the highest 5% 
of all intensity values.  It should be noted as we do not 
have data measured under normal conditions, this was 
the best available approach to identify highly expressed 
genes. Normalization using e.g. computational median 
over all the samples would have reduced the amplitude 
of the genes that are systematically highly expressed in 
most of the samples. Finally, based on the expression of 
individual probes, the expression of each gene was de-
termined by averaging over all the probes mapped to a 
given gene. 

2.3. Identifying aberrations from aCGH data 
In aCGH data, genetic aberrations usually span multiple 
probes. To find the aberrations, the data needs to be seg-
mented and segments should then be identified as aber-
rated or normal. The normalized log ratio intensity val-
ues were segmented using circular binary segmentation 
(CBS) algorithm [12]. CGHcall algorithm [13] was used 
for making the aberration calls for each segment.  A 
gene was considered aberrated if the segment, in which 
the gene resides, was classified as aberrated. Finally, 
genes were flagged as aberrated if probes at that region 
belong to an aberrant segment. 

2.4. Identifying common abnormalities 
We examined which genes behave abnormally through-
out the sample set or in the majority of samples. We gen-
erated lists of those genes which were highly expressed 

in 60, 70, 80, 90 or 100 % of samples. Likewise, lists of 
genes which were aberrated in 60…100 % of samples, 
were generated. In addition, we generated a list of those 
genes which were both highly expressed and aberrated 
in 60…100 % of samples. The analyses were performed 
to GIST and LMS sample sets separately. 

2.5. Examining the correlation 
We examined global similarity of the genetic profiles 
between gene expression and aCGH data. Using only the 
37 samples that were made using the genetic material 
from the same tumors we estimated correlation between 
each possible gene expression – aCGH sample pair. 
First, all the probes corresponding to a given gene were 
combined and only the genes that appear on both of the 
arrays were kept. Next the genes were ordered into the 
order they appear on the chromosomes. Then, the corre-
lation was estimated using Pearson’s correlation coeffi-
cient. 

2.6. Enrichment analysis 
Enrichment analysis was performed to the list of genes, 
which were both highly expressed and aberrated, be-
cause those genes are assumed to be related to the bio-
logical processes underlying the cancer types under 
study.  We can utilize gene annotations to gene ontology 
(GO) terms, by studying which terms get more annota-
tions than would be expected by random [14]. Given a 
list of interesting genes L, we can go through all GO 
terms and for each term i, count how many genes from 
list L are annotated to it, denoted by ki. To obtain a null 
distribution, the same process can be repeated using a 
list of all possible genes, that is, all the genes on the mi-
croarray. As a result, for each GO term the number of 
annotations ni is obtained. Let ∑ in=N  and 

∑ ik=K , then we can use the cumulative distribution 

function F  of hypergeometric distribution to obtain a p-
value for observing at least ki annotations to term i as 
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Terms with smallest p-value are considered to be the 
most interesting ones. 

3. RESULTS 

In the first part of our results we show, how the number 
of genes that are highly expressed, aberrated or both, 
change as the function of the number of samples. As our 
method for identifying highly expressed genes from the 
gene expression data does not remove naturally highly 
expressed genes, it is expected to have a high number of 



false positive on the list. Indeed, the number of genes 
increases very rapidly in the case of gene expression 
data (Figure 1(b)). Still Figure 1(b) shows only very 
small number of genes that are expressed on all the sam-
ples. This indicates that both GIST and LMS samples are 
highly heterogeneous. 

Joint analysis of gene expression and aCGH data (Fi-
gure 1(a)) shows that only at the level of 80% of the 
samples, we start to observe a significant number of ge-
nes that are identified from the both sources of data. It 
should be noted that by combining the lists from gene ex-
pression and aCGH, we are able to remove naturally highly 
expressed genes that appear in gene expression data gene 
list. Thus, these genes should not affect our results or con-
clusions about relationships between gene expression and 
genetic aberrations. 

Gene ontology enrichment analysis was applied to 
list of genes that was identified from both gene expres-
sion and aCGH data. Analysis with LMS uncovered sev-
eral statistically significant GO categories (p<0.01) that 
are known to be related to cancer. These include histone 
modification and acetylation as well as regulation of 
apoptosis. This indicates that our analysis successfully 
captured genes that are related to this cancer type. For 
GIST the enrichment analysis uncovered categories that 
are related to different cellular complex disassembly and 
translation regulation. While these categories can also be 
linked to cancer, they are more general than categories 
from LMS analysis. 

Figure 2(a) represents the correlations between 
aCGH and gene expression samples. Each column corre-
sponds to an aCGH sample, and each row a gene expres-
sion sample. Samples number 1-20 are from LMS and 
samples number 21-37 are from GIST. The cells of the 
diagonal represent the correlations between aCGH and 
gene expression data of the same sample. It can clearly 
be seen, that the correlation between the aCGH and gene 
expression measurements of the same sample is higher 
on average than between any other samples. Further-
more, there is no difference in profiles between GIST 

and LMS. This indicates that the heterogeneity within 
GIST or LMS is more dominant than the differences 
between these two cancer types. This indicates that there 
is no clear global pattern in gene expression and aCGH 
profiles that would trivially separate these two classes of 
cancer. As for correlations computed using only aCGH 
(Figure 2(c)) and gene expression data (Figure 2(d)), the 
GIST and LMS classes are clearly observable. 

4. CONCLUSIONS 

Here, we have studied the relationships between gene 
expression and array CGH data, measured from a set of 
GIST and LMS tumors. Our results show that these can-
cer types show highly heterogeneous patters in their ex-
pression profiles. Comparison of lists of highly ex-
pressed and aberrated genes showed that significant 
number of common genes can be identified only in 80% 
of samples. Thus, the tumors genetic profiles are very 
different from each other even within a cancer type. 
Gene ontology enrichment analysis identified categories 
that are cancer related, indicating that genes that are 
identified in majority of the samples are in fact cancer 
related. Correlation analysis showed that the expression 
profiles measured from the same tumor using aCGH and 
gene expression arrays show significant correlation. 
However, significant correlation between these two data 
types within cancer type can not be observed.  

In the light of this obvious heterogeneity of these 
cancer types, it is remarkable to observe that a very sim-
ple two gene classifier that accurately predicts the cancer 
type has been reported [15]. This observation outlines 
that fact that while the differences between cancer types 
are not evident, there are some underlying biological 
processes that give rise to these types of cancer. Based 
on this study, it is clear that in the case of highly hetero-
geneous cancer these processes can not be trivially un-
covered just by naively analyzing high-throughput data. 
To understand cancer, significant amount of biological 
insight needs to be utilized in the analysis of data. 

Figure 1: Number of genes identified as highly expressed in gene expression data (b), aberrated in aCGH data (c) and 
both highly expressed in gene expression data and aberrated in aCGH data (a)  are shown as a function of the percentage 

of  samples that share these common genes. 
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ABSTRACT

The highly divergent character of retrovirus sequences ma-
kes cross family alignment based classification of whole
genomes difficult and unreliable. Standard methods thus
focus on alignment based classification using only specific
elements such as pol and env retroviral genes. In this paper
a topology tree of exo- and primate endogenous retrovirus
sequences based on whole genomes is presented. In order
to avoid the necessity of making an alignment, compres-
sion was used to approximate a mutual information based
distance between sequences.

1. INTRODUCTION

Endogenous retroviruses (ERVs) are remnants of ancient
retroviral infections. Retroviruses in general are viruses
capable of inserting their genome into the DNA of hosts.
They become endogenous once they have been inserted
into the germ-line. ERVs possess a similar genomic or-
ganization to present day exogenous retroviruses (XRVs)
such as the human immunodeficiency virus (HIV). They
are composed of gag, pol, and env coding regions placed
between two long terminal repeats (LTRs). The LTRs pos-
sess nucleotide sequence motifs that are fundamental for
the regulation of retroviral gene expression. The gag and
env genes encode retroviral capsid and envelope proteins,
respectively, whereas the pol gene encodes enzymes for
viral replication, integration, and protein cleavage. About
8% of the human genome are ERVs. Although most of the
proviruses (integrated copies of the virus genome) have
undergone extensive deletions and mutations, some have
retained the potential to produce viral products, even virus-
like particles (reviewed in [1]).

In the current taxonomy, retroviruses are classified into
seven genera: alpha-, beta-, gamma-, delta-, epsilon-, lenti-
, and spuma-retroviruses [2]. However the diverse en-
dogenous members remain relatively poorly incorporated
into the classification scheme. Typically, ERVs are be-
ing classified using alignment of short conserved protein
motifs of pol or env genes [3]. Obviously, by restricting
the comparison to one gene a lot of information is being
neglected. Usually the ERV phylogenetic trees are con-
structed using also representatives from XRVs.

In this work, we attempted to classify full-size geno-
mes of both exo- and primate-specific endoretrovirus se-
quences. Compression was used to approximate a mutual
information based distance between sequences in order to
avoid the necessity of making an alignment. Shannon’s
Mutual Information quantifies the amount of information
shared between stochastic processes. It is thus well suited
to derive a distance measure quantifying their dissimilar-
ity [4]. Genomic sequences can be regarded as realiza-
tions of such stochastic processes and compression can
be used to approximate the distance measure from the
genomic sequences. The use of compression for phylo-
genetic classification was first introduced in Li et al. [5].
The compression based distance does not require an align-
ment, it is capable of catching more subtle statistic simi-
larities than simple sequence divergence and is largely in-
dependent of the lengths of the compared sequences [6].

2. METHODS

2.1. Mutual Information Distance

Information theory describes the relatedness of stochastic
processes Si and Sj as the mutual information I(Si; Sj)
shared by these processes

I(Si; Sj) = H(Si)−H(Si|Sj) = I(Sj ; Si), (1)

where H is the entropy. Mutual information is an absolute
measure of information common to both sources. It can be
transformed to a bounded distance through normalization
by the maximum entropy of both processes resulting in
the following distance metric

dCL(Si, Sj) = 1− I(Si; Sj)
max(H(Si),H(Sj))

≤ 1. (2)

In order to achieve dCL = 0 the two sources must not only
share maximum possible mutual information, but need to
have identical entropies as well. This distance has also
been successfully applied to the clustering of SNPs in gene
mapping [7]. Using conditional entropy the distance can
be reformulated to

dCL(Si, Sj) =
max(H(Si|Sj),H(Sj |Si))

max(H(Si),H(Sj))
. (3)



2.2. Compression Based Entropy Approximation

The compression ratio achieved by an optimal compres-
sion algorithm designed for a given stochastic process S
when compressing a message s generated by this process
s 7→ |comp(s)| is a good approximation of its actual en-
tropy rate

H(S) ≈ |comp(s)|
|s| , (4)

where |.| denotes the size in bits or symbols. The compres-
sors used in the scope of this work are so-called universal
compression algorithms. They are universal in the sense
that they gradually learn the statistics of the sequence while
compressing. Therefore, we can approximate the condi-
tional entropy H(Si|Sj) as the compression ratio achieved
for message si when the compressor has been trained on
the message sj . This is achieved by compressing the con-
catenation |comp(sj , si)| of the sequence sj and si. Thus,

H(Si|Sj) ≈ |comp(sj , si)| − |comp(sj)|
|si| , (5)

and for |comp(si)| > |comp(sj)| we obtain:

dCL =
|comp(sj , si)| − |comp(sj)|

|comp(si)| . (6)

This resembles the similarity metric based on Kolmogorov
complexity proposed in [8]. Suitability of different com-
pression algorithms for the purpose of classification is dis-
cussed in detail in [4]. The prediction by partial match-
ing (PPM) compressor [9] was used in this work due to
efficient implementation and good classification perfor-
mance.

2.3. Classification and Results Analysis

After computing the distances between all sequences a
phylogenetic classification is to be performed. The av-
erage neighbor joining method was used for this purpose.
The results were visualized using MEGA4 [10]. For bet-
ter comparison, the same clustering method was used to
classify the test set sequences using alignment based dis-
tances computed by ClustalW [11]. The web-based tools
blast2seq [12] and blat [13] were used to verify our find-
ings.

3. DATASET

A test set of amino acid (aa) sequences corresponding to
the pol region of 62 exo- and endogenous retroviruses
was retrieved from the paper Jern et al. [14] and used
for the comparison of the methods. For the compression
based phylogeny presented in Figure 1 we used the cur-
rently available full set of 54 complete exogenous retro-
virus genomes (Retroviridae from the NCBI Refseq col-
lection http://www.ncbi.nlm.nih.gov/). The sequence of
the Drosophila melanogaster gypsy virus (AF033821) was
used as an outgroup to root the tree. The primate-specific
ERV consensus sequences (84) corresponding to internal
retrovirus regions (without LTRs) were fetched from the

Repbase (http://www.girinst.org/). The XRV sequences
vary in size from 2.6 to 14.0 kb, the ERVs from 1.8 to
11.2 kb.

4. RESULTS

4.1. Alignment vs. Compression Based Clustering

In order to compare the performance of alignment and
compression based distance measures for retrovirus clas-
sification, we built topology trees of aa-sequences of the
pol gene described and classified by Jern et al. [14] using
the ClustalW based alignment distance and the compres-
sion distance computed using the PPM compressor. Vi-
sual inspection of the resulting trees (data not shown) sug-
gested that, in general, the sequence clustering obtained
by both methods is similar with slight differences in the
branch distributions within major clades. In addition, the
obtained clustering was in both cases in agreement with
the observations of Jern et al. However, the aa-sequence
corresponding to the Mason-Pfizer monkey virus (MPMV)
was misleadingly first classified as an outlier by PPM. Fur-
ther inspection has revealed that the used sequence down-
loaded from Jern et al. contained in addition to the pol
protein sequence a frame shifted protein snippet of about
the same length. Since PPM as opposed to the ClustalW
based approach used also this portion of the sequence to
compute the distance, it correctly considered the sequence
to be distant from all the others.

In conclusion, it can be stated that the results of the
alignment and the compression based classification largely
agree. Moreover, the reliability of the compression based
classification can be improved if nucleotide instead of aa-
sequences are being used. This is due to the increased
sequence length and also due to the reduced alphabet size
giving the universal compressor a better chance to learn
the statistics of shorter sequences.

4.2. Compression Based Primate ERV Classification

Figure 1 depicts the whole genome based tree of both exo-
and primate endogenous retroviruses obtained using com-
pression. The observed clustering of XRVs corresponds to
the established taxonomy (http://www.ncbi.nlm.nih.gov).
The only unexpected finding is the assignment of the squir-
rel monkey retrovirus (SMRV) to the delta genera viruses.
The SMRV is believed to be closely related to the beta
like mouse mammary tumor virus (MMTV). In order to
investigate this disagreement we have increased the clas-
sification weight of MMTV by incorporating additional
MMTV-like sequences. As a consequence SMRV was
assigned to the MMTV-like family. This suggests that
there is a close relation between SMRV and both retro-
virus genera delta and beta. In addition, it indicates that
care needs to be taken when interpreting classification re-
sults of cross-family related sequences.

The salmon swim bladder sarcoma virus (SSSV) is
annotated in Refseq as unclassified. First described by
Paul et al. [15] it represents the only fish-specific XRV
in our dataset. The author’s findings based on the reverse
transcriptase suggest to place SSSV between the gamma



Figure 1. Topology tree of ERVs and XRVs based on compression similarity. Names of the leaves correspond to
standard exogenous and endogenous retrovirus abbreviations according to the International Committee on Taxonomy of
Viruses (ICTV) and the Repbase nomenclatures, respectively (dashes and underscores were omitted). XRV names are
large in size. Presumably distinct ERV clades are denoted by a “?”. The tree is rooted using the gypsy retroelement
(indicated on the top of the tree). Different symbols were used for sequences related to different clades: M - alpha-like, ¥
- delta-like, • - gamma-like, ◦ - beta-like, N - lenti, ¤ - spuma, ¨ - epsilon, ¦ - unclassified.

and epsilon genera but in a distinct branch, what is consis-
tent with our results.

Based on the obtained XRV clustering, the assignment
of ERVs found on the corresponding subtrees of the XRV
genera was attempted. It could be observed that only the
XRVs from the beta and gamma genera have closely re-
lated primate ERV counterparts. The remaining primate
ERVs seem to cluster in distinct genera with distant rela-
tionship to the alpha, delta and beta XRV clades (they are
depicted by a “?”). The epsilon, spuma and lenti family do
not seem to have any primate ERV relatives. The cluster-
ing of ERVs into clades distant from the established XRV

genera was also suggested by Han et al. [16].

According to Baillie et al. [17] the Mason-Pfizer mon-
key virus (MPMV) exists only in exogenous form. How-
ever, the topology tree shows the primate-specific endoge-
nous consensus MacERV4int at close proximity to MPMV.
An alignment of both sequences revealed that they are
highly homologous (76% identity). A blat scan of the
Macaca mulatta genome (rheMac2) for the MacERV4int
consensus returned dozens of highly similar hits. All this
implies that MacERV4int consensus represents a group of
endogenous retroviruses in the macaque genome that is
closely related to the exogenous MPMV form, also con-



firmed by findings of Han et al. [16].

5. DISCUSSION

Since the alignment based classification is limited to align-
able parts and the alignment of highly heterogenous retro-
virus genomes is unreliable the scope of this work was to
test whether compression based classification can be ap-
plied to the relatively short but complete retrovirus geno-
mes. After verifying the suitability of the approach on ex-
ogenous retroviruses, classification of recently published
primate endogenous retrovirus sequences was attempted.
The resulting tree indicates that most primate exogenous
retroviruses represent own genera and that only the beta
and gamma exogenous retrovirus genera have close pri-
mate endogenous relatives. Most endogenous viruses seem
to cluster in distinct separate clades and are likely rem-
nants from infections by ancient extinct retroviruses.

6. CONCLUSION

Using compression based approximation of a mutual in-
formation based distance we were able to classify sequen-
ces of complete exogenous retrovirus genomes with good
agreement to published data. Moreover, using this method
we proposed a classification (topology tree) for a collec-
tion of primate-specific ERVs. The biological meaning of
our observations needs to be further investigated and the
robustness of the compression based approach remains to
be thoroughly tested.
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ABSTRACT

Bayesian networks (BNs) are frequently used for model-
ing genetic regulatory networks. The structure of a static
BN cannot in general be learnt unambiguously from ob-
servational data alone but interventions (i.e. knock-outs
or over-expressions) are also required. These interven-
tions can be difficult and costly to perform, thus calling for
careful planning of experiments. Active learning methods
can be used to suggest which interventions should be per-
formed in order to increase our knowledge about the net-
work structure maximally. Here, we utilize such a method
for the first time in a realistic setting with measured wild-
type and perturbed gene-expression and protein data and
show the applicability and usability of the approach for
designing biological experiments with maximal expected
utility.

1. INTRODUCTION

Choosing which biological experiments to perform in or-
der to benefit maximally from them is a highly non-trivial
problem. The solutions to such a problem are context de-
pendent: Trying to infer the dynamics of a system sets
different demands on experimental design than when in-
ferring the structure of a system, and will thus need to be
addressed by different methods. Here we are interested in
the problem of finding the structure of a biochemical sub-
network as efficiently as possible when the used model
class is (causal) Bayesian networks. For demonstration,
we consider learning both gene regulatory network and
signaling network structures. We demonstrate the usabil-
ity of a method to suggest maximally informative experi-
ments.

2. METHODS

2.1. Bayesian networks

Given a set of random variablesX = {X1, ..., Xn}, a
Bayesian network is defined as a pair(G, θ), whereG
is a directed acyclic graph (DAG), which is a graphical
representation of the conditional independencies between

variables inX , andθ is the set of parameters for the con-
ditional probability distributions of these variables. The
joint distribution overX factorizes according toG as

P (X1, ..., Xn|G, θ) =

n∏

i=1

P (Xi|PaG(Xi), θi), (1)

wherePaG(Xi) is the set of parents of nodeXi in G, and
θi the parameters for the distribution ofXi conditional on
its parents.

In searching for the structure that most probably gen-
erated the data, of main interest is the posterior probability
of a DAG given the dataP (G|D) = P (D|G)P (G)/P (D),
whereP (G) is the prior probability ofG,
P (D) =

∑
G′

P (D|G′)P (G′) is the prior probability of
data (sum goes over all possible DAG structures), and

P (D|G) =

∫

θ

P (D|G, θ) P (θ|G) dθ. (2)

In this paper we only consider BNs having all the vari-
ables observed, discrete-valued and have multinomial con-
ditional probability distributions (CPDs). We use uniform
Dirichlet parameter priors since Dirichlet distribution is
the conjugate prior of multinomials and makes it possible
to obtain the closed form solution for Equation (2), which
now becomes [1]

P (D|G) =

n∏

i=1

qi∏

j=1

Γ(N ′

ij)

Γ(N ′

ij + Nij)

ri∏

k=1

Γ(N ′

ijk + Nijk)

Γ(N ′

ijk)
,

(3)
whereNijk is the number of times the configuration
(Xi = k, PaG(Xi) = j) occurs in dataD, N ′

ijk are hyper-
parameters (a.k.a. pseudo-counts) of the Dirichlet distri-
butions,Nij =

∑
k Nijk andN ′

ij =
∑

k N ′

ijk, qi is the
number of different parent configurations, andri is the
number of different states that nodei can take.

Ideally, we would like to have the whole posterior dis-
tribution of DAGs and calculate our further analyses based
on that (i.e. perform full Bayesian analysis). But since
the number of different DAGs grows super-exponentially



with n, evaluating the score (Equation (3)) for all possible
structures is prohibitive for all but smallest ofn (n ≤ 6 or
so). Instead, one is forced to resort to taking a sample of
the posterior distribution with MCMC, as is done in this
study.

An assumption we have to make is that the data is
sampled from a probability distribution which can be rep-
resented with a Bayesian network (so called faithfulness
assumption). In many real cases, this assumption is not
likely to hold, especially for data from genetic networks
(like in this study), where feedback loops are present. Still,
we are obliged to make this approximation in order to be
able to use a rigorous modeling approach.

2.2. Equivalence classes and interventional data

Given only observational (i.e. no interventions) data, it is
generally impossible to learn the structure of a BN unam-
biguously because there is more than one structure pro-
ducing the same combined probability distribution. Such
sets of inseparable DAGs constitute equivalence classes,
each of which consists of all the DAGs having the same
v-structures1 and otherwise the same structure when edge
directions are ignored [2].

With interventions (i.e. forcing or ”clamping” a node
or set of nodes to a certain value) we can break these
classes, by inducing bias towards some of the alterna-
tively possible structure(s). Forcing the value of a node
determines the directions of edges adjacent to it and thus
splits the equivalence classes into transition sequence (TS)
equivalent structures [3]. With enough interventions, the
size of the most probable TS equivalent class should re-
duce to one.

In gene networks, interventions can be either over-
expressions, meaning that a gene is set to state ”on”, or
knock-outs, corresponding to setting the gene ”off”. Since
these interventions are based on biological mechanisms
that are inherently stochastic, there is uncertainty in how
well the intervention succeeds. However, here we take the
interventions to be ideal.

2.3. Active learning

Active learning methods are designed to suggest which in-
terventions should be made in order to maximally benefit
from their effect of breaking equivalence classes or, more
generally, to learn the structure of a BN with minimal cost
of experiments.

Basically, two different approaches to selecting the
perturbations have been presented: (i) those that break
equivalence classes [4] and (ii) decision theoretic that aim
to diminish our uncertainty (or increase information max-
imally) about some edges [5, 6]. These approaches are in
fact closely related and complementary, since within an
equivalence class the inability to say which direction an
edge takes is, in other words, uncertainty about that edge.

We use the method presented by Murphy [5], where
the expected utility of making an interventiona (which

1a v-structure is a triplet(a, b, c) wherea → b ← c anda ≁ c (i.e.
a andc are not joined).

can be a plain observation, i.e. ”empty” intervention, or
consist of setting the value of one or more nodes at a time)
is defined as

V (a) =
∑

G∈G

∑

y∈YG,a

P (y|G, a, D)P (G|D)U(G, a, y, D),

(4)
whereG is our set of possible DAGs,YG,a denotes the
set of possible observations thatG can produce given that
interventiona has been made. For the utility function
U(G, a, y, D) we use (assuming equivalent cost for each
intervention)log P (G|a, y, D).

The best action is chosen from the set of possible ac-
tionsA as the one with maximal utility
a∗ = arg maxa∈A

V (a). The optimal way of finding this
action is by exhaustive enumeration.

Since the number of DAGs grows super-exponentially
with the number of nodes, the exhaustive approach is prac-
tically unusable whenn > 6. Therefore, stochastic sam-
pling is used to obtain a sample from the posteriorP (G|D)
which is then used in the above calculations.

Also, since the number of different observations a BN
can produce is

∏n

i=1 ri (ri is the number of discretiza-
tion levels for nodei), it quickly becomes too expensive
to evaluate the above algorithm for all of them. Thus,
we must again resort to sampling to keep the computing
times reasonable. Sampling is done in this study in the
same way as discussed in [5], by using importance sam-
pling and drawing observations from a uniform distribu-
tion. The number of possible actions is rather small in our
case so sampling is not needed for them.

3. RESULTS

3.1. Data

Our first dataset, which we refer to as the Halo dataset,
consists of 242 gene expression measurements of 7 dif-
ferent transcription factors inHalobacterium salinarum
[7, 8]. These transcription factors form the core of the
transcriptional network inH. salinarumand are also be-
lieved to largely control the expression of each other, thus
forming a small regulatory subnetwork. The dataset con-
tains interventions (over-expressions) for all the 7 genes
as well as normal observations (i.e. expression measure-
ments without over-expressions). Therefore, this is an
ideal dataset for our purposes.

The data was discretized into ternary values using a
likelihood ratio statistic based model for detecting under-
and over-expressed genes (with significance level 0.15)
[9]. Some interventional measurements (8 in total) were
removed due to having wrong discretization levels, imply-
ing most probably unsuccessful interventions.

The second dataset, which we call the Sachs dataset,
consists of flow cytometry measurements from a signaling
network with 11 nodes, of which 5 have been perturbed
in some measurements [10]. These interventions contain
both inhibitions and activations of the nodes, which should
intuitively give the active learning a greater advantage over
non-active learning than with the Halo dataset. The data
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Figure 1. Using the Halo dataset,L1 error was calculated
for active and non-active learning methods by comparing
to the structure derived from the ”true” posterior by taking
edges with posterior probability> 0.5. Number of mea-
surements are in addition to the initial 20 observations.
Initial burn-in was4 · 105, between-measurement burn-in
was2 · 104, graph sample size104, and sampled observa-
tions 100. Results averaged from five different runs.

was discretized into ternary values in the same way as in
[10]. From the whole dataset we took a sample with 100
observational data points and 20 data points per interven-
tion, totaling 220 measurements.

3.2. Active learning and random interventions

Instead of using the particle filter based updating done in
[5], we used normal MCMC since it can be argued that
it is what one would preferably use when there is plenty
of computational time available between consequent mea-
surements, as in, e.g., performing studies involving mi-
croarray measurements.

To compare the performances of the active and non-
active learning methods, so calledL1 edge error was used
[5, 6]

L1(Pt) =
n∑

i=1

n∑

j=i+1

IG∗(Xi → Xj)(1 − Pt(Xi → Xj))

+ IG∗(Xi ← Xj)(1− Pt(Xi ← Xj)) (5)

+ IG∗(Xi ≁ Xj)(1 − Pt(Xi ≁ Xj)),

wherePt(·) = P (·|D1:t) is the posterior marginal prob-
ability of an edge given data points up to indext, and
IG∗(c) is the indicatior function which takes value 1 ifc is
present in the true structureG∗ and 0 otherwise. We also
used the normal Euclidean distance between edge poste-
rior probabilities as a measure of convergence towards the
”true” posterior distribution.

Each trial was initiated by taking a set of observations
as initial data and, using this data, by running two MCMC
chains in parallel for a long initial burn-in period. After
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Figure 2. Euclidean distance between edge posterior prob-
abilities calculated from the ”true” posterior distribution
and either active or non-active learning methods when us-
ing the Sachs dataset. Number of measurements are in
addition to the initial 40 observations. Initial burn-in was
2 · 105, between-measurement burn-in was 5000, graph
sample size 5000, and sampled observations 300. Results
averaged from four different runs.

this, samples were taken from both chains and the con-
vergence of the chains was checked by comparing dis-
tributions of edge posterior probabilities calculated from
both samples. When the distributions were similar, either
sample was used as the initial sample for both active and
non-active learners.

The active learning method proceeds by making at each
step the measurement (intervention or observation) sug-
gested by the active learning algorithm based on the sam-
pled graphs, available measurements, sampled observa-
tions, and data collected so far. After each new measure-
ment the chain is run for a between-measurement burn-in
period and a new sample of graphs is taken. The non-
active learning proceeds in the exact same way but instead
of using an algorithm to suggest the next measurement, it
just makes one randomly without replacement (i.e. takes
one of the available measurements from the dataset).

To approximate the true posterior distributions, nor-
mal batch-style MCMC chains were run for the whole
datasets and using very long burn-ins (8 ·105 for the Sachs
dataset and2 · 106 for the Halo dataset) and big sample
sizes (2 · 105 for the Sachs dataset and5 · 105 for the Halo
dataset).

Figure 1 shows the results when using the Halo dataset.
L1 edge errors for both non-active and active learning
methods were calculated by using as the reference struc-
ture the graph obtained by including only edges with pos-
terior probability over 0.5 in the ”true” posterior distribu-
tion. Parameter values (sample sizes etc.) used are shown
in the caption. Figure 2 shows the same using the Sachs
dataset, except now Euclidean distances to the edge poste-
rior probabilities of the ”true” posterior distribution were



calculated for non-active and active learners. In this ex-
periment we also took two similar measurements simulta-
neously instead of just one.

4. DISCUSSION

As can be deduced from Figures 1 and 2, the convergence
towards the final results is faster with active learning than
with non-active learning. Thus, using an active learning
method to guide experimentation can result in savings in
time and costs.

The performance of active learning methods has usu-
ally been assessed with simulated data. As shown here,
the methods do not perform as convincingly with real data,
due to possibly existing factors outside the targeted sub-
system and the real systems containing cyclic regulatory
relationships. Thus, it would be one step closer to reality
if, e.g., simulated data from systems with hidden variables
were used when comparing the methods.

Looking at the sequence of actions suggested by the
active learning algorithm tells us what is probably intu-
itively clear: The most beneficial way is to mostly make
interventional measurements rather than obtaining a lot of
observational data. In the beginning of the investigations,
however, it pays off to acquire (usually less costly) obser-
vations in order to get a solid basis for deciding which in-
terventions to make. Even though part of the better perfor-
mance of active learning over non-active can be explained
by the fact that active learning suggests mostly interven-
tions in the beginning while non-active learning samples
uniformly from the set of interventional and observational
measurements, the active learning should still (in the long
run) overperform non-active due to choosing the order in
which to make the interventions. This was also validated
using simulated data (results not shown).

In order to be able to tell how many experiments to
perform and when making more experiments produces no
more benefit, a stopping criterion should be developed. A
simple heuristic could be checking for the changes in pos-
terior distribution between measurements and if there is
no trend or bigger jumps in change, then it can be con-
cluded at that point that more measurements tell us noth-
ing new.

An alternative method of active learning by Pournara
[4] approaches the problem by considering how to split
the equivalence classes most efficiently. Although this is
much faster than Murphy’s method [5], the latter can per-
haps be deemed to be more Bayesian, since it takes into
account the distributions of generating observations. It
is also not restricted to splitting equivalence classes but
aims to minimize the conditional entropy of the posterior
(or any other utility function). This reason, in particular,
makes this method more general and precise by allowing
it to, for example, suggest particular interventions several
times if needed, instead of only suggesting the node with
which to intervene without saying anything about how
many measurements to take. However, because Murphy’s
method is computationally demanding and since sampling
can affect the reliability/precision of the method, using the

equivalence class based method becomes more attractive
after aboutn > 12.

The active learning methods could also be developed
towards better realistic applicability by making the cost
of actions uneven and especially making the observations
cheaper than interventions. The methods should also take
into account the possibility of imperfect interventions. The
idea of extending the methods to being able to suggest
measurements from multiple different sources in an active
learning fashion (for example by encoding them in priors)
is also worth exploring.
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ABSTRACT

Many diseases are caused by hereditary mutations. So far,
most of the identified mutations affect the coded protein
sequence. However, an increasing number of the iden-
tified disease-related mutations occur in gene regulatory
sequences. These mutations pose a threat to influence the
mechanism by which a cell regulates the transcription of
its genes. Here we have studied the effect of mutations
on transcription factor binding affinity computationally.
We have compared our results with experimentally veri-
fied cases where a mutation in the gene regulatory region
either creates a new transcription factor binding site or
deletes a previously existing one. We have also investi-
gated the statistical properties of the changes on transcrip-
tion factor binding affinity according to mutation type. Al-
though accurate binding site prediction is difficult in gen-
eral, our results demonstrate that computational analysis
can provide valuable information about the effect of mu-
tations on transcription factor binding sites. The analysis
results also give a useful test set for the in vitro studies of
regulatory mutation effects.

1. INTRODUCTION

Millions of single nucleotide polymorphisms (SNPs) are
identified in the human genome. The majority of these
SNPs are neutral but some of them are linked to hereditary
diseases. Most of these disease-causing mutations alter
the protein sequence, but a set of mutations are identified
to occur in gene regulatory sequences. These mutations
may cause a significant change in individuals phenotype
by increasing or decreasing the gene expression levels.
Some examples of this have been verified experimentally.
The expression level of the gene for a 91-kD glycoprotein
component of the phagocyte oxidase (gp91-phox) are de-
creased because of promoter region mutations that are are
associated with X-linked chronic granulomatous disease
[1]. Moreover, with Alzheimer disease patients, abnormal
high expression levels of the amyloid precursor protein
(APP) were measured in vitro when studying three point
mutations in the APP promoter region [2].

Although all the mechanisms of gene expression reg-
ulation are not known, the mutations in the promoter re-
gions may cause wrong transcription factor (TF) bind-
ing and this may in turn have effect on transcription lev-

els. For instance, it has been shown experimentally that
the point mutation T→C at 77 nucleotides upstream of
the transcription starting site (TSS) of the δ-globin gene
(HBG) changes the binding affinity of the TF GATA-1 and
this also alters the expression levels of the gene. This mu-
tation is associated with a hereditary disease δ-thalassemia
[3]. Another example is described in [4] where a point
mutation in 292 nucleotides upstream of the TSS of the
reticulocyte-type 15-lipoxygenase-1 (ALOX15) gene cau-
ses a new transcription factor binding site (TFBS) for the
TF SPI1. This again causes three-fold expression levels
compared with wild type gene expression. ALOX15 has
a role in the development of asthma and some other dis-
eases.

Mutation effect on TF binding has been studied com-
putationally in [5], where authors have used the change of
a score computed based on position specific scoring ma-
trixes (PSSMs) to infer if the binding of some TF changes.
This can be problematic since a single nucleotide change
usually causes a very small change in score and one can-
not directly say that whether this change of score is signif-
icant or not. This fact was found when they compared the
scores of mutations that are known to affect TF binding
with the scores of background substitutions [5].

In this paper, we use a similar approach as in [5] to
analyze the regulatory mutations and how they affect the
TF binding. However, we use the p-values to compare the
wildtype and mutated cases and to get the results of dif-
ferent genes and TFs comparable. We also study if some
type of mutation is more significant than the others. This
is because the DNA bending ability is known to be dif-
ferent for separate dinucleotide steps [6], [7]. Further, it
has been found that contacts between TFs and purines are
especially important and because the bending of DNA has
an effect on TF binding [8], [9], [10].

2. METHODS

The mutations used in this study were the regulatory mu-
tations from Human Gene Mutation Database (HGMD)
[11]. The regulatory mutations dataset was filtered to con-
tain only those mutations that occur upstream from tran-
scription or translation starting sites. Altogether we used
474 mutations in 256 genes.

PSSMs are a widely used in predicting TFBSs and we



apply them in our analysis as well [12], [13]. PSSMs
were collected from Transfac (Release 10.3) [14] and Jas-
par [15],[16]. Only those matrixes that have been built (at
least partially) using human sequences were used. After
this selection, we had 496 matrixes for 343 different TFs.

The score for TF binding to the DNA sequence xn
1 was

computed by

S(xn
1 ) =

PTF (xn
1 )

Pbg(xn
1 )

, (1)

where PTF (xn
1 ) is the probability computed by PSSM

and Pbg(xn
1 ) is the background probability. We added

a small pseudo count (0.005) to all elements in PSSM
to prevent zero probabilities. As a background model,
we used a third order Markov model whose parameters
were computed from the promoter sequences of all hu-
man genes. As a promoter sequence, we considered com-
monly used 5000 bases upstream from the start of the first
(according to 5’ end) annotated mRNA sequence of the
gene. However, promoter sequences were not allowed to
overlap. The promoter sequences we used were collected
from annotated sequence files (gbk-files) of human chro-
mosomes. These files were downloaded from ftp-site of
National Center for Biotechnology Information.

We computed the scores for the wildtype and the mu-
tated sequences of our regulatory mutations dataset. Since
location of mutation in putative binding sites is not known,
we computed the scores for all locations within PSSM. In
view of the fact that the distributions were very different
for each PSSM, we did not compare the scores but com-
puted the p-values for each mutation. To get the reference
distribution for the p-value estimation, the scores were
computed for each position of each promoter sequence.

Nucleotides can be divided in purines (denoted by R,
consists of bases A and G) and pyrimidines (denoted by Y,
bases C and T). By these classifications the dinucleotides
can be divided into four classes, RR, YY, YR and RY. Fur-
ther, for single point mutation the mutations can be di-
vided into 8 groups whether the mutation is in the first
or second nucleotide. We divided mutations into these
classes, so that each mutation occurred both in the first
and in the second nucleotide. Each mutation class was
studied separately.

We made a literature search for known mutations af-
fecting TF binding. We collected 6 experimentally proven
mutations from articles and rSNP_DB [17]. These muta-
tions were used to set a threshold for a relevant change in
binding affinity.

3. RESULTS

We evaluated the effect of the experimentally verified mu-
tations on TF binding by PSSM scores. The list of mu-
tations and their p-values are at Table 1. All mutations
showed a big change in p-value (over 0.2) between the
wildtype and mutated sequence. However, the p-values of
the sequence which has stronger affinity to TF were quite
high in some cases i.e. the binding site was quite not sta-
tistically significant. Nevertheless, even weaker binding
sites can be important, since it has been recently shown
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Figure 1. Distributions of the p-value changes. a) All
changes. b) Only changes that exceeded the thresholds.

that models which include weak binding sites predict the
expression patterns better than those models from which
the weak binding sites are excluded [21].

For the experimentally verified mutations, big p-value
changes are found for several PSSMs of a single TF. For
example for the mutation in hemoglobin gamma G(HBG2)
promoter, the p-values corresponding to 4 out of 7 PSSMs
for TF SP1 showed a difference in binding affinity. How-
ever, one of the matrixes showed the change in two dif-
ferent matrix positions, which suggests that all of the ma-
trixes are not very specific to the binding site.

We computed the change in p-value for each muta-
tion (the wildtype sequence − the mutated sequence) for
each TF. This p-value change was considered as a score
to measure the change in TF’s affinity to bind. The distri-
bution of changes are shown in Figure 1a). Based on the
experimentally verified cases we considered the change
to be relevant if the p-value change (absolute value) was
over 0.3 or the change was over 0.2 and p-value of either
the wildtype or the mutated sequence was under 0.3. Ap-
proximately 11% of changes exceeded these boundaries.
The set of experimentally verified mutations is relatively
small and that prevents us from inferring more conserva-
tive thresholds without loosing too many verified cases.
Current knowledge does not allow us to discriminate true
and false changes more carefully (see e.g.[5]). This choice
of thresholds, however, results in a set of predicted bind-
ing changes that is enriched for true binding affinity chan-
ges. Consequently, despite some false positives, our anal-
ysis results provide insights into true mutation effects. Our
analysis provides a list of testable hypothesis, ordered ac-
cording to the significance of mutation effect, that can be
readily tested in laboratory to verify the real mutation ef-
fect in vitro. Besides, if a particular TF is known to reg-
ulate some gene and our analysis provides a big p-value
change for the affinity of that TF due to mutation, this
provides a strong evidence for the mutation effect and this
should be taken into account when studying the disease



Table 1. Experimentally verified mutations and their effect on TF binding. p-values are presented only for those PSSMs
that show relevant changes. wt=wildtype, ∆p-value=(p-value of wt) − (p-value of mutated sequence), mutation position
is relative to TSS, MW=matrix width, POM= mutation position on matrix

gene muta- mutation TF MW POM effect on ∆p- p-value disease refe-
symbol tion position binding value of wt rence
ALOX A→G -292 SPI1 6 2 increase 0.356 0.592 (anti)inflammatory effects [4]
HBD T→C -77 GATA1 13 12 decrease -0.386 0.553 δ-thalassemia [3]
HBG2 C→G -202 SP1 10 4 increase 0.274 0.540 hereditary persistence [18]

of fetal hemoglobin

HBG2 C→G -202 SP1 10 5 increase 0.402 0.702 " [18]
HBG2 C→G -202 SP1 13 6 increase 0.658 0.861 " [18]
HBG2 C→G -202 SP1 10 4 increase 0.373 0.653 " [18]
HBG2 C→G -202 SP1 10 4 increase 0.206 0.420 " [18]
PROC T→C -14 HNF-1 15 7 decrease -0.216 0.265 protein C deficiency [19]
UROS C→A -90 CP2 18 13 decrease -0.207 0.143 congenital erythro- [20]

poietic porphyria

UROS C→A -90 CP2 11 11 decrease -0.274 0.164 " [20]
UROS T→C -70 GATA1 14 8 decrease -0.317 0.085 " [20]
UROS T→C -70 GATA1 13 7 decrease -0.206 0.038 " [20]
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Figure 2. Distributions of the p-value changes in three
different dinucleotide mutation types. a) YY→YY b)
RR→RY c) YR→YR, Y=pyrimidine, R=purine

mechanisms on molecular level.
The distribution of the p-value changes of the relevant

dataset can be seen in Figure 1b). It can be seen that the
left side of the bimodal distribution has somewhat larger
area than the right side i.e. the mutations cause more often
the loss of TF binding affinity than create a new TFBS.

We computed the distributions of the p-value changes
for each mutation type (16 dinucleotide classes). The dis-
tributions for different classes varied remarkably. In the
Figure 2 is the distribution of the p-value changes in three
different cases where mutation is in the second nucleotide.
In all of the three plots there is also the distribution of the
all p-value changes that exceeded the thresholds, as a ref-

erence distribution. It can be inferred based on the plots
that the mutation type affects the binding affinity change
differently. For mutations YY→YY (Figure 2a), the prob-
ability of formation a new TFBS is as probable as a disrup-
tion of an old binding site. This was also the case for mu-
tation type RR→RR when mutation occurred in the sec-
ond nucleotide and for RY→YY, RY→RY, YR→YR and
YY→YY, if the mutation was in the first nucleotide. For
mutations RR→RY and YY→YR, RR→YR and YY→RY
the mutation more often caused a new binding site than
disrupted an existing one (Figure 2b)). The rest of the mu-
tations caused more likely the removal of an old binding
site than making a new one as can be seen in an example in
Figure 2c). The results suggest that purine-pyrimidine and
pyrimidine-purine dinucleotides are in important roles in
TF binding. It has been previously shown that pyrimidine-
purine steps are flexible allowing the DNA strands to form
sharp kinks [6]. This is important for TF which usually
bends the DNA or binds to a bent DNA. Nevertheless,
such flexibility is not shown to occur with all purine-py-
rimidine steps. However, an RY step GC can also form
more conformations than for example the AA and TT steps
[7].

4. CONCLUSION

We have shown that regulatory mutations can change the
TF binding affinity remarkably. This does not originate
only from a single nucleotide mutation but also the type
the surrounding nucleotides.

PSSMs are a widely used method to model TF bind-
ing. A big problem of PSSMs is, however, the number of
false positives in predicting TFBSs. As our studies with
experimentally verified TFBSs and the mutations affect-
ing them showed, the PSSM modeling does not assign
an extremely high p-values to TFBSs. This can be be-
cause of PSSM matrixes which does not have any corre-



lation between different bases. Our studies have shown
that the dinucleotides in TFBSs affect the binding signif-
icantly. This is most likely caused by the ability of DNA
strands to bend. Since different DNA-binding domains of
TFs have different binding mechanisms and demands for
DNA bending it could be more appropriate to study each
TF family separately.

In the future it is important to incorporate additional
knowledge into TF binding prediction. Previously, mod-
els that combine the nucleosome positions or Chromatin
ImmunoPrecipitation on chip (ChIP-chip) data are shown
to predict TF binding better than pure PSSMs [22], [23].
Other additional data sources can be also combined to
models, for example DNase hypersensitive sites or con-
servation data. It should be also taken into account that
in the cell, there is not just a single TF type present at a
certain time, but the situation can be thought to be a com-
petition between different TFs and other molecules to bind
the DNA strand [21]. Thus, the TF binding differs in dif-
ferent states of the cell depending on the TFs present and
their concentrations.
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ABSTRACT

The SBML ODE Solver Library (SOSlib) [1] is a C/C++
programming library for the symbolic and numerical anal-
ysis of ODE systems derived from biochemical reaction
networks encoded in the Systems Biology Markup Lan-
guage (SBML) [2]. It is written in ANSI/ISO C and dis-
tributed under the terms of the GNU Lesser General Pub-
lic License (LGPL).

Recent efforts in the development of SOSlib have been
focused on extensions that allow one to perform not only
the forward analysisbut also theinverse analysisof bio-
chemical models. In particular, SOSlib has been extended
with forward and adjoint capabilities to enable the iden-
tification of model parameters and initial conditions from
(noisy) experimental data, measured either continuously
or at discrete time points. Via on-the-fly compilation of
right-hand-side functions and Jacobian routines, a signifi-
cant speed-up in numerical integration has been achieved.

1. SIMULATION AND SENSITIVITY ANALYSES

We denote the underlying ODE system and initial condi-
tion as, respectively,

ẋ(t) = f(x, α),
x(0) = x0, (1)

wherex ∈ R
n is the state variable,α ∈ R

m the parame-
ters andf(x, α) : R

n+m → R
n the parameter-dependent

vector field. To allow for the sensitivity analysis of (1),
we assume the differentiability off(x, α) with respect to
bothx andα.

In studying many biological models, one would like to
not only obtain the solutionx(t) for a given set of nom-
inal parameter values but also to examine its parametric
dependence. This can be computationally studied by solv-
ing the forward sensitivty equations as discussed in Sec-
tion 1.1. For applications such as parameter identification
and optimization of biological systems, one is interested
in computing the parametric dependence not for the whole
time-series but only for certainfunctionalsthat map solu-
tions to real numbers. For these applications, the adjoint

approach to sensitivity analysis as discussed in Section 1.2
is the preferred method in terms of the computational ef-
ficiency.

1.1. Forward Sensitivity Analysis

The simulation of the ODE system (1) can be thought of
as applying an operatorF which takes as input the initial
condition and parameter values, mapping it to the ODE
solution. That is, we haveF : (x0, α) ∈ R

n+m →
x(t) ∈ C1([0, T ],Rn), whereC1 denotes the space of
continuously differentiable functions. One can then con-
sider differentiations of the operatorF either at an algo-
rithmic level, or at a mathematical level. For the former,
one would symbolically “differentiate” the steps taken in
the chosen numerical algorithm in going from the input
data,x0, α, to theN -point numerical approximation over
the requested time interval,{x(t0), · · · , x(tN )}. Such an
approach is known asautomatic differentiation(AD) [3].

In our work, we take the forward sensitivity equations
approach whereby one formally differentiates the operator
F with respect to the initial concentrations,x0, and the pa-
rameter values,α. In this case, the differential equations
are first derived and then arbitrary numerical methods can
be applied to solve the resulting system of equations. This
is the approach that we have implemented in SOSlib and
discussed in Sections 1.1.1 and 1.1.2. In Section 1.1.3,
we discuss an application of the forward sensitivity solver,
namely for computing the Fisher Information Matrix from
which a lower-bound for the standard deviation in the es-
timated parameters can be derived [4].

1.1.1. Initial condition sensitivity

First, we consider variations in the solution arising from
variations in the initial conditions. One supposes that the
parametersα are fixed, and differentiates the original ODE
system with respect to the initial conditions, which is then
reflected in the initialization for the sensitivity variables.
If we denotesi as the set of sensitivity variables (of di-
mensionn) corresponding to the perturbation of the sys-
tem (1) with respect to theith component ofx0, then one
obtains the following equations for then × n sensitivity

http://www.tbi.univie.ac.at/~raim/odeSolver/
http://sbml.org/index.php/Main_Page


system{s1(t), · · · , sn(t)}:

ṡi(t) = fx(x(t), α)si(t),
(si)j(0) = δij ,

where the notation(si)j denotes thej-th component ofsi,
fx is the Jacobian matrix andδij is the Kronecker delta
defined asδii = 1 andδij = 0 otherwise (for1 ≤ i, j ≤
n).

1.1.2. Parameter sensitivity

Next, we consider variations in the solution arising from
variation in the parameters. Since no perturbation in the
initial state is introduced, it is easy to see that the para-
metric sensitivity variables have the homogeneous initial
condition. One thus obtains the followingn × m linear
ODE system for{s1(t), · · · , sm(t)}:

ṡi(t) = fx(x(t), α)si(t) + fαi
(x(t), α),

si(0) = 0.

Using the symbolic differentiation capability of SOSlib,
the expressionsfx, fαi

are computed and passed to be
called from the CVODES solver.

1.1.3. Application: Fisher Information Matrix

Let us consider the problem of estimatingm parameters
from time-course data. For each data-pointti, let us de-
noteS(ti) as then×m matrix of sensitivity solutions:

S(ti) =




s11(ti) · · · sm

1 (ti)
...

. . .
...

s1n(ti) · · · sm
n (ti)



 .

If we denote the covariance matrix of (discrete) measure-
ment errors asV , then the Fisher Information Matrix (F )
is given by the following formula:

F =
N∑

ti=1

S(ti)
TV −1S(ti).

Thus, using the forward sensitivity solver,F can be com-
puted by simply summing matrix products over experi-
mental time points. For deriving parameter confidence in-
tervals fromF , refer to [4].

1.2. Adjoint Sensitivity Analysis

Given a functional of interest,J : C1([0, T ],Rn) → R,
we consider the following Lagrangian,

L(x, ψ) = J(x) + 〈ψ, ẋ− f(x, α)〉L2
,

whereψ(t) ∈ C∗([0, T ],Rn) is the associated adjoint
variable (of bounded variation) in the dual space of con-
tinuous functions, serving as Lagrange multiplier to the
ODE constrainṫx − f(x, α) = 0. Integration by parts of
the above gives

L(x, ψ) = J(x)+ 〈−ψ̇, x〉L2
− 〈ψ, f(x, α)〉L2

+ψ(T )x(T ) − ψ(0)x(0). (2)

The equations for the adjoint variable are obtained by con-
sidering the variational equationsδL(x, ψ; δx) = 0, for
all variations:δx ∈ C1([0, T ],Rn), δx(0) = 0. In Sec-
tions 1.2.1 and 1.2.2, we show the adjoint ODE systems
for cases where the objective corresponds to either contin-
uously or discretely measured experimental data respec-
tively. For a discussion on the adjoint equations and its
numerical solution in the general context of differential-
algebraic equations (DAEs), refer to [5].

After the adjoint system is solved, the objective gradi-
ents with respect to the parameters and initial conditions
are simply obtained as (refer to eqn. (2), noting the im-
plicit dependency ofx(t) onx0 andα):

dJ(x(α, x0))

dαj

=
∂L

∂αj

= −〈ψ, fαj
(x, α)〉L2

dJ(x(α, x0))

d(x0)j

=
∂L

∂(x0)j

= −ψ(0)j . (3)

We remark that the adjoint approach to computing the ob-
jective gradient is especially attractive for biological sys-
tems of high parameter dimensions. In particular, the di-
mension of the adjoint variable is the same as that of the
state, independent of the number of parameters. After
this adjoint system has been numerically integrated, equa-
tion (3) shows that gradients of the given objective can
then be computed by simply taking inner products over
the time domain, or evaluating the adjoint variable at time
t = 0. Thus, gradient calculations can be done essentially
at constant time, independent of the number of parameters
present in the model.

1.2.1. Continuous data

Without the loss of generality but for the simplicity of
presentation, in what follows we assume a specific form
of the objective function. Namely, we consider parameter
identification applications where one tries to minimize ob-
jectives measuring the data mis-match. That is, if no reg-
ularization is used, such an objective may take the form:

Jcont(x) =
1

2

∫ T

0

(x(t) − xdata(t))2dt. (4)

wherexdata(t) ∈ C1([0, T ],Rn) is some given experi-
mental time-series.
From the Lagrangian expression in (2), settingδL(x, ψ; δx) =
0 gives rise to the following terminal-value problem for
the adjoint variable,ψ(t):

ψ(T ) = 0,
ψ̇(t) = −fx(x(t), α)Tψ(t)

+(x(t) − xdata(t)). (5)

Once the expression for the objective has been provided
to SOSlib and the dataxdata(t) is read in, the system (5)
can again be numerically integrated (backwards in time)
using the adjoint solver provided by CVODES.



1.2.2. Discrete data

Here, we consider objectives of the following form:

Jdisc(x) =
1

2

N∑

k=1

(x(tk) − xdata(tk))2, (6)

consisting of the sum of the data mis-match over the (dis-
crete) time points,{t1, · · · , tN}. The objective (6) may
be rewritten as:

Jdisc(x) =
1

2

N∑

k=1

∫ T

0

δ(t− tk)(x(t) − xdata(t))2dt, (7)

whereδ(t − tk) is the delta distribution with the sifting
property that for all continuous functionsg(t),

∫
∞

−∞

g(t)δ(t− tk)dt = g(tk).

Now that the objective (1.2.2) is of the integral form, one
might attempt to write down the adjoint system analogous
to (5):

ψ(T ) = 0,
ψ̇(t) = −fx(x(t), α)Tψ(t)

+

N∑

i=k

δ(t− tk)(x(t) − xdata(tk)).

The above ODE system only has meaning in the sense of
distributions and no ODE solver can be applied directly
without taking special care at the data time points,{ti}.
Instead, one can solve it by treating it as a concatenation
of piecewise continuous trajectories. More specifically,
with the terminal condition beingψ(T ) = 0, we integrate
over time intervals in between the set of data time points
and introduce jumps at the times when data is given:

FOR : k = N,N − 1, · · · , 1
ψ̇(t) = −fx(x(t), α)Tψ(t), t ∈ [tk, tk+1)
ψ(t−k ) = ψ(t+k ) − (x(t) − xdata(tk)).

Thus, the adjoint profile can be computed by providing
start- and stop-time points{ti} to the CVODES adjoint
solver to integrate it piecewise and adding to the adjoint
variable in between the integration calls.

2. COMPILATION

For parameter identification and optimal control applica-
tions, the ODE and sensitivity solvers typically need to be
called many times. In order to study systems with high
dimensional parameter space within reasonable compute
time, it is important to be able to evaluate the right-hand-
side functions and Jacobians of the ODE systems effi-
ciently.

Motivated by a need to speed up the solvers, we have
implemented two different versions of on-the-fly compi-
lation of these functions. First, we take use of libSBMLs
abstract-syntax-tree representation of model equations to
directly construct machine code for all equations of the
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Figure 1. Adjoint solution profile for parameter estima-
tion: using continuous data

model. As this approach is highly platform-specific (cur-
rently, we provide 32 and 64 bit architecture machine code
for both Windows and Unix systems), SOSlib also allows
for the conversion from the vector-field and associated
functions to C source code and makes use of a preinstalled
C/C++ compiler (e.g.gcc). Both approaches result in
around an order of magnitude decrease in the compute
time for some test cases; see Section 3.2.

3. NUMERICAL DEMONSTRATIONS

Here, we consider parameter idenfication examples for-
mulated as finding the minimizer of the data mis-match.
In Section 3.1, we illustrate the difference in the adjoint
solution profiles using continuous and discrete data. In
Section 3.2, we show the objective convergence using an
interior-point optimization solver and demonstrate the speed-
up gained by model compilation.

3.1. Adjoint profiles

Here we examine adjoint solutions at the first step of the
parameter identification procedure. Figures 1 and 2 il-
lustrate the adjoint solution profiles corresponding to us-
ing continuous and discrete data, for a simple oscillatory
model of a signaling cascade taken from the BioModels
database1. In both cases, we use artificial data obtained
by simulating the model at its nominal parameters. In Fig-
ure 2, one can easily spot the jumps in the adjoint profiles
at the 10 data points. Despite this, one can observe some
similarity in the general shapes of the profiles given in Fig-
ures 1 and 2. In fact, as the number of (discretely) sampled
data points increases, one would expect the adjoint solu-
tions to converge in theL1 norm.

3.2. Convergence and speed

Here we consider the identification of 36 parameters in the
3-gene model as used in [6]. In particular, we use noise-
less, artificial data corresponding to the original parame-
ters and start the parameter identification procedure from

1http://www.ebi.ac.uk/biomodels/

http://www.ebi.ac.uk/compneur-srv/biomodels-main/publ-model.do?mid=BIOMD0000000010
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Figure 2. Adjoint solution profile for parameter estima-
tion: using discrete data

parameter values being an order of magnitude smaller than
the true ones. To carry out the minimization of the above
objective we employ IpOpt [7], an interior-point (local)
optimization algorithm. The values for the objective and
gradient are provided by the forward and adjoint solvers
of SOSlib, respectively.

The convergence in the objective is shown in Figure 3.
We observe a 6 orders of magnitude decrease in the ob-
jective over 500 optimization iterations using IpOpt [7].
Table 1 gives the number of function evaluation calls to
SOSlib as well as the CPU time taken in the numerical
integrations. We see that around 1200 forward ODE and
500 adjoint integrations were carried out in the optimiza-
tion process. The observed difference in the number of
objective calls between the compiled and non-compiled
results is due to small numerical discrepancies. If the
right-hand side and Jacobian functions are not compiled,
the time taken for these calculations take 21.54 seconds;
when these functions are compiled withgcc only 2.64
seconds are needed, thereby achieving nearly an order of
magnitude decrease in the computing time.

Table 1: IpOpt calls to SOSlib

No compilation gcc compilation
# obj. eval. 1222 1251
# grad. eval 500 500
CPU: SOSlib 21.54 sec. 2.64 sec.

4. CONCLUSIONS

We have demonstrated extensions to SOSlib that allow
one to perform inverse analyses of biological models ef-
ficiently. In combination with regularization methods [8],
these tools enable one to tackleill-posedparameter iden-
tification problems that arise in systems biology.
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ABSTRACT

The response of cells to contaminant stressors like nico-
tine is of great importance for human health. The focus
of the project is to model the way of the contaminant un-
til the entrance of the nucleus. Therefore, in the first step
the cell culture surrounded by the fluorescent contaminant
is imaged by a laser microscope. Filters and contour ex-
tracting algorithms are used to extract the cell geometry.
Finally the movement of the contaminant is modeled using
reaction-diffusion-equations and random-walk-processes.
The long term goal of the project is to understand the in-
fluence of contaminant molecules on biological cell func-
tions.

1. INTRODUCTION

Our first step is to model the motion of the contaminant
Benzo[a]pyrene BaP within the cytoplasm.
It is well known that a fraction of contaminants is able to
react with receptors (AhR) and the motion of larger par-
ticles like this complexes is slowed up compared to un-
bound contaminants. [1] Further, the flow of a receptor-
bounded complex is more directed towards the nucleus
of the cell than the molecules which are unbounded. [2]
So we model two kinds of motion: the normal diffusion
via Random-Walk-Process and the directed diffusion via
Random-Walk-Process with drift. [3]
It is assumed that there is an equilibrium of the bounded
and the unbounded fraction. This means that the associa-
tion and dissociation rates have to be modeled as well.
The reason of modeling the motion of contaminants is
that we need all parameters which describe the behaviour
of our substance BaP. In practice, you have the possi-
bility to accomplish FRAP experiments to get all these
parameters. [4, 5] At a later date we want to compare
our model-parameters with the calculated ones out of the
FRAP data. At that time we don’t have such data, so
we simulate FRAP experiments with different input val-
ues and analyse the results we get.

2. MATERIALS AND METHODS

We describe now the steps of modeling: motion of un-
bounded and bounded particles, association and dissocia-
tion rates at equilibrium and FRAP experiments.

2.1. Motion of unbounded Contaminants

The motion of a free particle is modeled by a Random-
Walk-Process.
Let the position of the particle at a given timet be(xt, yt).
The particle jumps within 1 timestep 1 or -1 unit in x-
direction and in y-direction. This yields 4 possible posi-
tions of the particle after 1 timestep:

(xt+1, yt+1) =






(xt − 1, yt − 1)

(xt − 1, yt + 1)

(xt + 1, yt − 1)

(xt + 1, yt + 1)

The probability of the incidence is the same for every
point.

P [(xt+1, yt+1) = (xt ± 1, yt ± 1)] =
1

4
(1)

2.2. Motion of bounded Contaminants

The motion of a bounded particle is modeled by a Random-
Walk-Process with drift. This means that the compound
have a preferred direction.
Let the preferred direction be a point(xDir , yDir) and the
position of the particle at a given timet be (xt, yt). The
possible positions of the compound are the same as in sec-
tion 2.1, the probabilities on the other hand are different.
A step in the preferred direction is more probable than
a step in the opposite direction. Let the probability of a
jump in preferred direction bep, p ≥ 1

2 . This yields the
probabilities of the 2 possible positions in x-direction:

P [xt+1 = xt + st] = p (2a)

P [xt+1 = xt − st] = 1 − p (2b)

whereas:

st = Sign[xDir − xt]

=






1 , xDir > xt

0 , xDir = xt

−1 , xDir < xt

The same equations apply to y-direction as well.

2.3. Association and Dissociation

Note, that compounds can unbind and free particles can
be bind.



Let Bt the fraction of bounded particles at timet andFt

the fraction of free particles at timet.
The rate of unbinding moleculeskoff per timestep de-
scribes this process of dissociation. On the other hand the
parameterkon, which specifies the rate of new bounded
molecules per timestep, characterises the process of asso-
ciation.
Now, we can calculate the fractions of the different parti-
cles at timet + 1 out of the fractions at the timet:

Bt+1 = Bt + kon · Ft − koff · Bt (3a)

Ft+1 = Ft − kon · Ft + koff · Bt (3b)

We assume an equilibrium of free and bounded particles
at initial timet = 0. The equilibrium situation yields:

Bt = const. ∀t ≥ 0 (4a)

Ft = const. ∀t ≥ 0 (4b)

Making use of the equations (4) equations (3) are simpli-
fied:

kon

koff

=
Bt

Ft

(5)

Futher, we assume that the sum of bounded and unbounded
fraction is 1. This yields:

Bt =
kon

kon + koff

(6a)

Ft =
koff

kon + koff

(6b)

The relationship between dissociation rate and mean bind-
ing timeBT is well known [4]:

koff =
1

BT
(7)

Equation (7) and equation (5) yields :

kon =
Bt

BT · (1 − Bt)
(8)

2.4. Simulation of FRAP experiments

As we show in the sections above, we only need a few in-
put parameters to simulate the motion of the contaminant
molecules.
First, to guarantee the equilibrium situation during the whole
simulation, we need

• the mean binding timeBT and the fraction of bounded
particlesBt or

• the association ratekon and the dissociation rate
koff

We choose the first possibility.
Second, we need a direction(xDir , yDir) and a proba-
bility p for the Random-Walk motion with drift. In the
case of modeling contaminants the preferred direction of
bounded particles is the position of nucleus. So we mod-
eled the nucleus as a circle with centre(xDir , yDir) and

radiusrDir .
In case of a particle enters the nucleus we modeled two
different kinds of behavior. We assume on the one hand
that only bounded particles can be captured by the nucleus
and on the other hand that all (bounded and free) particles
are captured by the nucleus.
As an application of the motion-model we simulate Fluo-
rescence Recovery After Photobleaching (FRAP) experi-
ments. FRAP is a method of the confocal laser scanning
microscopy (cLSM). You are able to assign parameters of
diffusion and binding by these experiments. The proceed-
ing of FRAP is to bleach fluorescent particles irreversible
within a bleaching spot. Afterwards you monitor the re-
covery of fluorescent molecules from the outer part of the
bleaching spot. They enter the bleaching spot by their mo-
tion.
So, we define the radius of a circular bleaching spotrSpot

and the centre of the spot(xSpot, ySpot) = (0, 0) as well
as the size of the monitored square areaa.
For simulation we initialize the model with the number of
tracked particlesSamples, the time steps of simulation
T imeSteps and the number of simulationsSimSteps we
used to create an average recovery.

3. RESULTS

3.1. Motion of unbounded und bounded Contaminants

The motion of unbounded contaminants is a diffusion pro-
cess. A track of on particle is shown in Figure 1(a). On the
other hand the motion of contaminants which are bounded
by another particle modeled as a diffusion with a drift as
you can see in Figure 1(b).

(a) free particle (b) bounded particle

(c) free and bounded particle

Figure 1. track of single particles



3.2. Association and Dissociation

The next step is to integrate the fact that unbounded con-
taminants can be bounded and the other way around. Now
the track is a combination of directed and undirected walk
as you can see in Figure 1(c).

3.3. Simulation of a FRAP experiment

The following simulations are set up with the same pa-
rameters unless otherwise noted (see Table 1).

Samples # of particles 20000
TimeSteps # of simulated time steps 2000
SimSteps # of Simulations for averaging 100
a length of square monitored area 50
rSpot radius of bleaching spot 5
xDir x-coord. of nucleus 15
yDir y-coord. of nucleus 15
rDir radius of nucleus 5
p prob. of jump to nucleus 0.55

Table 1. simulation parameters

First, we simulate a FRAP experiment with particles
which are unbounded, walk undirected and can not enter
the nucleus (see Figure 2(a)).

Second, we simulate several FRAP experiments of par-
ticles which are bounded and walk with a drift (see Figure
2(b)). We vary the probabilities of a jump into the direc-
tion of the nucleus. Note, particles that enter the nucleus
are captured in this case.
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Figure 2. FRAP simulations

Third, we simulate three different types of FRAP ex-
periments by varying the parameters of the probability of
a jump towards the preferred directionp, the mean time
of bindingBT and the bounded fractionBt. On the one
hand we assumed that only the bounded fraction can be
captured by the nucleus (Figure 3) and on the other hand
all particles can be capured by the nucleus (Figure 4).
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Figure 3. FRAP simulations (capture of bounded parti-
cles)
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Figure 4. FRAP simulations (capture of all particles)

4. DISCUSSION AND FUTURE WORK

The influences on the recovery of FRAP experiments of
directed particle movement and the possibility of particle
capture in cell membranes are rarely described in the lit-
erature. A standard figure found in the literature is Fig-
ure 2(a) which correspondends in our simulation to un-
bounded particle movement. The recovery converges to-
wards a non-zero value because no particle sink like cap-
turing by the nucleus is modeled. In contrast, particle cap-

ture by the cell nucleus causes a zero limit in the recovery
as displayed in Figure 2(b).
Further, the recovery is fastened and shifted to smaller val-
ues

1. by definition of a higher probability value for steps
towards the sink (Figure 3(a), 4(a))

2. by definition of a higher mean binding time (Figure
3(b), 4(b))

3. by definition of a higher fraction of bounded parti-
cles (Figure 3(c), 4(c))

In the future we plan to derive an analytical solution
for the FRAP recovery to change this qualitive conclu-
sions into quantitive. This solution will allow to infer all
parameters which describe the diffusion and binding pro-
cesses from real FRAP data. Therefor different diffusion
coefficients have to be modeled in a next step.
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ABSTRACT

Neuronal phosphorylation-dephosphorylation cycles have
been shown to be important in the induction and mainte-
nance of activity-dependent plastic modifications. In these
cycles, protein kinases add phosphates to proteins and, on
the other hand, phosphatases remove phosphates. Long-
lasting, activity-dependent plastic modifications may pro-
vide the basis for cellular-level memory and learning. In
this study, two different systems describing phosphoryla-
tion and dephosphorylation are studied and their behavior
is simulated with deterministic and stochastic methods.
The results of this study support the previously reported
new principle for information storage in neurons where a
single neuronal process controls both induction and main-
tenance of activity-dependent plastic modifications.

1. INTRODUCTION

Neurons respond to variations in their vicinity by mod-
ifying their synaptic and intrinsic membrane properties.
Long-lasting and activity-dependent plastic modifications
may provide the basis for cellular-level memory and learn-
ing. Neuronal phosphorylation-dephosphorylation cycles
(protein kinase and phosphatase cycles) have been shown
to be important in the induction and maintenance of the
activity-dependent plastic modifications (see for a review
[1, 2]). In this study, the behavior of two systems de-
scribing phosphorylation-dephosphorylation cycles [1, 2]
are studied by the ordinary differential equation (ODE)
model, the Gillespie stochastic simulation algorithm (SSA)
[3, 4], and the stochastic differential equation (SDE) model,
where stochasticity is incorporated into rate constants [5,
6, 7]. With these simple models that describe the mini-
mal conditions required to generate plasticity, it is shown
that phosphorylation-dephosphorylation cycles may play
an important role in information storage.

2. SYSTEMS AND METHODS

In this study, two alternative systems based on the modu-
lation of α-amino-3-hydroxy-5-methylisoxazole-4-propi-
onic acid receptor (AMPA-R) activity through phosphor-
ylation-dephosphorylation cycles are considered (System
A and System B) and simulated with different methods.

Ca R
K

P
R*

Figure 1. Graphical design model for System A, which
was originally published in [2].

2.1. System A

A graphical design model for calcium (Ca2+)-controlled
phosphorylation-dephosphorylation cycle of, for example,
AMPA-R [2] is given in Figure 1. The reactions, reaction
rates, rate constants, and initial values and description for
each variable are given in Tables 1 – 2 (Model A). Rate
constants are based on experimental data [2].

2.2. System B

A graphical design model for Ca2+-controlled AMPA-R
phosphorylation-dephosphorylation cycle [1] is given in
Figure 2. The reactions, reaction rates, rate constants, and
initial values and description for each variable are given
in Tables 3 – 4 (Model B). Rate constants are based on ex-
perimental data or given a sophisticated guess [1]. Model
B consists of six parts: 1) calmodulin (CaM, marked as S)
activation, 2) Ca2+/calmodulin-dependent protein kinase
II (CaMKII, marked as K) activation, 3) calcineurin (CaN)
or protein phosphatase 2B (PP2B) (marked as N) activa-
tion, 4) dopamine- and cyclic adenosine monophosphate
(cAMP) -regulated phosphoprotein (DARPP-32) or I-1 in-
hibitor (I-1) (marked as D) activation, 5) protein phos-
phatase 1 (PP1, marked as P∗) inactivation, and 6) AMPA-
R (marked as R) activation.

2.3. Deterministic differential equation model

The ODE model can be presented as

dX = Svdt, (1)

whereX describes the variables (concentrations for chem-
ical species) andS is the stoichiometric matrix. The func-
tion v describes the reaction rates and depends on the rate
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Figure 2. Graphical design model for System B, which was originally published in [1].

Table 1. Reversible reactions, reaction rates, and rate constants in Model A [2].

Reaction Reaction rates Rate constants

R
K−⇀↽−
P

R∗ v1 = K[R] v2 = P [R∗] K = 0.31[Ca2+]4

(6×10−6)4+[Ca2+]4
1
s

P = 0.31[Ca2+]4

(3×10−6)4+[Ca2+]4
1
s

Table 2. Descriptions and different initial concentrations for each variable in Model A [2]. The total number for R+ R∗

is 100 in volume6.5450× 10−17 l. Different concentrations for Ca2+ are used in simulations.

Chemical species Description Initial concentrations

R Dephosphorylated molecule [9, 7, 5, 3, 1]× 2.5371× 10−7 M
R∗ Phosphorylated molecule [1, 3, 5, 7, 9]× 2.5371× 10−7 M

Table 3. Reversible reactions, reaction rates, and rate constants in Model B [1].

Reaction Reaction rates Rate constants

Ca2+ + S
k1−⇀↽−
k2

S∗ v1 = k1[Ca2+][S] v2 = k2[S∗] k1 = 106 1
Ms

k2 = 7 1
s

S∗ + K
k3−⇀↽−
k4

K’ v3 = k3[S∗][K] v4 = k4[K’ ] k3 = 1.5× 108 1
Ms

k4 = 2.17 1
s

K’
k5−−−−⇀↽−−−−

k6×P∗
K∗ v5 = k5[K’ ] v6 = k6[K∗][P∗] k5 = 0.50 1

s
k6 = 3× 104 1

Ms

S∗ + N
k7−⇀↽−
k8

N∗ v7 = k7[S∗][N] v8 = k8[N∗] k7 = 1.67× 109 1
Ms

k8 = 10 1
s

D
k9×PKA∗−−−−−−⇀↽−−−−−−
k10×N∗

D∗ v9 = k9[D][PKA∗] v10 = k10[D∗][N∗] k9[PKA∗] = 0.002 1
s

k10 = 2× 109 1
Ms

D∗ + P∗
k11−−⇀↽−−
k12

D∗P v11 = k11[D∗][P∗] v12 = k12[D∗P] k11 = 3× 107 1
Ms

k12 = 0.03 1
s

R
k13×PKA∗−−−−−−−⇀↽−−−−−−−
k14(P∗+N∗)

R’ v13 = k13[R][PKA∗] v14 = k14[R’]([P∗] + [N∗]) k13[PKA∗] = 0.1 1
s

k14 = 106 1
Ms

R’
k15×(K’+K∗)−−−−−−−−⇀↽−−−−−−−−

k16×P∗
R∗ v15 = k15[R’]([K’ ] + [K∗]) v16 = k16[R∗][P∗] k15 = 107 1

Ms
k16 = 105 1

Ms

constants, variables, and model inputs (concentrations for
second messengers).

2.4. Itô stochastic differential equation model

In order to obtain SDE models, stochasticity is incorpo-
rated into ODE models [5, 6]. In this study, stochasticity
is incorporated into rate constants. The Itô SDE is

dX = Svdt + SBVrcdW, (2)

whereVrc has reaction ratesv without the rate constants
(rc) as its diagonal elements and other elements are zero
[5, 6]. The parameter values in the diagonal matrixB
can be estimated using the responses of the SSA as the
measurement data [8].W is the Brownian motion.

2.5. Gillespie stochastic simulation algorithm

In the SSA, the length of the time step and which reaction
happens during that time step are randomly selected based



Table 4. Descriptions and initial concentrations for each variable in Model B calculated by setting the concentration for
Ca2+ to 10−7 M and using the steady state model given in [1]. The initial concentrations for R, R’, and R∗ are modified
to be similar to Model A. The total number for R+ R’ + R∗ is 100 in volume6.5450× 10−17 l. Different concentrations
for Ca2+ are used in simulations. Rate constants times the concentration for protein kinase A (PKA) are given in Table 3.

Chemical species Description Initial concentrations

S Calmodulin (CaM) 2.9997× 10−5 M
S∗ Ca2+/calmodulin complex (CaMCa4) 1.2494× 10−12 M
K Ca2+/calmodulin-dependent protein kinase II (CaMKII) 4.9741× 10−7 M
K’ Bound CaMKII 4.2957× 10−11 M
K∗ Trapped CaMKII, where threonine Th286 is phosphorylated 2.5461× 10−9 M
N Protein phosphatase 2B (PP2B), also known as calcineurin (CaN) 9.9979× 10−7 M
N∗ Active PP2B 2.0860× 10−10 M
D Dopamine- and cAMP-regulated phosphoprotein (DARPP-32) or I-1 inhibitor (I-1)1.2751× 10−6 M
D∗ Phosphorylated DARPP-32 or I-1 6.1126× 10−9 M
P∗ Protein phosphatase 1 (PP1) 2.8119× 10−7 M
D∗P DARPP-32/PP1 complex or I-1/PP1 complex 1.7188× 10−6 M
R α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPA-R) [9, 7, 5, 3, 1] ×

2.5371× 10−7 M
R’ Naive AMPA-R, where only serine S845 is phosphorylated [0.5, 1.5, 2.5, 3.5, 4.5]×

2.5371× 10−7 M
R∗ Completely phosphorylated AMPA-R [0.5, 1.5, 2.5, 3.5, 4.5]×

2.5371× 10−7 M

on the propensity functions (reaction rates), and then the
system and time are updated and simulation proceeds [3,
4]. In this study, the direct method is used [3].

3. RESULTS

With Model A and B, the effects of Ca2+ changes are
studied. The concentration for Ca2+ is kept constant in
each simulation. The numbers for R+ R∗ in Model A and
R + R’ + R∗ in Model B are equal to100 in a spine hav-
ing volume4

3π(0.25×10−6)3×1000 l = 6.5450×10−17

l, giving 2.5371× 10−6 M. The active fraction (f ) of the
receptor is calculated by R∗/(R + R∗) in Model A and (R’
+ R∗)/(R + R’ + R∗) in Model B.

Figure 3 shows that Model A and Model B behave
differently when the concentration for Ca2+ and the ini-
tial active fraction are changed. Both deterministic and
stochastic methods need to be used as small volume is in-
volved [7]. Simulation results of the SDE are not shown
since the SSA is computationally faster than the SDE. In
Model A, the active fraction converges to a steady state
after several months when the concentration for Ca2+ is
10−7 M. When the concentration for Ca2+ increases, the
active fraction converges faster to a higher steady state
value. In the case of3 × 10−6 M and6 × 10−6 M, it
converges after30 s and 10 s, respectively. Simulation
results of Model B do not depend much on different con-
centrations for Ca2+. The active fraction converges to a
steady state after150 s in all cases. The mean of values for
steady state active fraction (f∞) are given in Table 5.f∞
is calculated for each deterministic simulation and then
the mean off∞ is calculated for each subfigure in Figure
3. In Model A, the mean values change with different con-
centration for Ca2+, but, on the other hand, in Model B,
the values are about the same. The sample mean of1000

Table 5. Mean values forf∞ calculated for deterministic
simulations presented in Figure 3.

Ca2+ Model A Model B

10−7 M 0.0651 0.4659
3× 10−6 M 0.1049 0.4898
6× 10−6 M 0.3461 0.4266

simulations with the SSA and the SDE are the same but
there are small differences in the beginning of the stochas-
tic simulations compared to the deterministic results. Re-
sults mean that Model A is able to explain both induction
and maintenance of plastic modifications, whereas Model
B is only able to explain the induction [1, 2].

4. CONCLUSIONS

Neuronal phosphorylation-dephosphorylation cycles have
been shown to be important in the induction and mainte-
nance of activity-dependent plastic modifications [1, 2].
In this study, the behavior of two systems for describing
phosphorylation-dephosphorylation cycles are simulated
with deterministic and stochastic methods for long peri-
ods of time. Even though Model A is very simple, it is
able to explain both induction and maintenance of plastic
modifications, whereas Model B is only able to explain
the induction (as also noted in [1, 2]).
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Figure 3. Active fractions from deterministic simulations (black) and stochastic simulations with the SSA (gray) of Model
A (a, c, and e) and Model B (b, d, and f) using different initial active fractions and concentrations for Ca2+.
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ABSTRACT

The aim of our work is to explore topological features in
terms of how sufficient they can be for the analysis of pro-
tein interactomes. One question concerning sufficiency
is whether it might be possible to encapsulate in a few
salient dimensions or components, or otherwise in a low
dimensional bulk of interactions, all the relevant biologi-
cal information and minimal residual noise. We show that
this task can in principle be accomplished by statistical
tools performing dimensionality reduction and feature se-
lection. We are currently validating our results over the
Yeastinteractome as the reference model organism while
we plan successive extensions to more complex contexts
(Homo Sapiens).

1. INTRODUCTION

Protein-Protein Interaction Networks (PPIN) are becom-
ing more and more important for understanding cellular
functions and causal-effect relationships inside the cell.
Interactomes are defined as the complete list of physical
interactions mediated by all proteins of an organism [1].

A PPIN can be characterized through a wide variety of
measures, each describing particular aspects according to
different types of criteria, such as connectivity, distance,
cliquishness, and so on. Dealing with biological networks
which are simply dichotomous (binary interactions, de-
pending on presence of absence of connectivity) generates
several problems due to the impact of both coverage and
accuracy of data.

As a result, the observed links are affected by both
false positives (bad measurements) and false negatives (miss-
ing information). The strongest limitation is thatgold
standard datasetsused to build knowledge from new ex-
periments are also incomplete, and various biases exist as
well, say towards proteins of high abundance or cellular
localization.

Furthermore, there is not yet widespread consensus
with regard to theinference methodsfor complex networks,
as the highest parameter estimation and/or prediction ac-
curacy are far from being achieved by one specific method.
This is simply a consequence of the complexity and di-
mensionality of PPIN.

When weighted instead of unweighted interactomes
are considered, problems arise in relation to whatstatis-

Figure 1. Classes of interactome features: examples elu-
cidating aspects of the interactome topology.

tical confidenceshould be attached to the the assigned
weights, reason why both scoring systems and random-
ization techniques are pursued.

A very common approach is the description of PPIN
through topological features(TOPfeatures, to be distin-
guished from biological features used to explain interac-
tions [2]). They are measures which characterize global
(net-wise) and local (node- and edge-wise) aspects of in-
teractions, such as connectivity, coreness, cohesiveness,
centrality etc.

These features (listed in Figure 1) are usually studied
in association with more general network properties. For
instance, the usually observed scale-free property [3] im-
plies that the connectivity level (or number of links per
node) follow a power law (see Figure 2, where the pattern
is confirmed at variable sub-sampling rate):

p(k) = ck−γ , c > 0, γ > 0 (1)

This fact in turn implies that there are some nodes in
the network that are highly connected (”sticky” proteins)
and most are poorly connected (”non-sticky” proteins) in-
stead, thus there is a preferential attachment of new nodes
to well-connected hubs.

We also look at features, and consider the statistics
related to them, in particular correlation and distribution
aspects (see for instance Figure 3). Each feature repre-
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Figure 2. Power laws: A. Bader’s [3]; B. Reguly’s [4].
Sub-sampled power laws: C. (one third); D. (two thirds).
The pattern is preserved under variable sub-sampling rate.

sents a summary of relevant biological information in the
network. We pick some node-wise valuedTOPfeaturesto
support our analysis which are targeted to the search of
some kind of sufficient information core within the inter-
actome.

The datasets employed in this work are two popular
sources. One, from Bader et al [3], is a combination of
protein networks constructed from published Y2H and Co-
IP data, thus resulting in a set of 5787 high-confidence
high-throughput interactions. The other dataset is from
Reguly et al [4] who built a database of genetic and pro-
tein interactions manually curated from 31793 abstracts
and online publications, resulting in a set of 31311 inter-
actions. We have considered only the literature-curated
part (with 3289 proteins and 11314 interactions).

2. METHOD

A natural mapping from an interactome graph to a vector
space (of large dimension, in this case) is provided by the
adjacency matrixA (Aij = 1, iff ∃ an edge betweeni and
j nodes). With undirected matrices this is a symmetric
matrix, and connectivity, clustering and centrality mea-
sures can be established by computing degree-degree dis-
tribution, clustering coefficient and betweenness, respec-
tively.

GivenG = (V, E) network (no self-loops and multi-
ple edges), with ann−set ofV vertices, and anm−set of
E edges, we have the following definitions:

• The nodev degree distributionD(v) is defined as
the number of interacting partners of a protein (with
no distinction between in- and out-degree due to the
undirect nature of the graph), thus according to:

Deg(v) = k (2)

Figure 3. Distributional aspects: Bader’s [3] features.
Correlation patterns at variable degree appear between the
chosenTOPfeatures.

wherek is the number of nodes directly connected
with v.

• Given a nodev degreed(v) defined as the num-
ber of nodes adjacent tov, the clustering coefficient
[5] establishes the likeliness that a link between the
nodesa andc exists when botha with b andb with
c are linked. Taken from a function in theR pack-
agegraph, for a nodev in an undirected graph and
with m adjacent nodes, when self loops are not to
be included we have:

ClustCoef(v) =
N

(m ∗ (m− 1))
(3)

whereN is the number of edges between these nodes.
If self loops are instead allowed, the clustering co-
efficent isN/(m ∗ m), whereN is the number of
edges between these nodes, including self loops.

• Betweenness [6, 7] is a centrality measure of a ver-
tex, and is higher for some vertices depending on
the fact that they are present on many shortest paths
between other vertices. It is computed by a function
from theR packageigraph that defines the number
of geodesics (shortest paths) going from an origin
to a destination through a vertex relatively to the to-
tal number of geodesics observed between start and
end node. For vertexv it holds that:

Betw(v) =
∑

s 6=v 6=t∈V,s 6=t

σst(v)
σst

(4)

for s andt belonging toV .



3. FEATURE IMPORTANCE

With two kinds of sets available to study interactome fea-
tures, we have some heterogeneity due to the fact that
from literature-curated data the sources of interactions can
be more compared to high-throughput data. We thus focus
more closely on the latter dataset.

Given the availableTOPfeaturesdiscussed in the liter-
ature, an important question is to what extent their redun-
dancy can lead to complementary information [8].

It is likely that a small number of features is sufficient
to describe the interaction map, each with a certain lim-
ited precision but relative importance. We aim to measure
somehow this importance by further decomposing and de-
noising each feature, as shown in the next section.

This consideration holds without even looking at the
specific characterization of them, say, gene-specific, more
than sequence based or domain-domain oriented, just to
mention some possibilities.

A point to stress is that eachTOPfeaturesynthesizes
underlying physical, genetic, evolutionary aspects which
can be emphasized and in turn represent relatively strong
or weak predictors of protein interactions.

Feature selection is thus required not to account for
weak and noisy data characteristics, and decipher their in-
terdependencies. While the former aspect is unavoidable
due to experimental limitations in terms of accuracy and
to real interactome coverage, the latter aspect can be in-
vestigated further.

4. FEATURE DECOMPOSITION

Principal Component Analysis (PCA) [9] is aimed to ob-
tain the smallest possible signal subspace (S) from a noisy
space (Y ) where the data lie,Y = S + ε. The data space
rank,N is split into anM−component (signal part) and
a residual(N − M)−component (noise part) depending
on the relative magnitude of the singular values which are
identified.

PCA determines an orthogonal projection which al-
lows for decorrelation of the structure present in the orig-
inal signal space. The idea behind the application of PCA
to theTOPfeatures(see Figure 4) refers to possible changes
in the correlation structure, in particular the interdepen-
dency links.

The addition of aTOPfeature(clustering coefficient)
in the subplot B of Figure 4 indicates that when an extra
component is extracted, there is a change between the cor-
relation of the previously consideredTOPfeatures. The
extra component significantly affects the signal-to-noise
ratio, quite likely, which makes hard to distinguish pure
correlation changes from spurious correlation reduction.

We then look at Independent Component Analysis (ICA)
[10, 11, 12, 13] in order to demix possible convoluted
structure characterizing eachTOPfeatures. Usually, ICA
is used to extract independent and non-Gaussian signal
sources from observed (noisy) mixtures with unknown mix-
ing mechanism.

ICA is a very effective exploratory tool and compared
to PCA, which is targeted to Gaussian data and linear de-

A

B

Figure 4. PCA decomposition with two Bader’s [3] fea-
tures (A), and with one additional feature (B). More com-
ponents change the cross-TOPfeaturerelations.

pendence, it exploits high-order distributional information
(from moments and cumulants).

In our applications we have observed that ICA sug-
gests something about the inner structure of the signals
at hand, and reveal the distributional properties of its in-
formative bulk. It appears from Figure 5 that a strong
non-Gaussian characterization is underlying these signals,
which together with possible statistical independence of
the extracted components are the strengths of ICA.

5. CONCLUSIONS

We have provided examples of features that can analyzed
statistically because quantified at a local level in the net-
work, i.e. node-wise.

Their correlation and distributional aspects suggest that
interdependencies are quite strong among theTOPfeatures
here analyzed.

Further decomposition through PCA and ICA deserves
care: PCA shows that decorrelation cannot suffice to dis-
entangle the dependence structure amongTOPfeatures,
while ICA reveals a strong non-Gaussian characterization
for them.

Our final remarks, consequently, are that it might be
better to rely on a small rather than a big (or redundant)
set ofTOPfeatures, because in passing from the graph (i.e.
a dichotomous space) to the features (i.e. a multivariate
space), the task of dealing with correlation remains hard
even after dimensionality reduction and denoising.

Next, we plan to perform shrinkage estimation and
calibration in null and/or complementary graph creation.
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Figure 5. ICA demixing of Bader’s [3] degree (top four
plots), clustering coefficient (mid four plots), and be-
tweenness (bottom four plots). Diagnostic plots to em-
phasize outlying distributional aspects.
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ABSTRACT

Genetic association studies investigating the relationship
between complex diseases and Single Nucleotide Poly-
morphisms (SNPs) have become popular recently, as both
costs and time of genotyping have decreased dramatically.
However, reliable tools of extracting relevant results from
them are yet to be established, as the studies usually con-
tain more variables than observations and only small sig-
nals. Moreover, the interest focuses not on the identifica-
tion of single SNPs, but (high-order) SNP interactions.
To face this challenge, we use adaptations of frequent item-
sets and association rules as well as tree-based methods to
detect such SNP interactions and to classify the observa-
tions as cases or controls. These methods contain great
potential for the analysis of SNP data as our applications
to both simulated association data and real-world whole-
genome data show.

1. INTRODUCTION

The etiology of complex diseases like cancer is still not
fully understood. Yet it is evident that a person’s sus-
ceptibility to cancer is due to a combination of genetic
predisposition and environmental influences [1]. A major
problem in the analysis of genetic SNP data is the abun-
dance of possible factors to be considered. Association
studies contain between 50 specifically selected SNPs in
candidate SNP studies and up to hundreds of thousands
SNPs in genome-wide studies. As the majority of the ob-
served study variables does not contribute to the disease
risk, and study size is usually small [2], we have to try to
detect low signals caused possibly only by interactions of
variables rather than by single variables in a lot of noise.
Standard statistical methods fail to solve this problem.
We will show that analysis tools based on frequent item-
sets and association rules are suitable to fulfill the difficult
task as good as possible.
By assessing the misclassification rate, we compared our
adapted methods with each other and to logic regression
and further tree-based discrimination methods.
The data we analyse will be described in the next section,
followed by Section 3 which presents the methods used.
The results of the application to the simulated data are
given in Section 4, while the key issues, observed draw-
backs and future progress are discussed in the last section.

2. DATA

A SNP refers to a single base exchange at a specific lo-
cus on the genome that is present in at least 1 % of the
population. There are three possible genotypes at each
loci: the homozygous reference genotype (if both chro-
mosomes show the more frequent base), the heterozygous
genotype (if one chromosome shows the more frequent
and the other the less frequent genotype) and the homozy-
gous variant (if both chromosomes show the less frequent
variant).
Interacting SNPs are assumed to influence the risk of de-
veloping diseases. Thus, they can help to identify high
risk groups of patients and to classify new observations
into cases and controls.
To compare the different classification approaches, we ana-
lyse different real and simulated data sets.

1. HapMap. We use a subset of the HapMap data [3]
comprising 45 unrelated Han Chinese and 45 unre-
lated Japanese. Ethnicity is used as a class label in
this case. The feature subset consists of 157 SNP
variables which express all three genotypes, have
a minor allele frequency greater than 0.1 and are
preselected using the Significance Analysis of Mi-
croarrays [4] adapted to categorical data [5].

2. GENICA. The GENICA study on genetic and en-
vironmental interactions and sporadic breast can-
cer [6] was designed as an age-matched population-
based candidate SNP association study. The spe-
cific data used in this article is built up by 63 SNP
variables and 1191 observations (561 cases and 630
controls). The few missing values in this data set
are replaced SNP-wise by random draws from the
marginal distribution of the respective SNP.

3. SNaP. The simulated data are created using the soft-
ware package SNaP [7]. For four different scenarios
1-4 (status "case" is caused either by one two-way
interaction, or by one of two two-way interactions,
or by one of three two-way interactions, or by one
of two three-way interactions), ten data sets are gen-
erated, each of which contains 1000 observations
(divided into 500 cases and 500 controls) with cat-
egorical values for 40 SNP variables. We specify



Table 1. Penetrances of the simulation study
two-way interactions three-way interactions

P(case |A = a, B = b) (A = a) * (B = b) P(case |A = a, B = b, C = c) (A = a) * (B = b) * (C = c)
1 2 ∗ 2 1 2 ∗ 2 ∗ 2

2 ∗ 1 2 ∗ 2 ∗ 1

2 ∗ 0 2 ∗ 2 ∗ 0

0.6 1 ∗ 1 0.6 2 ∗ 1 ∗ 1

1 ∗ 1 ∗ 1

0.3 1 ∗ 0 0.3 2 ∗ 1 ∗ 0

1 ∗ 1 ∗ 0

2 ∗ 0 ∗ 0

0 0 ∗ 0 0 1 ∗ 0 ∗ 0

0 ∗ 0 ∗ 0

different minor allele frequencies f ∈ [0.1, 0.3] for
the causative SNPs. For each interaction, the cho-
sen penetrance values can be found in Table 1. Note
that they are symmetric, i.e. (A = 0) * (B = 1) is
equivalent to (A = 1) * (B = 0). Additionally, nine
categorical epidemiological variables with different
numbers of levels are simulated. They, however, do
not have an impact on the disease status. For classi-
fication purpose, each data set is used once as train-
ing data and once as test data.

3. METHODS

To mine frequent itemsets and association rules, the sta-
tistical software R 2.5.1 [8] and the package arules
0.6-3 [9] are used, where arules is based on the well-
known apriori algorithm introduced by [10].
Background on the algorithm and its usage can be found in
the articles cited above. In this paper, we employ frequent
itemsets and association rules for classification purposes
in genetic association studies.
Frequent itemsets and association rules have been applied
successfully in various ways to several kinds of genetic
data (e.g., [11], [12], [13]), but to our knowledge, the
methods presented in this section have not been used in
this specific context of disease status classification based
on SNP data.
Frequent itemsets can be employed to define subgroups
of observations by allocating a person to the group cor-
responding to the first itemset of an ordered list that is
contained in the person’s transaction. A separate classifi-
cation model can be built in each of the created subgroups.
A model (in our comparisons: CART) is built on the train-
ing data within each group and validated using the respec-
tive test data. We call this approach localCART.
Furthermore, frequent itemsets can be used for feature
construction (FC). The frequent itemsets of the training
set serve as new input variables, i.e. the new training and
test sets consist of a binary vector for each observation
indicating if the respective frequent itemset is contained
in the observation’s transaction or not. Subsequently, a
classification based on these new binary features can be

carried out.
A possible extension to the second kind of supportive tools,
association rules, is to employ them in a classification
framework (associative classification, [14]). All discov-
ered rules are only allowed to contain one element in their
consequent which has to be one of the class labels.
The resulting rule set can be employed in different ways
for classification purposes. We take a voting approach
(AC Vote): All rules applicable to a new observation con-
tribute to the labelling of the respective observation. Ac-
cording to their vote, the new observation is assigned to
the voted class [15].
Currently, the status "case" is chosen if a fraction of at
least 0.1 of the votes suggests it. Besides these meth-
ods based on frequent itemsets and association rules, a
tree-based discrimination and regression procedure called
logic regression (LogReg)[16] is considered. Logic re-
gression has been especially designed for SNP data and
therefore shows good results when applied to SNP data
[5]. Moreover, we also employ Random Forests (RF) [17],
Bagging [18] and CART [19] in the comparisons presented
in this paper.

4. ANALYSIS AND COMPARISON

For each scenario, each of the SNaP data sets is used once
as training and once as test set. The misclassification rates
(MCRs) shown in Figure 1 are averaged over all data sets
from each scenario. For the HapMap and the GENICA
data set, crossvalidation (9fold and 10fold, respectively)
is used to estimate the misclassification rate. The different
parameter specifications for the applications of the apriori
algorithm are summarized in Table 2.
In the simulated settings, the MCRs for the tree-based
methods, AC Vote and localCART increase with more two-
way interactions. The best MCRs rise from 0.232 in Sce-
nario 1 to 0.327 in Scenario 2 and 0.452 in Scenario 3 (cf.
Figure 1).
FC shows an irregular, but constantly unsatisfying behaviour
across all scenarios. The corresponding MCRs lie be-
tween 0.432 and 0.494, the latter meaning that tossing a
fair coin to assign a class label to a new observation yields
almost as good results as FC.
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Figure 1. Misclassification rates for the four simulation
scenarios using different classification approaches

For two-way interactions, the tree-based methods besides
CART dominate the itemset-based methods. But in Sce-
nario 4 (causative three-way interactions), AC Vote clearly
outperforms the other methods and gives even better MCRs
than it does for two or three causative two-way interac-
tions.
localCART, though not suitable for the simulated case yield-
ing MCRs about nearly 0.500, gives the second lowest
MCR for the GENICA data (cf. Table 3). The best MCR
(0.405) is achieved by logic regression. Again, the MCR
of FC is highest with 0.498.
The HapMap data could be discriminated best. The MCRs
lie between 0.011 and 0.356, with ACVote and Random
Forest giving the lowest MCRs.

5. DISCUSSION

SNP data sets confront the analyst with several challenges:
They can be very large (or at least consist of more vari-
ables than observations), the signal within the data can be
quite small and is presumably caused by interacting fac-
tors rather than by single variables. With genome-wide

Table 2. Parameters for the apriori algorithm for different
data sets: Support and confidence for the cases (controls)

data support confidence
method 1/2/3 items

HapMap
AC Vote 0.07(0.05) 0.8

localCART/FC 0.8/0.8/0.8 –
GENICA
AC Vote 0.065 (0.05) 0.65

localCART/FC 0.8/0.75/0.75 –
SNaP

AC Vote 0.07 (0.05) 0.7 (0.065)
localCART/FC 0.8/0.75/0.7 –

studies in view, we investigate possible classification adap-
tations of frequent itemsets and association rules which
are suitable for large data sets. In particular, we compared
an approach based on local subgroups (localCART), a fea-
ture construction classification, an associative classifica-
tion variant (AC Vote) with each other and with standard
tree-based methods (CART, Bagging, Random Forest) as
well as logic regression.
A general statement of which methods performs best was
not expected and cannot be made. If the tree-based meth-
ods and especially logic regression are viewed as the cur-
rent standard, we found that AC Vote is usually close or in
one setting even better than the standard methods in terms
of a smaller misclassification rate. The other two sug-
gested methods did not show a satisfying behaviour, even
though localCart performed second best on the GENICA
data.
Besides the overall problem of a low signal and high noise
within the data, all methods applied suffer from individual
weaknesses. There is the miscellaneous group created by
localCART which contains objects that do not share simi-
lar characteristics (as is the idea of localCART) with each
other. This is due to the fact that all observations that did
not fit into a group of a suitable size were merged into this
class. If this group is neglected during the analysis, mis-
classification rates improve in each scenario. On the other
hand, identifying objects which cannot be grouped in a
sensible way with other observations can be important for
application as well.
The feature construction approach usually yields more new
variables than old ones. The redundancy of features re-
flects the initial problem in a different way. Not only do
many of the variables not contribute to the outcome, but
some of the mined frequent itemsets contain redundant in-
formation.
The voting scheme of AC Vote has to reflect the data char-
acteristics as well as possible. The current scheme is still
quite simple.
The major advantage of the methods based on frequent
itemsets and association rules is their potential for a better
performance on this special kind of genetic data. Further
adaptations and different sorts of fine tuning will make
them more suitable. In particular, we want to fit different
models in the local subgroups, also answering the special
characteristics in the miscellaneous group. Furthermore, a

Table 3. The misclassification rates for the real-world data
sets HapMap and GENICA

method HapMap GENICA
ACVote 0.011 0.432

localCART 0.356 0.417
FC 0.244 0.498

LogReg 0.144 0.405
CART 0.356 0.437

Bagging 0.022 0.453
RF 0.011 0.450



variable selection on the constructed features might elimi-
nate useless information and help to decrease the misclas-
sification rate. By adjusting the voting scheme in AC Vote
[20], the classification can be improved.
Therefore, we are convinced that the adjusted versions of
the methods will help classify cases and controls more ac-
curately in near future.
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ABSTRACT
The goal of this work is to present a computational frame-
work on how to combine experimentally obtained data
from calcium oscillations with modeling studies to un-
derstand the mechanisms leading to complex interactions
between amyloid-β peptide and neurotransmitters in glial
cells. Experimental work has provided evidence that a
failure in the proteolytic processing of the amyloid pre-
cursor protein results in increased production of amyloid-
β peptide. Aggregates of amyloid-β have been shown
to destabilize the cellular calcium homeostasis in brain, a
phenomenon associated with Alzheimer’s disease. In nor-
mal cellular microenvironment in central nervous system,
the level of intracellular calcium is transiently increased
by neurotransmitters, such as serotonin. By adding sero-
tonin and amyloid-β together, the enhancing effect on the
intracellular calcium levels is multiplied. The model dis-
cussed here for the amyloid-β-neurotransmitter interac-
tions in cortical astrocytes describes this synergistic effect
of amyloid-β and serotonin. The complete computational
model can be used to study pathological phenomena asso-
ciated with Alzheimer’s disease.

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive and irreversible
neurodegenerative disorder that leads to cognitive impair-
ment and emotional disturbances. Symptoms result from
the degeneration of brain tissue, seen as a shrinkage of
brain regions, such as temporal and frontal lobes, which
are involved in cognitive processes, learning and mem-
ory formation [1]. Pathological changes in a living pa-
tient’s brain can be detected by using MRI and PET imag-
ing techniques. In addition to brain shrinkage, an AD pa-
tient suffers from so called ”plaques” and ”neurofibrillary
tangles”, which are thought to hinder the transmission of
nerve impulses. A definite diagnosis of AD can be con-
firmed by pathological studies,post mortem.

1.1. APP processing

Amyloid precursor protein (APP) is a type I transmem-
brane glycoprotein which consists of 695-770 amino acids,

Figure 1. A section of amyloid precursor protein sequence
listed with single-letter-abbreviations of amino acids. The
triangles represent secretase (α, β, γ) cleavage sites.

thus the C-terminal is in the cell cytosol. Secretases (α-,
β-, andγ-secretase) are enzymes, which catalyze the pro-
teolytic processing of APP. Each of them has its own char-
acteristic cleavage site, and thus generates different pep-
tide fragments (Fig. 1).

Figure 2 shows the different possibilities of APP pro-
cessing. Some of the formed intra- and extracellular frag-
ments are considered to be neurotoxic. The non-neurotoxic
fragments are produced withα-secretase. The extracellu-
lar fragment is a soluble peptide (sAPPα) and the intracel-
lular C-terminal fragment consists of 83 amino acids, and
is called C83. This above described APP processing rep-
resents the APP processing found in normal healthy brain.

In contrast,β-secretase cuts the transmembrane pro-
tein APP in such a way that a soluble N-terminal frag-
ment (sAPPβ) is released outside the cell. The rest of
the precursor protein stays attached to the membrane, and
theγ-secretase can then process the remaining transmem-
brane peptide producing an intracellular, C-terminal frag-
ment (C99). This fragment can be transported into the cell
nucleus, where it participates to gene expression and, e.g.
promotes apoptosis. Together with the intracellular C99,
an extracellular amyloid-β (Aβ) peptide, is also formed.

Aβ consists of 39-42 amino acids. Based on the clas-
sification of amino acids by Branden and Tooze [2], 25
amino acids out of the 42 have hydrophobic side chains
in Aβ42 (glysine is classified to be hydrophobic). There-
fore, Aβ42 tends to aggregate easier than the shorter Aβ



Figure 2. APP processing byα-, β-, andγ-secretases.
The figure is a modification of the figure in [1]. Am-
yloid precursor protein (APP), the cleavage region for
a secretase (◭), soluble extracellular fragment cleaved
by α-secretase (sAPPα), intracellular fragment cleaved
by α-secretase (C83), N-terminal fragment cleaved by
β-secretase (sAPPβ), C-terminal fragment cleaved by
γ-secretase (C99), and extracellular amyloidβ peptide
cleaved byγ-secretase (Aβ).

fragments. Neuritic plaques found in AD patients con-
sist mostly on Aβ42. Both fragments, the 42 amino acids
long (Aβ42) and the shorter 11 amino acids long synthetic
derivative (Aβ25-35), are widely used in Alzheimer’s dis-
ease research. Here, the shorter Aβ25-35 fragment is used
together with a neurotransmitter, serotonin. The sequences
and surfaces of these two specific fragments are shown
in Figures 1 and 3. The longer the peptide is, the more
the peptide gets aggregated, and thus working with Aβ42
is more difficult than with Aβ25-35. As is Aβ42, also
Aβ25-35 is thought to be neurotoxic [3]. Details about
the structures of Aβ25-35 and Aβ42 can be found from
[3, 4], respectively.

The Aβ42 structure consists of twoα-helices and aβ-
turn between them. Figure 3 shows the molecular surfaces
for Aβ42 and Aβ25-35 (PDB IDs 1IYT and 1QWP, re-
spectively). The hypothesis is that the Aβ’s neurotoxicity
is related to different peptide-cell membrane interactions
and destabilization processes, culminating in membrane
pore formation and membrane/cell disruption. According
to this hypothesis, anα-helical peptide induces the for-
mation of membrane channels, permitting neuronal death
inducing reactants to penetrate [3].

1.2. Signaling pathways associated with Alzheimer’s
disease

Pathological studies of AD patients’ brain reveal plaques
and neurofibrillary tangles with Aβ and hyperfosforylated
τ -protein, respectively. There is a consensus about the
central role of Aβ in AD. However, there is only a weak
correlation between fibrillary amyloid load and measures

Figure 3. Tertiary structures of Aβ42 (on the left-hand
side) and Aβ25-35 (on the right-hand side). The light gray
areas are hydrophobic, and black hydrophilic. The picture
is drawn using Swiss-PdbViewer 3.7 [5].

of neurological dysfunction [3]. A hypothesis for AD for-
mation and generation is as follows:(1) Abnormal am-
yloid precursor protein (APP) processing in the plasma
membrane results in Aβ formation. (2) Extracellular Aβ
aggregation induces oxidative stress in surrounding cells.
(3) Oxidative stress causes alterations in the plasma mem-
brane. These alterations affect the cell membrane poten-
tial and intake of ions. For example, the intracellular cal-
cium ion concentration ([Ca2+]) will rise. (4) Ca2+ func-
tions as an intracellular second messenger, activating e.g.
protein kinases, which are phosphorylation catalyzing en-
zymes.(5) Due to activation of protein kinases,τ -protein
gets hyperphosphorylated and begins to form neurofibril-
lary tangles, common to AD patients.(6) Both Aβ aggre-
gates and neurofibrillary tangles hinder the normal trans-
fer of neuroimpulses.(7) Synaptic dysfunction causes de-
generation in central nervous system (CNS). Cells initiate
an apoptosis cascade and finally die.

Whatever the initiator for Aβ formation and aggre-
gation is, the ionic equilibrium in the CNS microenvi-
ronment gets disturbed. Also the interactions of various
neurotransmitters and cellular signaling pathways are dis-
turbed, as has been suggested in studies on cellular cal-
cium dysregulation [6, 7, 8, 9, 10].

In the following, both the experimental measurements
and the computational framework for the model are dis-
cussed. The model will focus on the synergistic effects of
Aβ and the neurotransmitter serotonin on the intracellular
[Ca2+] in rat cortical astrocytes. The aim is to formulate a
computational model which can reproduce the experimen-
tal data and can be further developed to study and explain
also the pathological phenomena associated with human
AD.

2. METHODS

The experiments presented in this study use rat cortical
astrocytes as a model organism. The main idea is to follow
the changes in the level of Ca2+ concentration following
additions of Aβ25-35 and serotonin.



2.1. Cell culture

Astrocytes are distributed throughout the CNS and consti-
tute 20-50 % of the volume of most brain areas. They have
unique cytological and immunological properties which
make them easy to identify. One of the functions of astro-
cytes is neurotransmitter release and uptake in a synaptic
cleft. Thus, astrocytes have a significant role in the func-
tion of the brain. [11]

Primary astrocyte cultures were prepared from new-
born Sprague-Dawley rat pups, and grown on coverslips
in culture dishes and kept at 37◦C in an air-ventilated hu-
mified incubator containing 5 % CO2 for 1-4 weeks. Iden-
tification of astrocytes was made by using immunohisto-
logical staining for glial fibrillary acidic protein (GFAP).

2.2. [Ca2+] measurements in astrocytes

Astrocytes were exposed to both Aβ25-35 and serotonin.
In addition, the cells on the coverslips were loaded for 30
min in a 4µM Fura-2AM buffer before imaging, which
was performed using a monochromator-basedspectropho-
tofluorimetric system with dual excitation at the 340 and
380 nm wavelengths, bandpass of 2 nm, and the fluores-
cence emission measurements at 510 nm wavelength. Re-
sults are shown as a ratio of the emissions obtained by
the two wavelengths (340/380). As Fura-2AM is a fluo-
rescent dye which binds to free intracellular calcium, the
ratio of the emissions at 340 and 380 nm wavelengths is
directly correlated to the amount of intracellular calcium
(as presented in [7]).

3. MODEL FORMATION

Before beginning to formulate a model for any phenome-
non, it is essential to agree on the level of simplification in
the model. Certain level of simplification is always nec-
essary for computational models, as the number of vari-
ables and equations must be limited in view of obtaining
reasonable computation times. However, some players in
the phenomenon can be mimicked without being explic-
itly modeled in the system.

3.1. Model components

Here, the aim is to model the changes in both the intra-
cellularly released calcium and the calcium flux through
membranes due to additions of the neurotransmitter sero-
tonin and Aβ. The model takes into account three physio-
logical phenomena known to be the major contributors in
describing the intracellular calcium oscillations, namely
(1) the flux of Ca2+ from/to ECM (extracellular matrix),
(2) the pumping of Ca2+ from cytosol to the ER (endo-
plasmic reticulum) and a leak from the ER back to cytosol,
(3) the release of Ca2+ from the ER via inositol (1,4,5)-
trisphosphate (IP3) receptors and the phenomenon called
Ca2+ induced Ca2+ release. Lavrentovich and Hemkin
have recently modeled spontaneous Ca2+ oscillations in
astrocytes in [12]. They used three ordinary differential
equations to model the three processes affecting the cy-
tosolic [Ca2+].
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Figure 4. Changes in intracellular Ca2+ concentration
measured in experiments.(A) Transient Ca2+ peaks in-
duced by 1µM serotonin both in Ca2+ containing and
Ca2+ free media. (B) The synergistic effect of 200 nM
Aβ25-35 and serotonin.

However, the existing models for Ca2+ oscillation in
astrocytes do not reproduce the observed stochastic be-
havior, an external stimulus e.g. the effect of neurotrans-
mitters, let alone the effect of Aβ. With some modifica-
tions to the model introduced in [12], an external stimu-
lus can be modeled to mimic the effect of neurotransmit-
ters and Aβ. In addition, with stochastic methods also the
stochastic behavior of the [Ca2+] responses can be mod-
eled.

3.2. Model constraints

It has been concluded, that small amounts of Aβ25-35 do
not cause persistent calcium leak into astrocytes, though
calcium leak has been suggested to be one possible cause
for neuronal leak in AD [6]. Thus, a low concentration
of Aβ42 or Aβ25-35 solely, does not in general have any
persistent visible effect on the intracellular Ca2+ concen-
tration. On the other hand, the addition of serotonin causes
a transient elevation of intracellular [Ca2+], most proba-
bly due to a ligand binding to the serotonin receptor [7]
and G-protein mediated pathways, modeled, e.g. in [13].

The intracellular [Ca2+] will recover to its original
level soon after the addition of serotonin, where a transient
peak is seen when adding 1µM serotonin regardless of the
original external [Ca2+], see Fig. 4A. Thus, a Ca2+ peak
appears even in Ca2+ free media. This implies that the
Ca2+ liberation happens from the intracellular pools, e.g.
from ER, mitochondria, and other Ca2+ stores. At this
point Ca2+ is not yet transported from the extracellular
space, although the membrane potential may be changed.

Aβ25-35 has no effect on the duration of the serotonin



induced [Ca2+] peak of intracellular release. However,
the amplitude of the peak is increased substantially when
Aβ25-35 is added together with serotonin, see Fig. 4B.
Thus, synergistic tendencies between Aβ and serotonin is
clearly seen from the experimental data. Further analy-
sis will be made on the later component of calcium influx
through ion channels, also seen in Fig. 4B.

4. CONCLUSION

It is here presented by experimental measurements how
even small amounts of Aβ fragments in the brain tissue
can, together with e.g. neurotransmitters such as sero-
tonin, induce a meaningful change in the intracellular Ca2+

concentration. The pathway from separate effects of Aβ
and neurotransmitters to their synergistic effect must be
known before the effects and devastating consequences of
Aβ aggregates can be hindered.

The phenomenon to be described with a computational
model can be sensitive to simplifications. A simplified
computational model for Ca2+ oscillations, as in [12], has
been taken here as an elementary model to be verified and
expanded. In addition to basic Ca2+ oscillations, to mimic
the synergistic effects of Aβ25-35 and serotonin an exter-
nal stimulus has to be included in the model. However,
the model needs to be kept relatively simple due to com-
putational constraints. Therefore, some players in the phe-
nomenon to be modeled can be mimicked without being
explicitly modeled with distinct parameters.

Future work will explore in more detail the complex
mechanisms leading to Aβ and neurotransmitters induced
Ca2+ oscillations in astrocytes. Then, the complete com-
putational model can be used to study pathological phe-
nomena associated with AD. This may help to clarify the
means to alter the advancement of AD via learning to pre-
vent the formation and thus the devastating symptoms of
Aβ aggregations and plaque formations in AD patient’s
brain.
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ABSTRACT 

In this study, an experimental dataset from a suspended-
cell bioreactor for H2 dark fermentation was analyzed 
using Pearson’s product-moment correlations and mul-
tiple linear regressions. The aim of the study was to eva-
luate the effect of previous values of the key metabolites 
(ethanol, acetate and butyrate) on H2 production rates. 
The results show that none of the metabolites have very 
strong correlation with H2 production rate. H2 production 
rate has a maximum and only positive correlation of 0.69 
with butyrate. The inclusion of the previous values of the 
metabolites in regression models doesn’t improve the 
model performance. The global multiple linear regres-
sion models are not efficient in modeling the H2 produc-
tion rate as a function of operational parameters (hydrau-
lic retention time, pH), volatile fatty acids (acetate, buty-
rate, propionate, valerate) and alcohol (ethanol) concen-
trations. 

 

INTRODUCTION 
The dependence on fossil fuels as an energy source re-
sults in global warming, air pollution and environmental 
and health problems. H2 produced from renewable ener-
gy sources offers a clean alternative for the fossil fuels 
[1]. H2 is an ideal energy carrier as it is transportable, 
storable and globally available, and has an efficient and 
emission free conversion to electricity. H2 also has mul-
tiple uses in industrial applications including hydrogena-
tion processes (saturation of compounds, cracking of 
hydrocarbons, removal of sulphur and nitrogen com-
pounds), O2 scavenger for corrosion and oxidation pre-
vention, and coolant in electrical generators [2]. Today, 
H2 is mainly produced from fossil fuels by energy inten-
sive processes, such as steam reforming or coal gasifica-
tion [2]. Several techniques for H2 production from re-
newable sources exist including microbiological fermen-
tation processes [3].  

Microbiological dark fermentation can be used to 
produce H2 from biomass or organic waste materials [4], 
[5]. H2 production through dark fermentation is an in-
termediary step in the anaerobic degradation of organic 
material. H2 is produced in order to maintain the electron 
balance in the anaerobic system. In dark fermentative H2 

production, gases (H2 and CO2) and organic acids and 
alcohols (e.g. ethanol, acetate, butyrate, propionate and 
valerate) are the end products of the bioprocess. H2-
fermenting mixed cultures are characterized by complex 
behavior and interaction between H2-producing, H2-
consuming and neither H2 -consuming nor -producing 
organisms [6]. There is a need to understand the relation-
ship that exists between several end products, and utilize 
this information to better comprehend the complex dy-
namic behavior of the system [7], [8]. Modeling of H2 
fermentation processes may offer a means to reveal and 
describe better these complex interactions and to provide 
information for the optimization of H2 production bio-
processes.  

In this study, H2 fermentation was operated and mo-
nitored in a suspended-cell bioprocess for over 5 months. 
The Pearson’s product-moment correlation was used to 
analyze the dependencies of H2 production rate with oth-
er end products. The multiple linear regressions were 
used to model the H2 production rate as function of 
HRT, ph, ethanol, acetate, propionate, butyrate; and pre-
vious values of these variables. The aim of this study 
was to evaluate the memory effect of key metabolites 
(ethanol, acetate and butyrate) on the H2 production 
rates. 

 

MATERIALS AND METHODS 

Experimental Design 
The H2-fermenting microbial community was enriched 
from an anaerobic digester treating municipal wastewa-
ter sludge as described in [6]. The bacteria closely affi-
liated with Clostridium butyricum and Escherichia coli 
dominated the microbial community [6]. The bioreactor 
was inoculated with 150 ml of the enrichment culture. 

A completely mixed bioreactor (total volume 0.8 l, 
height to diameter ratio 7.7) with a gas extraction mod-
ule was used for H2 production at 35°C (Figure 1). The 
bioreactor was operated under anaerobic conditions. Gas 
extraction module was installed in the recycle line and 
consisted of 3.7 m of gas permeable silicone tubing in-
side a vacuumed chamber. Bioreactor was operated con-
tinuously for 156 days and reactor performance was de-
termined by measuring gaseous and soluble end prod-



ucts, glucose consumption and biomass concentrations. 
On day 62, the gas extraction module was uninstalled for 
30 days to study its effect on the bioreactor performance. 
The constituents of bioreactor feed were as earlier de-
scribed [6], except that glucose concentration was kept 
constant (5 g l-1). Gas production was measured by wet 
gas meters (Ritter Apparatebau, Bochum, Germany). H2 
production rate was determined by adding together pro-
duction rates from top of the reactor, and from the gas 
extraction.  

 
Figure 1. Bioreactor system configuration. Feed 

containers 1 and 2 contained glucose and buf-
fered nutrients solutions, respectively. 

Chemical Analyses 
The gaseous end products (H2, CO2) were analyzed using 
a HP 5890II gas chromatograph equipped with a 6 ft 
Porapak N column (80 / 100 mesh), and a thermal con-
ductivity detector. Oven, injector and detector tempera-
tures were 50, 80 and 80 °C, respectively. N2 was used 
as carrier gas. The formation of organic acids and alco-
hols was measured using a HP 5890II gas chromato-
graph with a 30 m DB-FFAP capillary column (Agilent 
Industries Inc, Palo Alto, CA, U.S), and a flame ioniza-
tion detector. Residual glucose concentrations were ana-
lyzed colorimetrically (Shimadzu UV-1601) by anth-
rone-method [9]. Biomass as volatile suspended solids 
(VSS) was analysed according to APHA Standard Me-
thods [10].  

 

Dataset 
The dataset used in this study consisted of 7 variables: 
operational parameters (HRT and pH), volatile fatty acid 
concentrations (butyrate: HBu, acetate: HAc, propionate: 
HPr, valerate: HVa) and alcohol (ethanol: EtOH), and 
hydrogen production rate (H2PR) and carbon dioxide 
production rate (CO2PR). There were 151 measurements 

spread over 156 days. The minimum, mean and maxi-
mum values of measured variables are listed in Table 1. 

 
Table 1. Details of the experimental dataset used in 

the study. Min: minimum value observed, Max: maxi-
mum value observed 

 Min Mean Max 
HRT(h) 1.5604 1.9378 2.6956 
H2PR (mmol/l/h) 0 2.6391 18.7879 
CO2PR (mmol/l/h) 0 11.478 30.3008 
pH 5.059 5.9715 7.213 
EtOH (mol/l) 0.0008 0.0042 0.0104 
HAc (mol/l) 0.0014 0.0113 0.0255 
HPr (mol/l) 0 0.0008 0.0064 
HBu (mol/l) 0.0001 0.0037 0.0099 
HVa (mol/l) 0 0.0002 0.0008 

 

Multiple Linear Regression 
Multiple linear regression is a statistical technique used 
for technical and fundament analyses of multivariable 
datasets [11]-[14]. It models the relationship between 
two or more explanatory variables and a response varia-
ble by fitting a linear equation to an observed data. The 
model for multiple linear regression, given n observa-
tions is: 

 
ݕ ൌ ߚ   ߚଵݔଵ  ߚଶݔଶ  …  ߚݔ      (1)ߝ

 
Where i = 1,2,… n., y is the dependent variable, x is the 
set of k explanatory variables, and ε is the residual term. 

 

Pearson Product-Moment Correlation 
In statistics, the Pearson product-moment correlation 
coefficient is the most common measure of the correla-
tion between two variables X and Y [15], [16]. It is 
represented by rho (ρ), when measured in a population. It 
is represented by (r), when computed in a sample. The 
Pearson coefficient is obtained as equations 2 and 3. 

 
ܻ,ܺߩ ൌ ሺܺ,ܻሻݒܿ 

ܻߪܺߪ
   (2) 

Where cov(X,Y) is the covariance between X and Y, and 
σX and σY are the standard deviations of X and Y. 
 

ݕݔݎ ൌ  
݊ ∑ ∑ െ݅ݕ݅ݔ ݅ݔ ∑ ݅ݕ

ට݊ ∑ ݅ݔ
2െሺ∑ ሻ2ට݊݅ݔ ∑ ݅ݕ

2െሺ∑ ሻ2݅ݕ
  (3) 

Where i = 1, 2…n, and n is the sample size. 
 
Correlation is a bivariate measure of association be-

tween two variables. It varies from 0 (random relation-
ship) to 1 (perfect linear relationship) or -1 (perfect 
negative linear relationship). It is symmetrical in nature 
and doesn’t provide the direction of causation.  
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production rates was analyzed. The correlation analyses 
and model results suggest that the previous values of pH, 
ethanol, acetate, propionate, butyrate and valerate have 
no significant impact on the H2 production rates.  

 

Table 3. Mean square error (MSE) values for dif-
ferent regression models. Model 1: function 

(HRT, pH, EtOH, HAc, HPr, HBu and HVa). 
Model 2: function (HRT, pH, EtOH, HAc, HPr, 
HBu, HVa and one time-step previous values of 
(pH, EtOH, HAc, HPr, HBu, HVa)). Model 3: 

function (HRT, pH, EtOH, HAc, HPr, HBu, HVa, 
one time-step previous values of (pH, EtOH, 
HAc, HPr, HBu, HVa) and two time-step pre-

vious values of (pH, EtOH, HAc, HPr, HBu and 
HVa)). Model 4: function (HRT, pH, EtOH, HAc, 
HPr, HBu, HVa and one time-step previous val-
ues of (pH, EtOH, HAc, HPr and HBu)). Model 
5: function (HRT, pH, EtOH, HAc, HBu and one 
time-step previous values of (pH, EtOH, HAc and 

HBu)) 

  MSE 
Model 1  2.6531 
Model 2  2.5934 
Model 3  3.2641 
Model 4  2.8854 
Model 5  2.9484 

 

 
Figure 3. Hydrogen production rate: Experimen-
tal and model values. The multiple regression re-
sults for Model 2 (mentioned in Table 3). MSE = 

2.5934 
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ABSTRACT

The two main interests in gene expression data, differen-
tial expression and transcriptional regulatory effects, are
usually difficult to separate from each other. We propose
a method for decomposing observed gene expression data
into i) a part explainable directly by transcription factor
(TF) mRNA level, and ii) a part attributable to other ef-
fects induced by experimental setting. The method fits a
Bayesian hierarchical linear model to the expression data
given prior information about transcriptional regulatory
mechanisms. Our primary source of prior information
are TF binding probabilities, derived from a probabilistic
model for TF binding to gene regulatory sequences. The
proposed method can be easily extended to include ad-
ditional and other types of prior information (ChIP-chip,
other gene expression data), and the same modeling frame-
work can be used to make inference regarding a large va-
riety of questions. Simulation results show that, relative
to standard approaches, the proposed method can better
detect regulatory relations and that it is also able to dis-
tinguish general differential expression from the effectsof
direct regulatory mechanisms.

1. INTRODUCTION

Detection of differential gene expression induced by the
chosen experimental setting is the primary focus in most
microarray gene expression studies. In addition to pure
differential expression, key interests are the gene regu-
lation effects taking place during the experiment. While
gene regulation can happen in various stages, one of the
most important of these stages is direct transcriptional reg-
ulation by transcription factor (TF) proteins. Approxi-
mate protein levels of TFs can in principle be monitored
through the expression levels of the genes coding the fac-
tor proteins. However, estimating these regulatory effects
from gene expression data is not a trivial task. The most
important challenges include problems in estimation due

to small number of samples, regulatory relations is con-
founded with co-expression of genes and TFs, and differ-
ential expression of a gene might be induced by other TFs
than the known regulating TFs.

Discovering regulatory relations from high-throughput
gene expression data has been in focus since the emer-
gence of microarrays. The earliest and most common at-
tempts for finding relations between genes were based on
detecting genes with similar behaviour in the experiments
[1]. Naturally, this results in a set of genes consisting
both the regulators, the target genes, and the co-expressed
genes with no means to distinguish between them. More
focused approaches have been presented as well which
rely on prior knowledge about the potential regulators. For
example, Bayesian networks have also been applied to es-
timate regulatory relations between a set of known TFs
and the rest of the genes as groups (see [2]). However,
practically all these approaches by-pass the actual interest
of a single microarray gene expression experiment: differ-
ential expression in the given situation.

Statistical models for differential expression range from
early fold-change based approaches to classical ANOVA
based models, and their Bayesian variants (see [3, 4]).
But, analogously to regulation models, differential expres-
sion models largely disregard the estimation of the regu-
latory effects.

We propose here a model that integrates gene expres-
sion data with transcriptional regulatory knowledge, such
as transcription factor binding site location information.
Using the binding probabilities from a probabilistic model
for transcription factor binding to gene promoter region
as a prior, the proposed model can in principle distinguish
which genes are transcriptionally regulated by known TFs
in any given experiment, based on the observed expression
data. In particular, the model is capable of distinguishing
whether some known, differentially expressed TF is caus-
ing its target genes to be differentially expressed in the



given experiment. In addition, the model is able to dis-
cover differential expression of target genes due to other
reasons than the known TF, in case the regulatory TF is
not differentially expressed. The model is formulated in
Bayesian framework enabling a natural way to handle the
uncertainty in the data and small sample size problem.

The results show that the proposed model can detect
regulatory relations taking place during the experiment
more efficiently than mere co-expression based approaches,
and at the same time detect differential expression induced
by the experiment.

2. METHODS

Our approach is closely related to a Bayesian hierarchical
model for gene expression allowing heterogenous errors
(HEM) [4]. HEM separates the technical noise from the
biological noise, and is shown the perform favorably in
the analysis of gene expression data. We extend the stan-
dard HEM by incorporating an additional regression term
that allows explicit modeling of direct transcriptional reg-
ulation. Further, the regression term allows to incorporate
prior knowledge about transcriptional regulation into the
hierarchical error model. The prior information can come
from a variety of different sources, such as sequence-based
TF binding predictions [5], ChIP-chip data [6], other gene
expression data.

We propose to model the observed expressionyi,j,k

for ith gene,jth condition, andkth replicate with a linear
model as

yi,j,k = µ + gi + dj + ri,j + ai · zi · xTF,j + ǫi,j,k, (1)

whereµ is the general mean,gi is the effect ofith gene,dj

is the effect of thejth condition,ri,j is their joint effect,
zi ·ai ·xTF,j describes the regulatory effect of the given TF
with TF’s expression levelxTF,j = µ+gTF +dj +rTF,j ,
regulation strengthai and a binary indicatorzi of whether
the TF regulates theith gene. The residual variance is
described withǫi,j,k. For the expression measurements of
the TF we use the same model but without the regression
term, i.e.yTF,j,k = xTF,j + ǫi,j,k.

We assume the following prior distributions with fixed
parameters:

µ ∼ N(µµ, σ2
µ) (2)

gi, gTF ∼ N(µg, σ
2
g) (3)

dj ∼ N(µd, σ
2
d) (4)

ri,j , rTF,j ∼ N(µr, σ
2
r ) (5)

ai ∼ N(µa, σ2
a) (6)

zi ∼ Bernoulli(θi) (7)

ǫi,j,k ∼ N(0, τ2
i,j) (8)

τ−2
i,j , τ−2

TF,j ∼ Gamma(α, β). (9)

Note that the error variance is allowed to be heteroge-
neous, i.e. different for each gene and condition. Prior
information about transcriptional regulation can easily be
incorporated viaθi parameters. The proposed model is

Figure 1. A graphical representation of the proposed
model. The boxes indicate loops over samplesi, condi-
tionsj, and replicatesk.

able to analyze only one TF at a time. The graphical
model is presented in Figure 1.

The unknown model parameters are estimated with
Gibbs sampling in WinBUGS [7]. Convergence to the
posterior is assessed using the potential scale reduction
factor method of Gelman et al. [8]. Posterior mean is used
as the final estimate for each parameter.

3. RESULTS

In simulations, our primary aim is to demonstrate that the
proposed model can detect the regulatory relations based
on prior information. The proposed model is also com-
pared to a simplified HEM [4], where the hierarchy dis-
tinguishing technical noise from the biological noise has
been dropped away. Note that the error hierarchy could be
added analogously to both models.

The proposed model is tested with simulated data gen-
erated from a model similar to the proposed model. We
consider a model that consists of 100 genes (i), 2 condi-
tions (j) and a single TF. The Gibbs sampling is initial-
ized with sample mean values and is run for 1000 burn-in
steps after which a sample of size 2000 is collected. The
potential scale reduction factor convergence diagnostic in-
dicates that this is typically sufficient for the Gibbs sam-
pling to converge. Parameters are set as follows:µg =
µd = µr = µa = 0, σ2

µ = 100, σ2
g = 1, σ2

d = 1, σ2
r = 1,

σ2
a = 1, α = 1, β = 0.5. For theµµ parameter we

use the empirical sample mean of all the measurements.
Data is generated from the above model (priors) except
that µ = 0 andai = ±1.5, the additive noiseǫ is sam-
pled from the standard normal, and 10% ofzi terms are
uniformly randomly set to 1, others are 0. In the first sim-
ulation we assume to have three replicates (k) and vary
θi ∈ {0.5, 0.55, 0.6, 0.65} for thosei that corresponds to
the underlying regulatory mechanisms (i.e., truezi = 1)
and θi ∈ {0.5, 0.45, 0.4, 0.35} for the others (i.e., true
zi = 0). In the second simulation we setθi = 0.5 for all i
and vary the number of replicatesk ∈ {2, 3, 5, 10}. Both



simulations are repeated 50 times and average results are
reported. Each individual simulation with 100 genes and
varying number of replicates takes only about (on the or-
der of) minutes to run in WinBUGS and, thus, the method
should be fast enough to analyze thousands of genes.

Figure 2 (a) shows how the proposed model can de-
tect the true regulatory relations from the simulated data
with varying degrees of prior information. For the receiver
operating characteristic (ROC) curves the potential target
genes for the TF are estimated by ranking the genes based
on the absolute magnitude ofai · zi term (averaged over
posterior samples). The same figure additionally com-
pares the performance of the model to a naive approach
where the regulatory relations are estimated by computing
the correlations between the estimated TF expression and
all the other genes’ expression measurements and picking
the most strongly correlating genes as potential targets for
TF regulation. While the comparison is slightly artificial,
it serves as demonstration about the potential of principled
data fusion approaches.

Figure 2 (b) demonstrates that as the number of repli-
cates increases the model performance increases as well.
This provides further evidence about the correct function-
ing of the model, but on the other hand also reveals in
part that it is somewhat prone to small sample sizes. Fig-
ure 2 (b) also suggests that prior information can be more
valuable than having more replicates of expression mea-
surements.

The second important difference of the proposed model
to the simplified HEM is its ability to detect differential
expression that is confounded by a strongly regulating TF.
In the proposed model the termrij captures the changes
in gene expression due other reasons than the potential
regulating TF. Since the comparison model, the simplified
HEM, does not take into account any direct regulation,
its estimates ofrij should be erroneus in the cases where
there some confounding TF regulator is present. Figure 3
presents the difference between the estimates ofrijs from
the proposed model and the comparison model in such
cases.

4. DISCUSSION

We have proposed a statistical model for gene expression
that can estimate separately the expression changes due
to TF regulation, and the expression changes due to other
reasons (unknown regulators etc.) The model is formu-
lated in Bayesian framework and integrates the knowledge
of about the potential regulators as prior data. We showed
with simulated data that the model i) detects the true reg-
ulatory relations better than simple alternatives, and ii)is
able to estimate the differential expression better than the
comparison models in the presence of the confounding TF
regulation. When there is no TF regulation present the
proposed model performs equivalently to the comparison
model.

The key aspect of the model is its ability to integrate
prior data, such as one that describes binding probabilities
of the TF proteins to the promoter regions of the genes.
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Figure 2. ROCs presenting the effect of (a) the prior
strength and (b) the sample size to the model’s ability to
detect the true regulatory relations, in comparison to a co-
expression based model.

Since the mechanism of integration of prior information
is desigend to be as simple as possible, model is versa-
tile enough to incorporate many kinds of binding informa-
tion, including for example ChIP-chip data and sequence
based computationally derived binding probabilities. In
particular, in the next stage, the proposed model is going
to be extended to utilize a novel probabilistic model pro-
viding binding probabilities based directly on the TF mo-
tifs and promoter sequence. Since the promoter sequence
is known practically for every gene for which expression
can be measured, this will enable the discovery of regula-
tory relations for any TFs whose motifs are known, in the
given experiment.

The priors we have used here represent sensible but ar-
bitrary choices. It is clear that they have strong effects on
the estimates, especially regarding the discovery of regu-



(a) The proposed model (b) The comparison model (c) Difference

Figure 3. The better ability of the proposed model to estimate differential expression in the presence of a confounding TF
regulation, in comparison to the simplified HEM. Subfigures (a) and (b) show the errors in estimates from the proposed
model and the comparison model for varying levels of regulation and expression changes due to other reasons (the true
rij ). The figures reveal the errors inrij are smaller for the proposed model than for the comparison model. Both models
also make some errors in the high absolute values of truerij , which is due to selected prior centered around value zero.
Subfigure (c) emphasizes how the difference between the models is largest when there is either a large positive or negative
TF regulation present by showing directly the difference between the estimates of the models. Note also that the difference
between the models’ estimates is zero when the true regulatory effect is zero. The estimates are computed from simulated
data sets including five replicates, by averaging over posterior samples and by fitting a plan for visualization purposes.

latory relations, but also with respect to other parameters.
In the next stage the model will be validated more thor-
oughly for suitable prior distributions.

While this work focused on studying the functionality
of the new model as such, the next stage will be applying
the model to real gene expression data with real prior in-
formation about the binding probabilities of TFs to gene
promoter regions.
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CP212, 1050 Brussels, Belgium

colsen@ulb.ac.be, pmeyer@ulb.ac.be,gbonte@ulb.ac.be

ABSTRACT

The reverse engineering of transcription regulatory net-
works from expression data is gaining much interest in
the bioinformatics community. This work studies the im-
pact of entropy estimation on network inference based on
mutual information. The study involves the recently pro-
posed open source R-package MINET for transcription
regulatory networks. Five entropy estimators, namely the
empirical, the Miller-Madow corrected, a shrinkage esti-
mate, the Schürmann-Grassberger Dirichlet and the Gaus-
sian are compared on a network inference task using syn-
thetically generated microarray datasets. The extensive
simulation setting allows us to study the effect of the num-
ber of samples and of the presence of missing values.

1. INTRODUCTION

The problem of reverse engineering of transcription reg-
ulatory networks from expression data is far from being
trivial because of the large number of genes and the poor
informational content of expression data [1]. The information-
theoretic approaches typically rely on the estimation of
mutual information from expression data in order to mea-
sure the statistical dependence between the genes [2].
This work studies the influence of noise, missing values,
different discretization and estimation methods on the MR-
NET method for inference of networks using synthetically
generated datasets. The study was carried out using the R-
package MINET [2] which allows the choice of different
inference methods, estimators and discretization methods.
The outline of the paper is as follows. Section 2 intro-
duces the entropy estimators and the discretization meth-
ods used in this paper. In Section 3 the R-package MINET
is presented and in Section 4 the performed simulation is
described. Finally Section 5 concludes the paper.

2. ENTROPY ESTIMATION

This section introduces the entropy estimators used in this
paper. Entropy estimation is important in network infer-
ence because it allows the computation of the mutual in-
formation matrix.
If X is a continuous random variable taking values com-
prised between a and b, the interval [a, b] can be discretized
by dividing this interval into |X | subintervals, the so-called
bins. In the followingX is an index vector. Further nb(xk)

is the number of data points in bin k andm =
∑

k∈X nb(xk)
the number of all data points. If X is a random vector
each element Xi can be discretized seperately into |Xi|
bins with index vector Xi.
Let X be a random vector and p a probability measure.
The (i, j)th element of the mutual information matrix (MIM)
is defined by

MIMij = H(Xi) +H(Xj)−H(Xi, Xj)
= I(Xi;Xj)

=
∑

ki∈Xi

∑
kj∈Xj

p(xki
, xkj

) log
(
p(xki

, xkj
)

p(xki)p(xkj )

)

where the entropy of a random variable X is defined as

H(X) = −
∑
k∈X

p(xk) log p(xk) (1)

and I(Xi;Xj) is the mutual information between the ran-
dom variables Xi and Xj .

2.1. Estimators

This section presents the employed entropy estimators.

2.1.1. Empirical

The empirical estimator, often called maximum likelihood
estimator, is the entropy of the empirical distribution

Ĥemp = −
∑
k∈X

nb(xk)
m

log
nb(xk)
m

. (2)

It has been shown in [3] that the asymptotic bias of the
empirical estimator is

bias(Ĥemp) = −|X | − 1
2m

. (3)

2.1.2. Miller-Madow

The Miller-Madow estimator, [3], takes the asymptotic
bias (3) into account and subtracts it from the empirical
estimator

Ĥmm = Ĥemp +
|X | − 1

2m
. (4)

This estimator reduces the bias without decreasing the vari-
ance.



2.1.3. Shrink

The shrink estimator, [4], proposes to combine two dif-
ferent estimators for the probability of an event with a
weighting factor λ ∈ [0, 1]

p̂λ(xk) = λ
1
|X |

+ (1− λ)
nb(xk)
m

. (5)

Let λ∗ be the value minimizing the mean square function,
see [4],

λ∗ = arg min
λ∈[0,1]

E

[∑
k∈X

(p̂λ(xk)− p(xk))2
]
. (6)

It has been shown in [5] that the optimal λ is given by

λ∗ =
|X |(m2 −

∑
k∈X nb(xk)2)

(m− 1)(|X |
∑

k∈X nb(xk)2 −m2)
. (7)

2.1.4. Dirichlet

The Dirichlet estimator is an example of the Bayesian en-
tropy estimation. The prior follows a Dirichlet distribution
with parameter vector β

f(X;β) =
∏

k∈X Γ(βk)
Γ(

∑
k∈X βk)

∏
k∈X

xβk−1
k . (8)

There are two possible approaches. For the first, the prob-
abilities are estimated and then plugged into the entropy
formula. If βi = N ∀i, this estimator, [4], is equivalent to
adding N “pseudo-counts” to each bin i

ĤBayes =
∑
k∈X

nb(xk) +N

m+ |X |N
log

nb(xk) +N

m+ |X |N
. (9)

The second approach consists of a direct computation of
the entropy via

ĤDir =
1

m+ |X |N
∑
k∈X

(nb(xk) +N) (10)

(ψ(m+ |X |N + 1)− ψ(nb(xk) +N + 1),

where ψ(z) = d ln Γ(z)
dz the digamma function, see [6].

Various values for N have been proposed [4] including
N = 1

|X | , known as the Schürmann-Grassberger-Dirichlet
(SG-Dirichlet) estimator which is used in this paper.

2.1.5. Gaussian

Let now X be a multivariate Gaussian, whose probability
density function with mean µ and covariance matrix C is
defined as

f(X) =
1√

(2π)n|C|
exp(− 1

2 (x−µ)T C−1(x−µ)) . (11)

The entropy of this distribution is given by

H(X) =
1
2

ln{(2πe)n|C|}, (12)

where |C| is the determinant of the covariance matrix, see
[7].
The mutual information between two variablesXi andXj

is then given by

I(Xi, Xj) =
1
2

log
(
σiiσjj

|C|

)
(13)

= −1
2

log(1− ρ2). (14)

where ρ is the Pearson’s correlation.

2.2. Discretization Methods

In order to use the described discrete estimators if the ran-
dom variable X is continuous, the space X has to be dis-
cretized. The two most used methods for discretization
are the equal width and the equal frequency methods [8].
If X takes values in the interval [a, b], the equal width
discretization method divides this interval into |X | subin-
tervals of the same size.
The equal frequency methods also divides the interval [a, b]
into |X | subintervals. Each of these subintervals contains
the same number of data points. Therefore the subinterval
sizes are likely to be different.

3. R-PACKAGE: MINET

The introduced R-package MINET1 allows the use of three
different inference methods, namely ARACNE, introduced
in [9], CLR in [10] and MRNET described in [2].
Furthermore different entropy estimators can be employed
for calculating the mutual information. The empirical, the
Miller-Madow, the shrink, the SG-Dirichlet and the Gaus-
sian estimator.
The first four estimators require discrete data. Two differ-
ent discretization methods are implemented in the pack-
age, either equal frequency or equal width discretization
with default size

√
|X |.

The inference proceeds in two steps. In the first step, the
mutual information matrix is calculated. In the second
step, the chosen algorithm is applied to the mutual infor-
mation matrix in order to compute a score that is used as
the weight between the network nodes.
The CLR algorithm computes the mutual information (MI)
for all pairs and derives a score related to the empirical
distribution of these values. The ARACNE method cal-
culates the MI pairwise for three genes. Eventually the
weakest edge of each triplet is removed.

3.1. The MRNET method

The MRNET method, [2], is based on the maximum rele-
vance/ minimum redundancy technique. Among the least
redundant variables the one having the highest mutual in-
formation with the target is chosen.
The method ranks the set V of inputs according to a score
which is the difference between the mutual information
with the output variable Y (maximum relevance) and the
average mutual information with the previously ranked

1http://cran.r-project.org/web/packages/minet



No. Dataset source net n m
1 ecoli 300 300 E.coli 300 300
2 ecoli 300 200 E.coli 300 200
3 ecoli 300 100 E.coli 300 100
4 ecoli 300 50 E.coli 300 50
5 ecoli 200 300 E.coli 200 300
6 ecoli 200 200 E.coli 200 200
7 ecoli 200 100 E.coli 200 100
8 ecoli 200 50 E.coli 200 50
9 ecoli 100 300 E.coli 100 300
10 ecoli 100 200 E.coli 100 200
11 ecoli 100 100 E.coli 100 100
12 ecoli 100 50 E.coli 100 50

Table 1. Generated datasets. Number of genes n, number
of samples m.

variables (minimum redundancy). The network is infered
by deleting all edges whose score lies below a given thresh-
old.
Direct interactions should be well ranked whereas indirect
interactions should be badly ranked.

4. SIMULATION

4.1. Network generation

In order to compare the results, artificial microarray data-
sets were generated by the SynTReN generator, [11]. It
generates the network topology by selecting subnetworks
from E.coli and S.cerevisia source networks. Interaction
kinetics are modeled by equations based on Michaelis-
Menten and Hill kinetics.
The generator was used to generate twelve datasets. The
details of each generated dataset can be found in Table 1
with respect to the numberm of samples and the number n
of genes. The datasets were generated without noise. The
noise was later added to analyze its impact on the network
inference.

4.2. Introducing missing values

To study the impact of missing values, missing values
were inserted into the generated datasets. The number
of missing values is distributed according to the β(a, b)
distribution with parameters a = 2 and b = 5. The max-
imal allowed number of missing values was a third of the
entire dataset. This distribution was utilized, instead of
the uniform distribution, because the latter one could have
favoured the empirical estimator.

4.3. Setup

For each experiment twenty repetitions were carried out.
Each dataset was analyzed with the MRNET method us-
ing the five available estimators: Gaussian, empirical, Miller-
Madow, shrink and SG-Dirichlet. Apart from the Gaus-
sian, all estimators were computed applying both available
discretization approaches. Furthermore, the computation
was carried out with added Gaussian noise,N(0, 0.1), and

without noise. Each of these setups was also assessed with
introduced missing values.

4.4. Validation

For each pair of nodes the inference algorithm adds an
edge or not. If the added edge is present in the underlying
true network, it is considered to be a true positive (TP), if
it is not present a false positive (FP). On the other hand,
an edge the agorithm did not add and which is not present
in the underlying network is called true negative (TN). If
this edge is present then it is called false negative (FN). To
validate the infered network the precision quantity and the
recall quantity, respectively,

p =
TP

TP + FP
(15)

r =
TP

TP + FN
(16)

have been introduced. The former one measures the frac-
tion of real edges among the ones classified as positive and
the latter one the fraction of real edges that are correctly
infered.
A weighted harmonic average of precision and recall is
given by the F-score [12]

F =
2pr
r + p

. (17)

To validate the simulation’s results, the maximal F-score
was computed for each experiment. Using a paired t-test,
the maximal F-scores were then compared and statisti-
cally validated.
The results of these calculations are displayed in Table 2.

4.5. Results

In Table 2, the maximal F-scores for each setup are listed,
In bold face are the best values and those values that are
not significantly different from the best value with respect
to each of the four categories based on a p-value less than
0.05. At first, it can be noted that in case of noise, missing
values, or both, the Gaussian estimator is the best com-
pared to the other employed estimators. The Gaussian
estimator is not strongly influenced by pertubed data. It
remains on an average level through all experiments.
Since the Gaussian estimator seems to be more robust to
missing data and noise compared to the other applied es-
timator, it should be utilized in case of a setup with few
samples.
In Table 4, it can be observed that in small sample regions
the Gaussian estimator is the best for every setup apart
from the case with no noise and no missing values.
The next notable observation is the absence of a signifi-
cant difference between the empirical, Miller-Madow, shrink
and the SG-Dirichlet estimator, given that the same dis-
cretization procedure is applied to all of them. Further-
more, there is a significant difference between the results
if the same estimator, computed with the equal frequency
approach, is compared to its counterpart using the equal



Estimator no noise noise no noise noise
no NA no NA NA NA

Gaussian 0.2006 0.1691 0.1790 0.1611
EqF Emp 0.3420 0.1551 0.1136 0.0868
EqF MM 0.3396 0.1524 0.11402 0.0923
EqF Shr 0.3306 0.1506 0.1150 0.0788
EqF Dir 0.3389 0.1478 0.1057 0.0827
EqW Emp 0.2028 0.1650 0.1036 0.0822
EqW MM 0.1909 0.1592 0.1068 0.0883
EqW Shr 0.1935 0.1574 0.1090 0.0839
EqW Dir 0.2099 0.1592 0.0968 0.0808

Table 2. Results using MINET with inference method
MRNET; noiseN(0, 0.1), number of missing values max-
imal one third of the dataset; in bold: maximum F-scores
and significantly not different values, based on p-value
0.05.

Estimator no noise noise no noise noise
no NA no NA NA NA

Gaussian 0.1920 0.1502 0.1821 0.1483
Emp 0.2975 0.1521 0.1111 0.0683
MM 0.2976 0.1479 0.1051 0.0687

Table 3. Results for number of genes n = 300, samplesize
m = 800, equal frequency discretization approach.

width discretization approach. It can be observed that us-
ing the equal frequency approach is generally better than
using the equal width discretization approach.
In case of high sample size and well behaved data with
no missing values, the empirical estimator should be used
with the equal frequency discretization approach, see Ta-
ble 3.

5. CONCLUSION

An experimental study on the impact of the influence of
different estimators, discretization methods, noise and miss-
ing values on network inference has been carried out.
It can be concluded that the usage of the equal frequency
method led to higher F-scores.
In case of a high sample number, the empirircal estimator
was, with a statistically significant p-value, among the es-
timators that led to an infered network with the highest F-
scores. In case of no noise, the F-scores were significantly
higher for the empirical and the Miller-Madow estimator
compared to the results from the Gaussian estimator.
Without missing values, the empirical estimator and the

Estimator no noise noise no noise noise
no NA no NA NA NA

Gaussian 0.1916 0.1455 0.1767 0.1461
Emp 0.3653 0.1286 0.1098 0.0654
MM 0.3592 0.1305 0.0996 0.0674

Table 4. Results for number of genes n = 300, samplesize
m = 100, equal frequency discretization approach.

other ones led to good results. However, if missing values
occur, the Gaussian estimator seems to be more robust.
Furthermore, in case of few sample sizes, the Gaussian
estimator should be preferred.
For all other estimators, a strong influence of missing val-
ues and noise could be observed. The F-scores dropped
by a significant amount compared to the results from cal-
culations without any missing values or noise.
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ABSTRACT

Liquid chromatography coupled to mass spectrometry
(LC/MS) has advanced to a leading technology for the
analysis of complex protein mixtures. Typical quantita-
tive proteomic studies aim at detecting differentially ex-
pressed peptides between different proteomes. Thus the
combination of several LC/MS maps is a crucial step in
a typical analysis workflow. Nonlinear shifts in the re-
tention time between LC/MS maps make this a nontriv-
ial task. We have developed a statistical two-step algo-
rithm for the retention-time alignment of a large num-
ber of LC/MS maps. First a clustering procedure detects
well-behaved compounds. Afterwards these compounds
are used to calculate a non-linear deviation curve for each
map. We evaluated our algorithm through a simulation
study. After the alignment most compounds are correctly
assigned.

1. INTRODUCTION

The method of LC/MS is highly suitable for the analysis
of complex protein or peptide mixtures as it allows good
separation, high sensitivity and easy automation. Thus
LC/MS can be used as a high-throughput method.
For an LC/MS experiment, first the protein mixture is di-
gested into smaller peptides. These peptides are after-
wards separated by the LC-column, typically according
to their hydrophobicity. The peptides elute from the col-
umn according to their chemical properties. The resulting
fractions are afterwards inserted in the mass spectrometer
where the peptides in each fraction are further separated
by their mass to charge (m/z). The data can then be pre-
sented in a 2-D or 3-D map, where the elution or retention
time is represented on the first axis, the m/z value on the
second axis, and the abundance is either depicted by color
or on the third axis.
One possible problem that may be tackled with LC/MS

∗ Both authors contributed equally to this work.

experiments is the detection of differentially expressed
proteins or peptides in different samples. This is of spe-
cial interest in clinical studies aiming at detecting differ-
ences in the proteome of healthy and diseased patients.
The hope is to find biomarkers that may then be used ei-
ther for diagnostics or as potential drug targets.
Typically a series of pre-processing steps is needed before
the differential analysis can take place [1, 2]. These steps
can be calibration, noise reduction, normalization, peak
detection and quantification. Sometimes single peaks are
further combined according to the isotopic distributions of
peptides or different charge states. Pre-processing gener-
ates a so-called feature or compound map for each LC/MS
map.
After pre-processing of single LC/MS maps the combi-
nation of several LC/MS maps is necessary for perform-
ing differential studies. Due to variation both in reten-
tion time and in m/z values it is hard to compare different
LC/MS maps. Aligning corresponding compounds is al-
ready difficult when the same sample is measured multi-
ple times. The deviations between LC/MS maps are even
larger when different samples are measured. While dif-
ferences in m/z values, which depend on the type of mass
spectrometer, are usually small and can be handled easily,
differences in retention time between two LC/MS runs can
be quite large, from several seconds up to several minutes.
Even worse, the type of deviation across the retention-
time axis often is nonlinear.
Hence, a lot of effort was spent on the construction of al-
gorithms that correct for the differences in retention time.
There are several approaches that may be applied at differ-
ent steps during pre-processing. Early methods presented
in the literature only work on total ion chromatograms
(TIC) that measure the total ion count in each fraction of
the LC [3, 4]. Other alignment algorithms are applied to
the complete raw 2-D images derived from LC/MS maps,
see for example [5]. Recently, also algorithms for align-
ment of compound maps have been proposed [6, 7]. For a



recent overview of alignment methods see [8].
The paper is organized as follows. In section 2.1 the pro-
posed new alignment procedure is briefly explained. Then,
a simulation study for evaluating the performance of the
algorithm is introduced. In section 3 the results of the
alignment algorithm are shown and discussed. Finally, a
discussion and outlook on future work is presented.

2. METHODS

Often the goal in high-throughput LC/MS experiments is
to detect clinically relevant differences in the proteome.
A suitable retention-time alignment algorithm thus needs
to be able to cope with a large number of LC/MS maps
corresponding to a sufficiently large number of patients.
Hence, an alignment algorithm based on the complex raw
data is typically not feasible. Aside from the size of the
datasets the noise still present in the raw LC/MS maps
makes it hard to align a large number of maps. On the
other hand, alignment algorithms based on TIC ignore
too much of the information that becomes visible only in
the 2-D LC/MS maps. Thus the retention-time algorithm
we propose works on compound maps that still comprise
much of the 2-D information but are less complex and less
noisy than the raw maps.

2.1. Alignment

Briefly, our new retention-time alignment algorithm works
as follows. First, a simple alignment based mainly on
mass (m/z values) is performed and groups of compounds
are identified that can be well aligned. Second, these
groups are then used for estimating a nonlinear retention-
time deviation curve for each sample.
Usually, in complex protein mixtures from the same
source, for example samples obtained from serum or urine,
there are a couple of highly abundant peptides that can be
identified in every LC/MS map. These compounds can be
easily aligned. State-of-the-art algorithms fit linear trans-
formations in retention time [6]. This is in disagreement
with our experience that often much more complicated de-
viations between LC/MS maps can be observed. These
deviations can not be fitted with linear or even quadratic
functions. Furthermore, as our algorithm is intended to be
used in clinical settings, there may be large time intervals
between the measurements of different samples. In such
cases deviations in retention times will tend to be even
larger and become more complex.
The input of the alignment algorithm aren compound
maps. The simple alignment in the first step of our al-
gorithm is based on a hierarchical average-linkage clus-
ter analysis applied to the compounds from alln com-
bined maps with the highest intensities in a fixed mass-
window. Knowledge about the mass precision of the spec-
trometer is used to determine coherent groups. From this
preliminary alignment ’well-behaved’ groups are picked.
Such a group must contain compounds from a predefined
minimum number of different of then runs and at the
same time is not allowed to contain more than one com-
pound from the same run. The mass window is itera-

tively shifted and the procedure is repeated. A slight over-
lap between windows is used in order to avoid the split-
ting of potentially well-behaved groups. The result of this
step are groups of aligned compounds ranging across the
whole mass domain. In analogy to [9], for each run, the
retention-time deviation for a single compound is calcu-
lated as the difference between the retention time of this
compound and the median of the corresponding retention
times for all runs in the same well-behaved group. This
procedure generates for every run a two-dimensional plot
with retention on the x-axis and deviation from the median
retention time on the y-axis. A two-dimensional scatter-
plot smoother can then be used to estimate a smooth func-
tion of retention-time shift along the time axis. For this
purpose we fit a locally weighted regression (loess) curve
to the retention-time deviations for each LC/MS run.
An advantage of the algorithm is that it can be applied to
the combined dataset of all compounds from all LC-MS
runs, since no master dataset has to be chosen to which
all other maps have to be aligned. The fitted curves are
then used to correct the shifts in retention time by simply
subtracting these estimated differences over time.
The retention-time alignment algorithm is implemented in
the statistical programming language R [10].

2.2. Simulation Study

To evaluate the performance of our alignment algorithm
we use a simulated dataset. This dataset is based on a real
LC/MS experiment ofE. Coli samples. We have com-
bined five LC/MS runs of thisE. Coliexperiment to obtain
a complex compound map (with more than 35.000 com-
pounds). We then assume that this map corresponds to one
true experiment, containing all compounds present in the
sample. Based on this map 20 LC/MS runs are simulated
in the following way.
First, a subset of all compounds is chosen for each LC/MS
run. This step mimics the problem, that in reality not all
compounds of a sample are found in every LC/MS run.
Each of the runs finally contains about 10.000 compounds
and thus can be seen as a highly complex sample as ob-
served in a real LC/MS experiment in which a sample of
serum of urine is used. Then, each compound is varied
randomly in retention time, in mass to charge (m/z) and in
intensity. The retention-time variations consist of a time
offset, a typical retention-time curve and an additive typ-
ical random error. The typical retention-time curves and
the random errors are estimated from a basic experiment
where one single peptide (phosphorylase b) is digested
and measured with LC/MS. Due to the small amount of
compounds in the single LC/MS runs for this basic exper-
iment, the different compounds can be matched visually
across runs and thus the retention-time deviation curves
can be estimated with high precision.
Our algorithm is applied to the simulated datasets. This
controlled scenario allows the objective evaluation of the
ability to identify corresponding proteins and to correctly
estimate shifts in retention time.



Table 1. Distribution of standard deviations of retention time of compounds across runs, in minutes.
Minimum 1st Quartile Median Mean 3rd Quartile Maximum

before alignment 0.0000704 0.3608 0.4815 0.4730 0.5775 1.9339
after alignment 0.0000185 0.0251 0.0356 0.0568 0.0500 1.1460

3. RESULTS

We present the results of the application of our new align-
ment algorithm to the 20 simulated LC/MS maps. Origi-
nally, retention-time deviations between different runs are
as large as up to 3.5 minutes. The variations in m/z are
maximally of size± 50 parts-per-million (ppm). This is
quite high compared to mass accuracies achieved by mod-
ern mass spectrometers. Thus we can check if the algo-
rithm even works when the mass accuracy is low.
The alignment algorithm is able to find a large number
of ‘well-behaved’ groups throughout the retention-time
range. Thus an alignment curve can be fitted to every
LC/MS run. Two typical curves are shown in Figure 1.
The alignment curves for the other simulated LC/MS runs
look similar.
We evaluated the performance of the alignment by com-
paring the deviations between retention times of corre-
sponding compounds in different maps. In the simulation
study, only a subset of the original full compound list is
chosen for each simulated LC/MS run. Therefore most
compounds are only present in a subset of the 20 simu-
lated LC/MS runs. We thus only use those compounds for
evaluation that are present in at least two simulated maps.
As only about 4.000 of the over 35.000 compounds are
present in only one run, enough compounds are left for
the evaluation. For the compounds present in at least two
maps the standard deviation in retention time across all
runs is calculated, once before and once after the align-
ment.
The results are shown in Table 1 and in Figures 2 and 3.
In Figure 2 logarithms of standard deviations are plotted
for better visibility. It can be seen that the alignment very
well corrects the original retention-time deviations. Only
few outliers still exhibit a large deviation across different
runs, mostly due to high random errors that were added to
the data during the simulation. The corresponding com-
pounds can not be aligned correctly any more as the values
only represent noise in the data.

4. CONCLUSION AND OUTLOOK

We have proposed a retention-time alignment algorithm
for LC/MS data that works on compound maps. We have
evaluated our algorithm on simulated data. The algorithm
is able to correct highly nonlinear retention-time devia-
tions as often seen in real LC/MS experiments.
The algorithm is currently also being evaluated on real
LC/MS data. First applications both on spike-in LC/MS
data and on a differential study with stimulated cells have
shown promising results. In these applications it is nec-
essary to bin together compounds from different runs that
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Figure 1. Retention time (RT) alignment curve for one
simulated LC/MS run. Each point depicts a compound
in a ‘well-behaved’ group with its retention time and de-
viation from the median retention time in minutes in the
corresponding compound group.

represent the same peptide in order to then perform dif-
ferential analyses. With this additional binning step one
can cope with some of the remaining variations in reten-
tion time after alignment. Thus a perfect alignment that
maps corresponding compounds exactly onto the same re-
tention time is not needed. An evaluation of a combined
alignment and binning approach is in progress.
Our results can be validated with the help of MS/MS ex-
periments that can be used for peptide identification. This
will enable an evaluation that checks if the right com-
pounds have been binned together after the alignment. In
comparison with other state-of-the art alignment
algorithms the algorithm shows a competitive behavior.
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Figure 2. Boxplot of log(standard deviations) of retention
time of compounds across runs, in minutes.
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Figure 3. Boxplot of maximum absolute difference of re-
tention time of compounds across runs, in minutes.
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ABSTRACT

The systematic assessment of rate variations across large
datasets requires a systematic approach for summarizing
results from individual tests. Often, this is performed by
coarse-graining the phylogeny to consider rate variations
at the level of sub-claded. In a phylo-geographic setting,
however, one is often more interested in other partitions
of the data, and in an exploratory mode a pre-specified
subdivision of the data is often undesirable. We propose
here to arrange rate variation data as the partially ordered
set defined by the significant test results.

1. INTRODUCTION

Rate variations are an important source of information in
evolutionary biology. Typically, one devises so-called re-
lative-rate tests (RRTs) for statistically significant rate vari-
ations between two species [1, 2, 3, 4] or between sub-
groups of species [5, 6]. Group tests, however, require an
initial hypothesis about which species to summarize. In
particularly in an exploratory phase this is typically unde-
sirable, since rate variations can be associated with many
very different mechanisms, for clade-specific changes in
mutation rates to differences in population structure.

In this contribution we therefore introduce an explo-
rative approach to summarizing the results of many pair-
wise RRTs. The basic idea is to arrange the individual
statistically significant pair-wise test results in a partially
ordered set. Inspection of the Hasse diagram of this graph
can then be used to identify systematic rate variations. In
particular, this approach has the potential to highlight sys-
tematic rate variations even if they do not conform to a
phylogenetic tree but correlate with other variables, such
as migratory history.

2. RELATIVE RATE PO-SET

2.1. Po-Sets

Recall that a partially ordered set,po-set for short, is a set
X together with a relation� satisfying
(P0)x � x.
(P1)x � y andy � x impliesx = y.
(P2)x � y andy � z impliesx � z.
A finite po-set(X,�) can be respresented as directed acyclic
graphG (by drawing an arcx ← y wheneverx � y and
x 6= y). The Hasse diagram ofG is the subgraphH of G
with the same vertex setX , and an arcx→ y if x→ y is
an arc inG and there is noz 6= x, y such thatz lies on a
directed path fromx to y in G.

2.2. Substitution Rates

Let X be a set a taxa, which we represent here by their
(aligned) nucleic acid or peptide sequences of lengthn.
Furthermore, letT be the underlying phylogenetic tree.
Each interior vertexw of the tree can be specified as the
last common ancestor w = lca(A, B) of two of the de-
scentsA andB of w so that the path connectingA andB
runs throughw.

The Hamming distancedAB = |{i|Ai 6= Bi}| counts
the positionsi in which the characters of the sequences
differ. Now consider a triple(A, B, C) of sequences. The
quantities

aABC = |{i|Ai = Bi = Ci}|,

mAB|C = |{i|Ai = Bi 6= Ci}|,

mAC|B = |{i|Ai = Ci 6= Bi}|,

mBC|A = |{i|Bi = Ci 6= Ai}|,

wABC = |{i|Ai 6= Bi 6= Ci 6= Ai}|

(1)



distiguish five classes of alignment positions: (i) constant
positions, (ii) positions in which all three sequence differ
and (iii) three classes of positions in which two sequences
are the same and the third one ins different.

The Hamming distancedAB can be decomposed into
three different components w.r.t. to a third sequenceC.
These correspond to the sequence position whereC agrees
with B (but not with A), the positions whereC agrees
with A (but not with B), and those where all three se-
quences differ:

dAB = mBC|A + mAC|B + wABC (2)

Now consider a subtree ofT consisting of three taxa
A, B, C so thatC is an outgroup toA andB:

A BC

lca(A, B)

lca(A, C) = lca(B, C)

(3)

Let us denote bya andb the lengths of branches between
A, B andlca(A, B), respectively. We have

2a = dAC + dAB − dBC = 2mBC|A + wABC

2b = dBC + dAB − dAC = 2mAC|B + wABC

(4)

and hence

a− b = mBC|A −mAC|B . (5)

Note thatmBC|A andmAC|B count independent sequence
positions, while the Hamming distances are dependent via
the common termwABC . Equ.(5) is the basis of Tajima’s
relative rate test [2], while the older Wu & Li test [3] uses
the differencedAC − dBC . Alternatively, one might want
to employ a suitable maximum likelihood test to assess
the significance of branch length differences [1, 4].

We can estimate the relative rate of evolution along
the branchesa andb for those comparisons that are sta-
tistically signficant according to the relative rate test of
choice. In the following, it will be more convenient to use
the following logarithmic measure

ηAB =

{
ln a

b
if a− b is statistically significant

0 otherwise
(6)

Next we show that for ideal data we do not have to fear
contradictory results of relative rate tests involving differ-
ent triples of taxa selected from the treeT. Recall that the
distancesdAB of leafsA andB in a additive metric tree
T are defined as the sum of the lengths of the edges along
the unique path that connectsA andB in T.

More precise, we have the following
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Figure 1. Example of a relative rate poset. Data are
5’UTRs of HIV-1. Thin lines in the r.h.s. panel indicate
significant Tajima tests, the thick lines represent the asso-
ciated Hasse diagram of the partially ordered set.

Theorem 1. The directed graph associated with η is acyclic
provided d is an additive tree metric on X .

Proof. First, we observe thatη is antisymmetric by con-
struction,ηAB = −ηBA. Thus there are no cycles of
length2. Next assumeηAB > 0 andηBC > 0. We have
to consider the following three cases

A B C
a b c

u u u

C AA C B B
a c b b c a

I II III

Translating the assumption in inequalities of branch lengths
in each of the three cases yields:

(I) a > b and b + u > c implies a + u > c, i.e.,
ηAC ≥ 0.

(II) a + u > b and b > c + u implies a > c, i.e.,
ηAC ≥ 0.

(III) a > b + u and b > c implies a > c + u, i.e.,
ηAC ≥ 0.

These three inequalities forηAC assume that the underly-
ing statistical test is “sane” in the sense that it never re-
turns a significantly larger rate for the short branch. Thus
ηAB > 0 andηBC > 0 always impliesηAC ≥ 0. Now
consider a chain of taxa{Aj|1 ≤ j ≤ m} such that
ηAj−1Aj > 0 for 2 ≤ j ≤ m. By repeated application of
the this result we concludeηAk,Al ≥ 0 for anyl > k, i.e.,
the {Aj} cannot be part of a directed cycle. Since there
is an edge from nodei to nodej iff ηi,j > 0, we con-
clude that the corresponding graph is a DAG, and hence
the matrixη is acyclic.
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Figure 2. Phylogenetic tree (neighbor joining) and Hasse diagram of the relative-rate poset of mtND1 nucleotide sequence
data of wolf spiders of thePardosa saltuaria group [7]. Significance level for Tajima testsp ≤ 0.1 (χ2 = 2.706), test
results of all subtrees included. Labels refer to geographic locations: North/South Scandinavia PN, PS; Eastern/Western
Riesengebirge PC, PR; Tatra Mountains PT; Alps PA, PL, PZ; Eastern/Western Pyrenees PP, PY; Balkans PB, PI; Bohemia
PH; Lago di Garda area PMTZ. Outgroup:P. palustris PAL, P. monticola MON1, P. mixta MIX.

In order to work with real data, we have to relax the
assumption thatd is an additive tree metric. The estimates
for a and b will then depend explicitly on the outgroup
C. Note, however, that these variations are small as long
as the data are at least approximately tree-like. We can
therefore estimateηAB as anaverage over all those triples
(A, B, C) for which the Tajima test demonstrates a sig-
nificant rate difference. Theχ2 value obtained from the
Tajima test can be used as weight of the individual esti-
mates. Numerically, we observe thatη is indeed acyclic
even when smallχ2 significance thresholds for the Tajima
test are used.

The construction of the matrixη starting from a se-
quence alignment using Tajima’s relative rate test has been
implemented in a software prototype. It either uses a phy-
logenetic treeT as additional input, or tests for all triples
(A, B, C) with outgroupC if dAC , dBC > dAB . In or-
der to facilitate the interpretation of the data, it produces a
graphical out that compares the phylogenetic tree with the
Hasse diagram of the po-set derived fromη, Fig. 1. Points
are positioned so that differences along the rate-axis are
approximately proportional to differences inη-values.

2.3. Loss of Phylogenetic Footprints

Relative rate tests can also be designed for more complex
settings than substitution rates in homologous sequences.
For example, the quantitative analysis of dynamical as-
pects of footprint loss and acquisition is complicated by
the fact that individual regulatory DNA regions cannot be
observed independently of sequence conservation. The
reason is that phylogenetic footprinting [8, 9, 10, 11] al-
ways detects regulatory elements in (at least) pairs of se-
quences. As a consequence, even very simplistic models

of footprint loss lead to rather sophisticated inference.
In the approach proposed in [12],two outgroups are

required to first identify conserved sequence positions, be-
fore one tests for differential loss rates among two ingroup
species. More precisely, consider a sub-tree of the follow-
ing form:

B AY C

lca(A, B)

lca(A, C)

(7)

Restricting the sequences to those positions for whichYi =
Ci holds, we define

cCA = |{i|Yi = Ci = Ai}|,

cCB = |{i|Yi = Ci = Bi}|,

cCAB = |{i|Yi = Ci = Ai = Bi}| .

(8)

Note thatcCA ≥ cCAB andcCB ≥ cCAB always holds.
The number of conserved positions exclusively lost along
the edgeA, lca(A, B) is m′

A = cCB − cCAB and sim-
ilarly, for B, lca(A, B) we havem′

B = cCA − cCAB.
One now tests whetherm′

A andm′

B are significantly dif-
ferent. The corresponding matrixη has entriesηAB =
ln(m′

A/m′

B) provided the difference is statistically signf-
icant, andηAB = 0, otherwise. For a fixed combination of
outgroupsY , C, we immediately check thatm′

A−m′

A′
>

0 andm′

A′
−m′

A′′
> 0 impliesm′

A−m′

A′′
> 0. We there-

fore expectη to be acyclic. Since the choice of a different
outgroup pair may lead to the selection of different con-
served position, we cannot logically rule out contradictory



test results in this case, however. The implementation of
this test is currently in progress.

3. EXAMPLE

The expansion of a species in a heterogeneous environ-
ment can be correlated with relative rates of evolution in
geographically separated subpopulations. The rate vari-
ation may be due to adaptation to different environmen-
tal conditions and due to changes in population size or
structure [13]. Slowly evolving populations are typically
large and stable, while small unstable populations exhibit
higher evolution rates. Multiple waves of migration thus
may lead to rate variations that show little correlation with
phylogenetic position.

As an example of a real-life data set we consider here
a recent comprehensive European-wide phylogeographi-
cal study of the arctic-alpine distribution of wolf spiders
of the Pardosa saltuaria group [7]. The data, mitochon-
drial ND1 gene sequences, show a complex picture of rate
differences, with some clear regularities.

For instance, the substitution rates are increased in al-
most all lineages relative to the samples from the the Pyre-
nees. This suggests that the Pyrenees served as glacial
refugia. The rate correlation between the sequences of the
Pyrenees and the Balkan individuals indicates a secound
glacial refugium in the Balkan mountains. However, the
data indicate migration out of the Pyrenees refugia only.
The data set also reflects one further cold period with refu-
gia in the Alps, Sudeten Mountains, and the Upper Tatra.

4. DISCUSSION

We have introduced here an a convenient way to visualize
and summarize information on significant rate differences
across larger phylogenetic data sets. The poset-approach
seems convenient for the exploratory phase of data anal-
ysis. As it stands our tool does not attempt to correct for
multiple testing, although a strategy such as Bonferroni’s
correction could easily be incorporated. We also note that
theO(N3) RRTs that can be performed within a given tree
are of course not independent from each other. It might
therefore be desirable to restrict attention to a less redun-
dant set of tests.
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ABSTRACT 

We investigate the fitness of stochastic mechanisms 
of phenotypic determination, in a model where cells’ re-
production is fitness dependent, within a variable envi-
ronment. Comparing the fitness of cells with stochastic 
and deterministic phenotypes, we find that only when 
cells can detect environmental conditions does stochas-
ticity provide better fitness. We analyze the result’s de-
pendency on environment variability rate and biases. 
Next, we evolve the rate of phenotypic state tra nsition 
via mutations in various conditions, and show correla-
tions between phenotypic variability and environmental 
variability. The results provide insights on how cells may 
use stochastic mechanisms to face environmental 
changes and how maintenance of latent phenotypes may 
provide higher fitness. 
 

1. INTRODUCTION 

Populations of genetically identical individuals have a 
wide diversity of phenotypes [1]. Stochasticity in gene 
expression and environmental conditions are two known 
sources of variability [1]. Physiologic noise is present in 
most biological processes such as gene expression [3], 
interactions between proteins, cells, tissues, and between 
organisms and the environment [2]. Complex phenotypic 
traits, such as some behaviors, depend on the interaction 
between gene expression and environment [5]. 

Some phenotypes are only expressed in certain condi-
tions. The phenotypic variability of a population can be 
produced by genetic changes, but also without these 
changes (e.g., via methylation) [4]. B. subtilis  has prob-
abilistic and transient differentiation, dependent on the 
environment [7]. Noise in ComK expression, the protein 
that regulates comp etence for DNA uptake, causes cells 
to transit to the competent state. Experimental reduction 
of this noise decreased the number of competent cells 
[12] suggesting t hat noise-driven mechanisms can evolve 
[7]. Importantly, in B. subtilis, initiation of competence is 
not affected by memory of previous events. 

Reversible differentiation between the states im+ to 
im- was observed in E. coli , lysogenic for λCI8B7 [11]. 

Differentiation is both spontaneous and responds to an 
external factor (temperature), and is a transmissible ability 
of physiological change without genetic change. 

Here we investigate the fitness value of inherent phe-
notypic variability and ability to switch between distinct 
phenotypes to cope with environment changes.  

Real cell types are confined patterns of gene activity, 
hence, were identified as attractors [6]. However, real 
gene regulatory networks (GRN) are subject to molecular 
noise; hence the precise closure of a state cycle is prob-
lematic [8]. To address this problem, the concept of er-
godic set was introduced, i.e., a set of states from which, 
once reached, the system cannot leave even due to noise 
[8]. If cell types are ergodic sets, and multi-cellular organ-
isms typically have multiple cell types, then GRN models 
must have more than one ergodic set. 

Here, we model cells with one ergodic set with two 
“noisy attractors”. Noise can induce transitions between 
attractors. Each attractor is assumed to express a pheno-
type better fit to one of two possible environmental 
states. Environmental state transitions are also stochas-
tic. This simple model appears to show the value of sto-
chasticity in phenotype determination and of mainte-
nance of phenotypic diversity in populations. 

The cells are given the ability to mutate the rate con-
stants controlling state transitions between the noisy 
attractors. We note that here we do not focus on the un-
derlying GRN required to express the phenotypes. Thus, 
no evolution is possible on how well a phenotype is 
adapted to the world. Only the choice of available pheno-
types is possible without genetic change (as in [11]).  

2. MODELS AND SIMULATION 

The models’ dynamics follow the Stochastic Simula-
tion algorithm [9] and are implemented in SGNSim[10]. 
Each cell’s dynamics is independent of the rest. In each 
generation cells’ fitness are measured. The best 50% are 
duplicated and their daughters simulated in the next gen-
eration. The others are eliminated. 

In Model 1, we model to two cell types (reactions 1 to 
8). Generation 1 (G1) consists of N identical cells, each 
with a 50% chance of being of type 1 or 2. Daughters 
inherit the type from the mothers. One cell type is unable 



to flip between its two possible states. The phenotypic 
variability of its population is created at G1. The other 
cell type can stochastically flip between its two pheno-
types. Cells are unable to regulate its internal state as a 
function of environment state. 

init
AW W→ , init

BW W→   (1) 

ACW
A BW W→ , BCW

B AW W→   (2) 

initS init
aSi→ , 

initS init
bSi→    (3) 

( )
aSi f l i p i

bSi←→     (4) 

a A*Si +*W r
ifit →     (5) 

b B*Si +*W r
ifit→      (6) 

b A*Si +*W (min:1) p
ifit+  → ∅  (7) 

a B*Si +*W (min:1) p
ifit+  → ∅  (8) 

Reactions (1) initialize the environment state (WA or 
WB). Only one can occur, once, in the beginning of the 
simulation (since W(t=0) = 1). Reactions (2) model envi-
ronment state transitions, i.e., switching between states 
WA and WB. Reactions (3) initialize the state of cell’s of 
G0 only. Index i indicates the cell type (1 or 2). Reactions 
(4) allow a cell to change its phenotype between Sa and 
Sb (a fixed phenotype is attained setting these reactions 
rate constants to zero). On average, at G1, 50% of the 
cells are type 1 and the rest type 2.  

A cell’s fitness equals its number of fiti units at the 
end of a simulation, computed by reactions (5) to (8). 
Reactions (5) and (6) allow gaining fit units, when cell 
and environment states match. If environment and cell 
are in opposite states, fitness is lost via (7) or (8).  

The number of fit units does not affect the penaliza-
tion for being in an “incorrect” state, since the propen-
sity of reactions 7 and 8 doesn’t depend on the number 
of fit i. The X(min:1) notation means that this quantity all 
contributes to propensity with value 0 if not existent and 
1 if existent, independently of its quantity. 

When a cell divides, all substances are duplicated and 
equally shared by the daughter cells, including fit units. 
The weak dependence of cell fitness on initial conditions 
is meant to mimic the fact that mother cells pass its mole-
cules, to its daughters, thus a fitter mother ought to pro-
vide a small initial “advantage” to its daughters. How-
ever, cells’ lifetime is set so that the initial state is not the 
main determinant of a cell’s survival, which depends 
mostly on the cell’s ability to cope with the environment 
during its lifetime. 

In Model 2 cell’s state transitions depend on the envi-
ronment state. Signaling molecules (sig i) are generated 
via reactions (9), and mimic cell sensors informing about 
the environment state. These decay via reactions (10). 
Signaling molecules carrying information contrary to the 
environment state are further degraded by (11): 

A*W sig
Asig→ , B*W sig

Bsig→  (9) 

dsig
Asig → ∅ , dsig

Bsig → ∅   (10) 

* D
B AW sig+ → ∅ * D

A BW sig+ → ∅ (11) 

To allow these signals to regulate state transitions we 
alter reactions (4), setting distinct rate constants: 

( )
aSi * flip i ab

b bsig Si+ →    (4a) 
( )

bSi * f l i p i b a
a asig Si+ →    (4b) 

In Model 3, the cell can regulate its state transitions. 
A mutation mechanism affecting the value of the rate 
constants “flip” is introduced for cell type 1. As the fitter 
cells are chosen, these rates ought to acquire local opti-
mum values. To mutate the rate constants (flipab and 
flipba) at run-time we introduce virtual substances (Ad w,z), 
two for each rate constant such that: if “Adab,up” quantity 
increases, flipab increases linearly. If “Adab,down” quantity 
increases, flipab decreases linearly.  

Creation and decay reactions of these substances are 
introduced, both independent of the substances quan-
tity, i.e., mutation of the rates constants values occur via 
a Markov pro cess. Let “Adw,z” be such that w is either 
“ab” or “ba”, and “z” is “up” or “down”. We add the 
following reactions to model 2 (setting kup = kdown): 

,* downk
w zAd → ∅     (12) 

,
upk

w zAd→      (13) 

Finally, in model 3, we change the way the propensity 
P of reactions (4a) and (4b) are calculated to: 

4 a a( ) .[Si ] . [ ] . [ A d ( a b , u p ) ]
P  =  

[ A d ( a b , d o w n ) ]
a b bf l ip i s ig   (14) 

4 b b( ) .[Si ] . [ ] . [ A d ( b a , u p ) ]
P  =  

[ A d ( b a , d o w n ) ]
b a af l ip i s ig   (15) 

As the quantities of the virtual substances change in 
time, via reactions 12 and 13, so will the propensity of 
reactions 4a and 4b. As the fitter cells are selected at 
each generation, one can observe which values of 

( ) .[Ad(ab,up)]
[Ad(ab,down)]

abflip i  and ( ) .[Ad(ba,up)]
[Ad(ba,down)]

baflip i  locally opti-

mize cell fitness in various environments. 
We now present the results of simulating the dynam-

ics of populations based on these three models. 

3. RESULTS 

Each simulation models 1000 cells per generation. 
Cells’ lifetime is 1000 seconds. Unless stated otherwise, 
rate constants (units in s -1) are: init = 109, 
CWa=CW b=0.01, flipab(1)=flipba(1)=0.01, r=1, p=0.1. We 
first compare the fitness of types 1 and 2, u s ing model 1, 
where cells have no information on the environment. 
Type 2 (fixed phenotype) almost always wins. In biased 
environments (e.g., 75% of the time as WA), is even more 
likely that type 2 wins. The results indicate that the abil-
ity to stochastically change phenotype doesn’t provide 
advantages without observing the environment. Al-
though both cell types have, on average, 50% of its cells 



adapted to the environment state at any time, any small 
disadvantage (due to stochastic fluctuations of pheno-
typic expression in type 1) is sufficient to unbalance the 
unstable equilibrium, since one is simulating finite popu-
lations. As type 2 population grows, its victory over type 
1 becomes ever more likely. 

Fig. 1 shows one time series of model 2 in an unbiased 
bistable environment. Stochastic state transition only 
provides selective advantage because phenotypic transi-
tions follow real time observations of the enviro nment (as 
is the case in λCI8B7 [11]). 
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Fig 1. Simulation of model 2. Percentage of the popu-

lation 1. Cell type 2 has fixed phenotype. Cell type 1 flip 
rate constant is 0.01s -1. 

 
We now analyze the population dynamics in biased 

environments. A biased environment is obtained by set-
ting different values for the rate constants of reactions 2, 
CWa and CW b. The ratio between them determines the 
expected time in each state. Fig 2 shows the outcome in 
various biased environments. Cell type 1 (fixed state) 
wins for highly biased environments since in these the 
environment is mostly in one state. Only rarely and for 
short time durations does the other state occur.  
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Fig 2. Fraction of wins of type 1 for various environ-
ment states biases (100 simulations per data point). 

 
The rate at which the environment state changes also 

affects the outcome. We simulated model 2 setting CW a = 
CWb, with various values (Fig. 3). The transition value of 
CW above which cell type 1 wins is 0.001, i.e., on average 
only 1 environment change occurs per cell lifetime. Below 
this value, on average, a cell will face the same environ-
mental conditions during its entire lifetime, making un-
necessary for survival the ability to flip, i.e., a cell with 
fixed phenotype, starting its life well adapted, will most 
likely remain so through its life. 
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Fig 3. Fraction of wins of cell type 1 for various state 
transition rates (100 sim. per data point). 

 
Using model 3, where cells are able to mutate the rate 

constants of the reactions responsible for phenotypic 
state transitions (reactions 4a and 4b), we now observe 
cell type 1 evolution when facing a biased enviro nment. 
We compare two cell populations (simulated separately). 
One is able to mutate the rate constants controlling phe-
notypic transition (adaptive), while the other cannot 
(non-adaptive). In all cells of G1, propensity of reactions 
4a and 4b are equal: P4a(t=0) = P4b(t=0). 
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Fig 4. Evolution of avg. and std. of fitness of popula-

tions of cells able (grey) and unable to mutate (black). 
 
Because CW b = 5. CWa, on average, the environment 

is in state A 85% of the time. Interestingly, in the popula-
tion of cells able to mutate, the fitness variability of the 
population decreased, while the cells unable to mutate 
maintained their fitness and variability constant. 

The fitness increase is due to fluctuations in the pro-
pensity of the reactions controlling cells’ state tra nsition 
(Fig. 4). The propensity to go from state Sb to Sa became 
by selection, much higher than the opposite, allowing the 
cells to remain in Sa most of the time (Fig. 5).  
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Fig 5. Evolution in 30 generations of the mutation pa-

rameters. These, multiplied by the flip rate constant, 
equal the propensity of reactions (4a) and (4b).  



 
Fig 6 shows the average fraction of time that  the 

adaptable cell population spent in state Sa. Interestingly, 
it stabilizes at ~95%, while the environment state is Wa 
only ~85% of the time. The solution adopted by this cell 
population appears to be to almost ignore transient envi-
ronment changes. However, a degree of stochasticity in 
phenotypic determination is maintained, rather than be-
ing nullified. Thus the cells can, in sudden changes in the 
environment state bias for example, quickly shift the 
population phenotypic comp osition, selecting from the 
few remaining cells that express the less common state, 
those that mutate to adapt to the new situation. 
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Fig 6. Evolution of the average fraction of time a cell 

spends in state A and average state flip rate (black lines: 
cells able to mutate; gray lines: cells unable to mutate). 

 

4. CONCLUSIONS 
We simulated a simple model to study selective ad-

vantages of stochastic phenotypic determination in a 
stochastic environment. Although using a simplistic 
model, where gene networks determining the phenotype 
were not explicitly modeled, our results agree with ex-
perimental observations. Probabilistic phenotypic deter-
mination provides selective advantages if transitions 
between latent phenotypes can be biased by environ-
mental conditions. This is the case in B. subtilis differen-
tiation [7] (a memoryless process), or lactose usage in E. 
coli [4] (where transitions depend on previous states). 

The model cells can adapt to environmental changes 
occurring sparsely in time, due to its inherent probabilis-
tic nature of choice of existing phenotypes. In highly 
biased worlds, adaptive cells were able to become non-
reactive to transient external changes while maintaining a 
degree of phenotypic diversity capable of coping with 
sudden change in environment state biases. 

We note that cells fitness improvement is far from 
trivial in this model. E.g., even if phenotype toggling and 
environment flip rates match, that doesn’t imply that cell 
and environment state will match. Nevertheless, the re-
sults show that adaptation is possible by mutation. Im-
portantly, stochasticity of phenotypic determination pro-
vides robustness to enviro nmental changes. 

While our simple model of cells could easily evolve to 
adapt to environmental biases, we note that adaptation to 
changes in the flip rate of an unbiased environment is 
harder. Further studies are required. Perhaps the diffi-
culty is related to the need of varying simultaneously the 
two parameters controlling state transitions rate. Other-
wise state transitions become biased which diminishes 
fitness. Associated with the uncertainty of the selection 
of even the fitter cells, evolution by mutation becomes 
even less likely to occur in this scenario. We finally note 
that, in general, population size affects the degree of ran-
domness of the outcome suggesting that, e.g., studies of 
survival ability of small populations ought not to be done 
using deterministic models.  

In the future, we aim to increase the complexity of 
phenotypic diversity, environmental conditions and im-
plement more realistic mechanisms of phenotype deter-
mination, namely, the gene networks expressing them. 
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ABSTRACT
We systematically study and compare damage spreading
for random Boolean and threshold networks under small
external perturbations (damage), a problem which is rele-
vant to many biological networks. We identify a new char-
acteristic connectivityKs, at which the average number of
damaged nodes after a large number of dynamical updates
is independent of the total number of nodesN . We esti-
mate the critical connectivity for finiteN and show that it
systematically deviates from the annealed approximation.
Extending the approach followed in a previous study [1],
we present new results indicating that internal dynamical
correlations tend to increase not only the probability for
small, but also for very large damage events, leading to a
broad, fat-tailed distribution of damage sizes. These find-
ings indicate that the descriptive and predictive value of
averaged order parameters for finite size networks - even
for biologically highly relevant sizes up to several thou-
sand nodes - is limited.

1. INTRODUCTION

Random Boolean networks (RBN) were originally intro-
duced as simplified models of gene regulation [2, 3]. In
the limit of large system sizes, they exhibit a dynami-
cal order-disorder transition at a critical wiring density
Kc [4]; similar observations were made for sparsely con-
nected random threshold (neural) networks (RTN) [5, 6].
For a finite system sizeN , the dynamics of both systems
converge to periodic attractors after a finite number of up-
dates. AtKc, the phase space structure in terms of attrac-
tor periods [7], the number of different attractors [8] and
the distribution of basins of attraction [9] is complex. Fur-
thermore, critical networks exhibit many properties rem-
iniscent of biological networks, leading to the ideaKc

might be an ”attractor of evolution” [3].
To ensure proper function, regulatory networks in liv-

ing cells have to be robust (insensitive) against external
perturbations. In terms of RBN/RTN dynamics, perturba-
tions can disrupt the generic dynamical state (fixed point
or periodic attractor) of the network, and hence are re-
ferred to as ”damage”; this type of study has been applied,

for example, to the perturbation of gene expression pat-
terns in a cell due to mutations [10].

Mean-field techniques as, for example, theannealed
approximation (AA) introduced by Derrida and Pomeau
[4], allow for an analytical treatment of damage spreading
and exact determination of the critical connectivityKc un-
der various constraints [11]. It has been shown that local
rewiring rules coupled to mean-field-like order parame-
ters of the dynamics can drive both RBN and RTN to self-
organized criticality [12, 13].

Studies of RBN/RTN dynamics based on the AA usu-
ally implicitly assume that, at least for largeN , principal
properties of damage spreading should not depend on the
initial perturbation size. For example, the determination
of Kc using a one-bit initial perturbation (sparse percola-
tion limit), or an initial perturbation size increasing with
N should yield the same value for largeN , since it is as-
sumed that correlations can be neglected in this limit by
averaging over a large number of different random net-
work realizations. In this paper, we extend results of a
previous study [1] and present the following findings that
are, at least in part, in clear contradiction to these assump-
tions:

• In section 3.1, we identify a new characteristic point
Ks < Kc, where the expectation value of the num-
ber of damaged nodes after large number of dynam-
ical updates is independent ofN .

• By the definition of marginal damage spreading, we
estimate the critical connectivityKc(N) for finite
N , and present evidence that, even in the largeN
limit, for small initial perturbationsKc systemati-
cally deviates from the predictions of the AA (sec-
tion 3.2).

• In section 3.3, we present new results proving that,
slightly belowKc, starting from random initial con-
ditions, the AA holds only for small timest, indi-
cating that after passing transient dynamics inher-
ent correlations considerably affect damage propa-
gation.
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Figure 1.Average Hamming distance (damage)d̄ after 200 sys-
tem updates, averaged over 10000 randomly generated networks
for each value ofK̄, with 100 different random initial condi-
tions and one-bit perturbed neighbor configurations for each net-
work. For both RBN and RTN, all curves for differentN approx-
imately intersect in a characteristic pointKs.

• Last, we show that vanishing, as well as large dam-
age events are overrepresented in damage size statis-
tics, leading to highly skewed distributions, which
are poorly characterized by averages (section 3.4).

2. DYNAMICS

2.1. Random Boolean Networks

A RBN is a discrete dynamical system composed ofN
automata. Each automaton is a Boolean variable with two
possible states:{0, 1}, and the dynamics is such that

F : {0, 1}N 7→ {0, 1}N , (1)

whereF = (f1, ..., fi, ..., fN ), and eachfi is represented
by a look-up table ofKi inputs randomly chosen from the
set ofN automata. Initially,Ki neighbors and a look-table
are assigned to each automaton at random.

An automaton stateσt
i ∈ {0, 1} is updated using its

corresponding Boolean function:

σt+1
i = fi(σ

t
i1

, σt
i2

, ..., σt
iKi

). (2)

We randomly initialize the states of the automata (initial
condition of the RBN). The automata are updated syn-
chronously using their corresponding Boolean functions.

2.2. Random Threshold Networks

An RTN consists ofN randomly interconnected binary
sites (spins) with statesσi = ±1. For each sitei, its state
at timet + 1 is a function of the inputs it receives from
other spins at timet:

σi(t + 1) = sgn




N∑

j=1

cijσj(t) + h.



 (3)

The N network sites are updated synchronously. In the
following discussion the threshold parameterh is set to
zero. The interaction weightscij take discrete valuescij =
+1 or−1 with equal probability. Ifi does not receive sig-
nals fromj, one hascij = 0.
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Figure 2.The critical connectivityKsparse
c (N) in the SP limit

as a function ofN . Curves are power-law fits according to Eq.
(9), straight dashed lines markKannealed

c andKs for RBN and
RTN, respectively.

3. RESULTS

3.1. Scaling

We first study the expectation valuēd of damage, quan-
tified by the Hamming distance of two different system
configurations, after a large numberT of system updates.
Fig. 1 shows̄d as a function of the average connectivityK̄
for different network sizesN by using a random ensem-
ble for statistics. For both RBN and RTN, the observed
functional behavior strongly suggests that the curves ap-
proximately intersect at a common point(Ks, ds), where
the observed Hamming distance for larget is independent
of the system sizeN .

We verified this finding quantitatively by using finite-
size-scaling methods [1]. In particular, one can show that
d̄ as a function ofN andK̄ obeys the following scaling
ansatz:

d̄(K̄, N) = a(K̄) · Nγ(K̄) + d0(K̄), −1 ≤ γ ≤ 1. (4)

It is straight-forward to show thatγ → −1 for small
K̄ → 0, and thatγ → 1 for densely connected networks
above the percolation transition (K̄ > Kc). Evidently,
this implies that at some characteristic connectivityKs,
there has to be a transition from negative to positiveγ val-
ues, withγ(Ks) ≈ 0. It is a very interesting question
whetherKs coincides withKc, or if it is different from
Kc for largeN . For a precise numerical determination of
Ks, one can make use of the fact thatd̄ exhibits an expo-
nential dependence nearKc:

d̄(K̄, N) ≈ c1(N) exp [c2(N)Nα K̄] (5)

with α ≈ 0.42. High-accuracy fits of this dependence
(with c1 andc2 as adjustable parameters) in the interval
1.6 ≤ K̄ ≤ 2.1 yield

(KRBN
s , dRBN

s ) = (1.875 ± 0.05, 0.62± 0.05) (6)

for RBN and, correspondingly,

(KRTN
s , dRTN

s ) = (1.729 ± 0.045, 0.51± 0.04) (7)

for RTN. We verified these findings up toN = 16384,
waiting T = 5000 updates for the dynamics to relax;
for even largerN , simulations become intractable due to



exponentially increasing relaxation times. Evidently, we
tend to miss large damage events since they need the most
time to develop. Facing this unavoidablebiased under-
sampling of large avalanches, one can argue that thetrue
values ofKs are probably even lower than our measured
values. From this evidence, and also from more refined
scaling arguments [1], we conclude thatKs is distinct
from Kc in the limit of largeN .

3.2. Deviations of Kc from the annealed approxima-
tion

Interestingly,Ks is close to, but distinct from the criti-
cal connectivitiesKRBN

c = 2 andKRTN
c = 1.845, as

predicted by the AA. Since in this study we consider the
limit of very weak initial perturbations which is usually
not covered in theoretical studies of RBN/RTN dynam-
ics, we now have to consider the possibility thatKc itself
may deviate from the prediction of the AA. An intuitive
definition of criticality for finiteN can be formulated in
terms ofmarginal damage spreading. If at time t one bit
is flipped, one requires at timet + 1 [11, 6]

d̄(t + 1) = 〈ps〉(Kc)Kc = 1, (8)

where〈ps〉(K̄) is the average damage propagation proba-
bility. Fig. 2 showsKsparse

c (N), using the valuesc1(N)
andc2(N) obtained from numerical fits of Eq. (5) for both
RBN and RTN. We find that both systems, in a very good
approximation, obey the scaling relationship

Ksparse
c (N) ≈ b · N−δ + K∞

c (9)

with b = 3.27 ± 0.79, δ = 0.85 ± 0.07 and K∞

c =
1.9082 ± 0.008 for RBN andb = 3.853 ± 0.76, δ =
0.736±0.05 andK∞

c = 1.7595±0.008 for RTN. Hence,
in the limit N → ∞, we can extrapolate

K∞,RBN
c = 1.9082± 0.008 (10)

for RBN, and for RTN

K∞,RTN
c = 1.7595± 0.008. (11)

Thus, for both RBN and RTN in the sparse percolation
limit, we make the surprising observation thatKsparse

c

systematically deviates fromKannealed
c . While we find

Ksparse
c (N) > Kannealed

c for smallN < 128, for larger
N we observe a monotonic decay that approaches an asymp-
totic value considerably belowKannealed

c , suggesting that
the observed deviations from the AA also hold in the large
N limit. In the following two subsections, we will extend
this analysis and discuss possible causes for these devia-
tions.

3.3. Time dependence of d̄

Since we found systematic deviations from the AA for
larget, it is interesting to ask whether the AA still holds
for smallt, starting from random initial states. In particu-
lar, one can derive the following recursive map for damage
propagation att > 0 [6]:

d̄(t) = N · 〈ps〉(K̄) ·
(
1 − e−K̄·d̄(t−1)/N

)
, (12)

Figure 3.Time-dependence of (average) damage propagation in
RTN of sizeN = 4096 just belowKc; damaged̄ at timet was
averaged over105 network realizations and100 different ini-
tial conditions (and the corresponding neighbor states with one
bit perturbed at random) att = 0 for each data point . Lined
curves are the corresponding solutions of the AA (Eq. (12)).For
t ≥ 20, pronounced deviations of simulation results from the
AA are found, in particular forK̄ = 1.8. Arrows indicate re-
sults with ”corrected” statistics, i.e. without ”pseudo-damage”
due to attractor phase lags.

where〈ps〉(K̄) is the average probability that a link propa-
gates damage. Let us now test this relationship in the inter-
esting rangeKs ≤ K̄ ≤ Kannealed

c for ensembles of ran-
domly generated networks (RTN with Poissonian degree-
distribution), with one-bit perturbations of randomly cho-
sen initial conditions. Figure 3 shows that, for smallt,
the dependence for̄d(t) found in numerical simulations
obeys this prediction very well. However, after an initial
decrease of̄d(t), anincrease above the initial damage size
(i.e. supercritical behavior) is found, in clear contradiction
to the AA. This indicates that, after the system has passed
transient dynamics, inherent dynamical correlations con-
siderably modify damage propagation (fractal structure of
attraction basins [9]). One can also show that ”pseudo-
damage” events , i.e. cases where networks run on the
same attractor, but with a phase lag captured in a non-zero
Hamming distance, donot substantially contribute to this
effect (arrows in Fig. 3). This proves that our results are
very robust against changes in the way statistics is taken.

3.4. Distribution of damage sizes

Let us now go beyond averaged (mean-field) quantities
and investigate detailed statistics of damage sizes. For this
purpose, for different̄K andN ensembles ofZe random
network realizations were created; for each network real-
ization, Zi random initial conditions~σ (plus a neighbor
state with one bit perturbed at random) were tested, and
statistics of damage sizes was taken after 1000 dynami-
cal updates. Notice that we donot average damage sizes
for a given network realization, since this would again
represent a kind of mean-field approximation. Figure 4
shows that the resulting statistical distributions nearKc
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Figure 4.Statistical distributionp(d) of damage sizes for three
different system sizes:N = 64 (+), N = 256 (x) andN =
1024 (*). Lined curves are solutions of Eq. (13).

are highly skewed, with more than90% events of van-
ishing damage size, and a flat tail of large damage events
which becomes more and more pronounced for increasing
N . Similar problems have been studied by Samuelsson
and Socolar [14] for the number ofundamaged nodesu in
the limit of exhaustive percolation. From symmetry con-
siderations, it follows that the probability distributionp(d)
of the numberd of damaged nodes in the limit of sparse
percolation obeys a similar dependence asu in the case of
exhaustive percolation, and hence

p(d) ≈ a(N) ·
exp [− 1

2 (d · N−2/3)3]
√

d · N−2/3
, (13)

wherea(N) is a free parameter. One finds that the results
of numerical simulations agree very well with this esti-
mate even for considerably smallN (Fig. 4). From the
shape of these distributions, one recognizes that vanish-
ing, as well as large damage events are much more proba-
ble than expected from mean-field considerations. In part,
this explains the deviations from the annealed approxima-
tion found ford̄ near criticality (Fig. 3), and it also ques-
tions in how far averaged quantities deliver an informative
description of RBN/RTN dynamics for finite sizeN .

4. DISCUSSION

We showed that, for very weak (one-bit) perturbations of
the initial states of RBN and RTN dynamics, the result-
ing damage at later times exhibits a non-trivial scaling
with network sizeN , and, near the critical order-disorder
transition - the so-called the ’edge of chaos’ - consider-
able deviations from the annealed approximation. These
deviations have escaped earlier studies, since usually the
rescaled damaged̄/N (or the overlap1 − d̄/N , respec-
tively) was studied, and the thermodynamic limit of large
N was considered. Our study indicates that there is a
strong need for more refined studies of damage propaga-
tion in RBN/RTN, that explicitly take into account dy-
namical correlations and the fractal structure of attrac-
tion basins [9]. One may expect that the situation is even
more complex for networks with more realistic topolo-
gies. Even for simple random graphs, as applied in this

study, damage size distributions are highly skewed, ques-
tioning the descriptive and predictive value of simple, av-
eraged order parameters for this class of complex systems.
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ABSTRACT

When developing parameter optimization methods for sto-
chastic models it is imperative to be able to compare the
model output with the learning data. Due to stochastic-
ity, it is not enough to study the norm of the difference
between the model output and the learning data. This
is the case also with models for cerebellar granule cell
which exhibits stochastic behavior and the responses to
repeated current stimulation vary slightly. In model-level
this means that we should get slightly different outputs
with the same set of parameters. In this work, new ways
of measuring similarity between the model output and the
learning data are introduced. We conclude that we are able
to produce responses with matching characteristics to ex-
perimental data.

1. INTRODUCTION

When developing automated parameter optimization meth-
ods for neuronal models it is essential to be able to com-
pare the output of the model with the experimental learn-
ing data. This can be done, for example, by studying the
norm of the difference between the model output data and
the learning data. The parameter values of the model are
considered optimized when this norm is minimized. It has
been shown, however, that this approach is not sufficient
for models describing the electroresponsiveness of neu-
rons [1]. For example, the difference between two traces
of firing data can result in a large value of the norm when
there is only a phase-shift between the traces. Usually, this
difference is so large that we would get a smaller value of
the norm if we would compare a silent trace to the exper-
imental data.

Cerebellar granule cell which is used as an example in
our studies exhibits stochastic behavior and the responses
to repeated current stimulation vary slightly [2, 3]. In the
model-level this means that we should get slightly differ-
ent outputs with the same set of parameters. Therefore, it
is crucial to consider alternative ways of measuring simi-
larity between the experimental data and the model output.
In this work, we use the mean firing rate, mean interspike
interval, standard deviation of the interspike intervals,and
the coefficient of variation to describe the characteristics
of experimental and simulated traces of firing data, and
call the two traces similar if these measures match. In

Figure 1. An example of the spontaneous intrinsic activity
of a cerebellar granule cell in culture recorded for 10 sec-
onds. The activity is recorded in the cell-attached config-
uration of the patch-clamp technique to obtain the timing
of action potentials in an undisturbed way.

the future, we can, based on these similarity measures,
construct automatic parameter optimization methods for
the stochastic Hodgkin-Huxley type of neuron model pre-
sented in [4].

2. METHODS

2.1. Stochastic neuron model

In the model,Vm(t) is the membrane potential, variables
xNaF,a(t, Vm(t)) andxNaF,i(t, Vm(t)) are the time- and
voltage-dependent gating variables for the activation and
inactivation processes of theNaF channels respectively
(other gating variables similarly). Furthermore,Wi =
{Wi(t), t ≥ 0} is Brownian motion, that is a Gaussian
process with independent increments. This means that all
finite-dimensional distributions of Brownian motion are
Gaussian,Wi(0) = 0 almost surely,E(Wi(t)) = 0 for all
t ≥ 0, andVar(Wi(t)−Wi(s)) = t− s for all t ≥ s ≥ 0.
In addition,dWi stands for the infinitesimal increment of
Brownian motion. See Equation (1) and Tables 1 and 2
for the details of the model. In the following we assume
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dxNaF,a = (αNaF,a(Vm)(1 − xNaF,a) − βNaF,a(Vm)xNaF,a)dt + σ1dW1

dxNaF,i = (αNaF,i(Vm)(1 − xNaF,i) − βNaF,i(Vm)xNaF,i)dt + σ2dW2

dxKDr,a = (αKDr,a(Vm)(1 − xKDr,a) − βKDr,a(Vm)xKDr,a)dt + σ3dW3

dxKA,a = (αKA,a(Vm)(1 − xKA,a) − βKA,a(Vm)xKA,a)dt + σ4dW4

dxKA,i = (αKA,i(Vm)(1 − xKA,i) − βKA,i(Vm)xKA,i)dt + σ5dW5

dxKir,a = (αKir,a(Vm)(1 − xKir,a) − βKir,a(Vm)xKir,a)dt + σ6dW6

dxCaHVA,a = (αCaHVA,a(Vm)(1 − xCaHVA,a) − βCaHVA,a(Vm)xCaHVA,a)dt + σ7dW7

dxCaHVA,i = (αCaHVA,i(Vm)(1 − xCaHVA,i) − βCaHVA,i(Vm)xCaHVA,i)dt + σ8dW8
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(1)

Constant Value Description
Rm 0.57Ωm2 membrane resistance
Cm 0.03 F/m2 membrane capacitance
Em -0.025 V equilibrium membrane potential
ENaF

+0.07 V equilibrium potential for Na+

EKDr
= EKA

= EKir
-0.075 V equilibrium potential for K+

ECaHVA
+0.14 V equilibrium potential for Ca2+

EBKCa
-0.085 V equilibrium potential forBKCa

B 5.2 · 10−6 mol/C constant for Ca2+ transfer into the cell
[Ca2+]rest 100 · 10−6 mol/m3 [Ca2+] at rest
τCa 1 · 10−3 s time constant for the decay of

intracellular free calcium
dcell 6 · 10−6 m diameter of the granule cell
dshell 1 · 10−7 m diameter of the shell defining the volume

in which calcium ions are processed
GNaF

400 S/m2 maximal conductance for NaF

GKDr
120 S/m2 maximal conductance for KDr

GKA
10 S/m2 maximal conductance for KA

GKir
28 S/m2 maximal conductance for Kir

GCaHVA
4.6 S/m2 maximal conductance for CaHVA

GBKCa
30 S/m2 maximal conductance for BKCa

pNaF
3 exponential for NaF activation

qNaF
1 exponential for NaF inactivation

pKDr
4 exponential for KDr activation

pKA
3 exponential for KA activation

qKA
1 exponential for KA inactivation

pKir
1 exponential for Kir activation

pCaHVA
2 exponential for CaHVA activation

qCaHVA
1 exponential for CaHVA inactivation

pBKCa
1 exponential for BKCa activation

Table 1. Parameter values used in the simulations (See Equation (1) and Table 2).



thatσi = σ for i = 1, . . . , 9.

2.2. Learning data

The learning data was obtained from primary cultures of
cerebellar granule cells using the cell-attached configura-
tion of the patch-clamp technique (see [5]). The method
allows the recording of spontaneous action potential firing
without breaking the cell membrane of the small granule
cell. The spontaneous activity in this study was recorded
from the cell soma without any externally applied stimuli.
The cell cultures were prepared from the cerebellum of 7-
day-old Wistar rats, as described in [5]. The cells were
used for recordings at day seven or eight in culture.

2.3. Statistical measures

First we take a look at the mean firing rate of a trace of
neuronal firing data. This gives us the average firing fre-
quency of the cell or the model. However, firing can be
very irregular, especially with small values of depolariz-
ing current, and the length of interspike interval can vary.
To capture this behavior we calculate also the standard de-
viation of the interspike intervals.

Variability in the firing produced by the stochastic mod-
el can also be assessed by examining the histograms of
interspike intervals (see Figure 2) with different values of
injected depolarizing current and different values of vari-
ableσ (see Equation (1)). The histograms reveal that the
value of variableσ has a major effect on the firing with
current pulses near the threshold of firing. With larger de-
polarizing current pulses firing becomes more regular and
the value ofσ does not have as clear an effect. This can
be observed from the histograms as a smaller deviation in
the interspike intervals.

We use the coefficient of variation (CV) of the inter-
spike intervals which is often used to quantify the regu-
larity or irregularity of neuronal firing data. A completely
regular firing has a CV of zero. Our studies show variabil-
ity in the mean firing rate when changing the value of pa-
rameterσ with depolarizing current pulses near the thresh-
old of firing. With depolarizing current pulses above the
threshold of firing the increase in the value of parameterσ
increases the irregularity of firing measured with the CV.
With depolarizing current pulses below the threshold of
firing, the increase in the values of parameterσ enhances
spontaneous activity, thus making the firing more regular.

3. RESULTS

In this study, we consider one trace of experimental data
and, by tuning the parameterσ in the stochastic neuron
model, produce statistically similar data with the model.
We use the statistical similarity measures discussed above.

By tuning the parameterσ, it is possible to simulate
data with similar statistical characteristics to experimen-
tal data. At this point, we select a range of test values for
the parameterσ and evaluate the similarity measures at
each value. For the data presented in Figure 1, we obtain
matching statistical characteristics when we setσ = 0.11.
For the data sets, mean firing frequency is 6.7 Hz, mean
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Figure 2. Histograms of interspike intervals. Firing is
simulated for 50 seconds with each depolarizing current
pulse,Iapp, and value of parameterσ. Three different val-
ues for depolarizing current and for the parameterσ are
used. Three upper panels show firing with depolarizing
current below the firing threshold (Iapp = 11 pA). Mid-
dle panels show firing with depolarizing current pulse just
above the firing threshold (Iapp = 12 pA). Lower panels
show firing with considerably larger depolarizing current
pulses (Iapp = 29 pA). Note the different scales for the
last row for illustrative purposes. Reproduced from [4].

interspike interval 0.3501 s, standard deviation of inter-
spike intervals 0.3512 s, and the coefficient of variation
1.0031. One realization of the model is shown in Figure
3.

4. CONCLUSIONS

We have characterized statistical properties of simulated
and experimental traces of neuronal firing data from cul-
tured cerebellar granule cells. We have used mean firing
rate, mean interspike interval, standard deviation of inter-
spike intervals, and the coefficient of variation to measure
similarity between different traces. Based on these mea-
sures we have tuned the stochastic model to produce sim-
ilar traces to experimental data.

We conclude that we are able to produce responses
with matching characteristics to real data. These kinds of
similarity measures can also be utilized when developing
new automated parameter estimation methods for stochas-
tic neuron models.

Estimation of stochastic neuron models is a challeng-
ing problem and has not been extensively studied in the
literature. The first order statistics of the firing data pre-
sented in this paper may offer one way of fitting the pa-
rameters of stochastic models describing the electrorespon-
siveness of neurons.
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ABSTRACT 

In this work we will present an automated image 

processing method for quantification of microscopic oral 

tissue images. The method provides quantitative mea-

surements developed for the better histological characte-

rization in the hematoxylin-eosin stained microscopic 

images. The rete processes shape analysis is targeted in 

this study and considered to be a key feature that diffe-

rentiates different grades in oral borderline malignancies. 

The method has been successful in the precise extraction 

of the desired histological feature. The method provided 

feature, which was of definite value, to compare the drop 

shaped roughness between the best pair match neighbor-

ing rete ridge units and aid to pathologists. 

 

Keywords: Oral cancer, rete processes, shape factors. 

 

1. I�TRODUCTIO� 

 

It is still difficult to make proper pathological diagnosis 

of oral borderline malignancies only by hematoxylin-

eosin stained specimens [1]. Diagnostic tools can be de-

veloped for objective analysis of microscopic images of 

oral tissues. The oral dysplasia and carcinoma in-situ 

(CIS) are two different grades located in the borderline 

malignancies of the oral mucosa. Those two grades are 

very similar to each other and it is difficult to distinguish 

between them and they often lead to considerable varia-

bility [2], [3]. It is important to note that different grades 

will necessitate different treatments, making such diag-

nostic decision a difficult responsibility for pathologists. 

In this paper we present a new automatic method that 

shows the distinction of CIS from dysplastic epithelia 

based on drop shaped variation findings of the rete 

processes rete ridge units. Our approach can be divided 

into several well-defined stages, illustrated in Figure 1. 

After image acquisition using high resolution digital 

camera, color segmentation in the HSI color space is ap-

plied in order to separate the epithelium region from the 

rest of the image. After segmentation, the main pixels at 

the border of objects are defined and referred to as ed-

gels. Next, a morphological operations based on dilation 

followed by thinning morphological operations are ap-

plied to connect the pixels. A chain code is designed to 

 

 

 

 
 

 

 

 

 

 

 
 

 
 

 

trace the boundaries of individual rete processes. The de-

tails of the method is described in Section III, while Sec-

tion II will give some important information about the 

histological characteristics of normal and malignant tis-

sues used to specify the criteria of malignancy that has 

been considered. Section IV describes the quantification 

results and Section V will discuss some specific points 

about this method. Finally, some concluding remarks are 

given in Section VI.  

 

2. HISTOLOGICAL FEATURES OF 

BORDERLI�E MALIG�A�CIES 

 

This section explains some basic concepts of histopatho-

logical diagnosis of the oral mucosa; however, it is not 

the aim of this paper to expose it in details that can be 

found in [1]. Here, we are going to highlight to the rete 

processes and their importance for diagnosis of border-

line malignancies of the oral mucosa. The rete processes 

(also known as basement membrane) is a histological 

key feature at the tissue level highly considered by oral 

pathologists for differentiating different grades of the 

oral mucosa. The rete processes can be defined as the 

edge segment that separate the epithelium region from 

the connective tissue and each unit of the rete processes 

is known as rete ridge. In contrast to normal and malig-

nant oral tissues, normal tissues are characterized by 

pointed shape rete ridges, while malignant tissues are 

characterized by drop-shaped rete ridges. Those charac-

Figure 1. Schematic structure of the method. 
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terizations were basically indicated by the WHO histopa-

thological classification for epithelial dysplasia and car-

cinoma in-situ [4]. When normal oral tissue moves to-

wards malignant transformation, its rete processes will 

start to be enlarged toward the connective tissue per-

forming a drop-shaped like rete ridges. The drop-shaped 

is, therefore, a strong malignant sign. Figure 2 shows 

some different drop shaped rete ridges selected from 

well pre-diagnosed samples of the oral mucosa agreed 

upon by different pathologists.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The drop shaped of the rete ridges in dysplasia and CIS 

can be obtained in different roughness shapes making 

such diagnostic decision a hard task to be solved by pa-

thologists’ eyes. In this paper, we are going to investi-

gate the drop shaped variation findings of the rete ridges 

using appropriate shape factors. In practice histology, it 

is common to observe two or more neighboring rete 

ridges similar to each other at a glance. Our method is 

based on shape comparison between the best pair match 

neighboring rete ridges as illustrated in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the precise extraction of the rete processes 

edge segments is needed in this study and will be ex-

plained in the next section followed by a shape quantifi-

cation method. The obtained values will help patholo-

gists to compare the degree of variation between the 

neighboring rete ridges to distinguish CIS from dysplas-

tic epithelia. 

 

3. MATERIALS A�D METHODS 

 

3.1 ORIGI� A�D ACQUISITIO� 

 

In this study, all biopsies were obtained using the same 

tissue processing. Starting with the fixation procedure 

that is commonly used to remove and keep the legion 

part followed by a sectioning procedure using micro-

tome. The microtome is fixed to slice the tissue into 5-

micrometer thickness. This very thin tissue is transparent 

and, therefore, hematoxylin and eosin (H&E) stains are 

added to emphasize the different parts of the tissue. The 

H&E staining is a well defined protocol used at different 

laboratories and can be found in [5]. The technical 

equipment used for the image acquisition included a high 

quality optical microscope and a high resolution camera 

(Nikon DXM1200C). Every image was acquired with 

the same magnifying factor on the microscope with im-

mersion. Manual interface was needed to adjust the in-

tensity in such a way the digitized image became visual-

ly accepted by a specialist. Our quantification method is 

independent of the minor acquisition and staining arti-

facts conditions and this will be discussed in Section V. 

 

3.2 SEGME�TATIO� 

 

In this work, we are interested in the rete processes and 

its rete ridges shape variations as a malignancy feature. 

Rete processes is an edge segment that can be obtained 

from the boundary pixels of the epithelium region, there-

fore, it is essential to segment the epithelium region from 

the rest of the image. Segmentation is a crucial step in 

this study with some challenges. The challenges are 

mainly from staining artifacts, lighting acquisition condi-

tions, and undesired touching objects. 

Epithelium segmentation was targeted in several studies 

[6], here it was obtained in the HSI color space based on 

the assumption that the epithelium region has a lower sa-

turation than the connective tissue. A global thresholding 

based on the Otsu method [7] has been used to determine 

the saturation value applied to the S component of the 

HSI color space. HSI color space is good at applying 

color in terms that are practical for human interpretation. 

It is believed that the epithelium is the biggest region in 

the image and it was selected.  Figure 4 illustrates the 

mentioned segmentation process. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Rete ridge samples of different oral grades. 

(a) Normal. (b) Dysplasia. (c) CIS. 

Figure 3. Best pair matches selection method. 

Figure 4. (a) Original. (b) Saturation component of HSI. 

(c) Biggest region selection. 

(a) (b) (c) 
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3.3 EDGEL PIXEL SELECTIO� 

 

Seeking for a precise extraction for the contour pixels of 

the epithelium that can be representing the rete 

processes, we used a wide angle edgel method that can 

be found in [8]. Edgels are an edge pixels located at the 

boundary of object. When someone takes a position at 

the front edge of an object, he or she will see nothing in 

the field of view through the line-of-sight distance as it is 

described in Figure 5 (a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P is an edgel element with a field of view     with respect 

to its two surrounding neighborhood pixels A and B. In-

side a window of size 7x7, only those pixels with a field 

of view of 90 degrees or higher to any of its surrounding 

pixels were selected as edgel pixel. Figure 5 (b) shows 

the obtained result. 

 

3.4 MORPHOLOGICAL OPERATIO�S 

 

The obtained image from the wide angle edgel method 

described in the previous section is made by sparse edgel 

pixels. A morphological operation based on dilation with 

4x4 square structural element followed by thinning ske-

letonization operation has been applied [9]. The spurious 

arcs were then removed from the image. Figure 6 (b) 

shows the output image of the morphological operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 CHAI� CODI�G 

 

We designed a chain code for our application in order to 

trace the connected pixels contour that represents the rete 

processes. The starting point of the chain code is always 

determined by the pixel located in the bottom most of the 

first left columns of the image that can be identified by 

the highest value of the y-axis coordinate. Going forward 

to the right side end of the image can be obtained by 

checking all the possibilities after every movement as il-

lustrated in Figure 7 (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a 3x3 window size, the movement priority of the 

chain code is always given to the next south side pixel. 

The obtained rete processes edge segment is shown in 

Figure 7 (b). 

 

3.6 CLOSI�G A�D SMOOTHI�G 

 

A half circle arc has been added to the extracted rete 

ridge curve in order to obtain a closed loop shape 

representing one rete ridge unit. The highest two peak 

points located at both side terminals of the rete ridge 

were identified and from a central point ‘C’ located at 

the half distance connect the two peak points a half circle 

arc has been added and we shall refer to it as a  hat.  The 

shape analysis factor used in this study is scale variance 

and, thus, different hat scales added to different rete 

ridges will have the same effect to the shape quantified 

results. Figure 8 (a) demonstrates the attached half circle 

arc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The obtained close loop contour is then smoothed by us-

ing 2% of the total descriptors in order to obtain a more 

regular shape that could represent sufficient levels of re-

ality in the histological image as shown in Figure 8 (b). 
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Figure 5. (a) Wide angle edgel method. (b) The ob-

tained result from the wide angle edgel method. 

(a) (b) 

θ

Figure 6. (a) Skeletonized image. (b) Result after 

spur removal. 

Figure 8. (a) Half circle arc attachment. (b) The 

smoothed rete contour using 2% of the descriptors. 

Figure 7. (a) 3x3 chain code movement priority. 

(b) The obtained result from chain coding. 
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4. QUA�TIFICATIO� 

 
As we mentioned in Section III, the aim of this study is 

to quantify the drop shaped roughness of the rete ridges 

using appropriate shape factors [10], [11] that can be 

used to compare between the best pair match neighbor-

ing rete ridge units. Shape circularity and roundness 

were used to measure the shape of the rete ridge units.  

Shape circularity and roundness are defined as: 

 

 

 

 

 

 

 

 

 

 

The circularity formula shows its sensitivity to the con-

tour variations while the roundness formula shows its 

sensitivity to the depth variations that always accompa-

nying the rete ridge growth and is highly considered by 

pathologists as a malignancy sign. 

Table 1 presents the results for the 6 test images. Each 

tissue sample image contains one best pair match neigh-

boring rete units indicated as left and right. The absolute 

difference between the left and right units is then com-

puted. 

The obtained results showed that difference between the 

left and right rete ridges in normal oral tissues consisted 

of small values and the difference increased with dyspla-

sia and becoming highest in CIS. 

 

 

 

 

 

5. DISCUSSIO� 

 

The method can be applied for different locations of oral 

borderline malignancies such as lips, tongue and buccal 

mucosa, and where the drop shaped rete ridge is a ma-

lignancy sign. The method is based on segmentation of 

the saturation component, which has a good robustness 

against the staining artifacts and the lighting acquisition 

conditions. The H&E staining protocol is well defined 

and only minor changes can appear at different images 

obtained from different laboratories.  

The quantification method is insensitive to the scale va-

riance; however, the tested images were obtained under 

the same magnification. 

 

6. CO�CLUSIO� 

 

An automated image analysis method has been devel-

oped for quantifying the rete processes units in the H&E 

stained microscopic images of the oral mucosa.  

The shape factors, including measures of circularity and 

roundness were used to examine the drop shaped rough-

ness of the rete ridge units. Those shape factors were 

used to compare the difference between the neighboring 

rete units. The obtained results showed that difference in 

shape factors for the best pair match neighboring rete 

units in CIS where higher than those in epithelial dyspla-

sia. 
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0.04 

 

0.82 
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Dys2 

 

0.75 0.05 0.80 0.59 0.08 0.67 

CIS1 

 

0.80 0.15 0.65 0.63 0.18 0.45 

CIS2 

 

0.64 0.14 0.78 0.41 0.18 0.59 
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Table 1. Quantification of the tested images. 
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ABSTRACT

Stochastic simulation is in widespread use for analyzing
biological pathways. Due to the limited efficiency of a
straightforward direct implementation such as the Gille-
spie algorithm, various improvements and approximate al-
gorithms have been developed. For user-friendliness it is
important to have efficient implementations available in
software tools. Another important issue is the statistical
accuracy of simulation results in terms of variances, confi-
dence intervals, or related measures. We address the prob-
lem of computing such statistics for Dizzy, a software tool
that has been recommended in a recent study of the user-
friendliness of software tools. Therefore, a mathematical
framework for statistical output analysis of simulation re-
sults is provided, the need for statistics as well as the lack
of user support in actually obtaining such statistics with
Dizzy and other tools is emphasized, and recommenda-
tions for future extensions of software tools are given.

1. INTRODUCTION

In the discrete-state stochastic approach to coupled chem-
ical reactions, the system state is defined by the popu-
lation of all involved molecular speciesS1, . . . , Sd. The
time evolution is described by a continuous-time Markov
chain(X(t))t≥0 whereX(t) = (X1(t), . . . ,Xd(t)) and
Xi(t) is the number of molecules of speciesSi present at
time t. The Kolmogorov differential equations governing
the system dynamics are expressed via the chemical mas-
ter equation (CME), which is a system of ordinary differ-
ential equations (ODEs) where the variables are transient
(time-dependent) state probabilities. Since the CME is
usually difficult to solve for large or stiff models, stochas-
tic simulation is often applied to analyze biological path-
ways. Rather than directly solving the CME, realizations
of Markov chain trajectories (sample paths) are generated.
Stochastically exact trajectory generation is often referred
to as the Gillespie algorithm in the context of chemical
reactions as Gillespie [2, 3] introduced the terminology
of the CME and thereby proposed to use stochastic sim-
ulation for system analysis. However, direct simulation
where each single reaction is explicitly simulated is ex-
ceedingly slow. Therefore, various modified implementa-

tions as well as accelerated approximate methods for en-
hanced trajectory generation have been proposed.

A major drawback of stochastic simulation that has
not received much attention in systems biology so far is
the statistical uncertainty due to the random nature of sim-
ulation results. Despite the fact that Gillespie’s algorithm
is termed exact, a stochastic simulation can never be ex-
act. The exactness of Gillespie’s algorithm is only ”in
the sense that it takes full account of the fluctuations and
correlations” [3] of reactions within a single simulation
run. It is common sense in stochastic simulation theory
that one should never rely on a single simulation run and
Gillespie already mentioned that it is ”necessary to make
several simulation runs from time0 to the chosen time
t, all identical with each other except for the initializa-
tion of the random number generator”. In fact, the reli-
ability of simulation results strongly depends on a suffi-
ciently large number of simulation runs, where an expla-
nation of the meaning of a sufficiently large number and
the determination of that number has to be carefully done
in terms of mathematical statistics. Even with approxi-
mate methods for accelerated trajectory generation still a
large number of trajectories is required in order to obtain
reliable and meaningful results with acceptable statistical
accuracy. Hence, in either case stochastic simulation is
computationally expensive and can only provide statisti-
cal estimates. Mathematically, it constitutes a statistical
estimation procedure implying that the results are subject
to statistical uncertainty.

An important point is tool support such that stochastic
simulation algorithms can be applied by practitioners who
need not be experts in stochastic simulation. Recently,
Mäkiraatikka et al [5] studied the user-friendliness of soft-
ware tools and among those studied, all of which had a
couple of shortcomings, they recommended Dizzy [6], cf.
http://magnet.systemsbiology.net/software/Dizzy.

We address the statistical accuracy of stochastic sim-
ulations. When we started our study, the initial intention
was to figure out how far accelerated generation of single
trajectories comes at the prize of an increased number of
trajectories necessary to provide a certain statistical accu-
racy. This obviously requires an appropriate framework
within which this accuracy is measured. It turned out that



currently neither Dizzy nor any of the other tools we are
aware of do provide any support with regard to statisti-
cal output analysis of simulation results. Consequently,
the major focus of our work changed towards introducing
an appropriate mathematical framework as well as com-
puting relevant statistical measures. While the mathemat-
ical framework is completely tool-independent, we dis-
cuss the computation and the further processing of nec-
essary information for statistical measures through Dizzy.
To come back to our initial intention we obtained several
statistics for two test cases but we did not find any essen-
tial differences in the statistical accuracy of the stochastic
simulation algorithms implemented in Dizzy. However,
this is far from being a general result because the lack of
support for statistical analysis and the quasi-manually and
thus extremely time-consuming computation of statistics
prevented more excessive studies and made it even hard
to verify the statistical accuracy for relatively small exam-
ples. Though we originally aimed at comparing different
algorithms, the statistical accuracy of stochastic simula-
tions is an important property for each algorithm in itself.
In fact, it is the only mathematical way to investigate the
reliability of simulation results. In practice, the number
of simulation runs is usually chosen very large but some-
what arbitrarily. Performing many more runs than nec-
essary for a certain desired statistical accuracy means a
significant waste of computer time. On the other hand,
too less simulation runs render the results meaningless.
Hence, it is highly desirable to have some rules giving
the required number of simulation runs. In particular, we
strongly emphasize the urgent need for integrating statis-
tical output analysis into Dizzy and other tools in a user
friendly way and we provide hints and recommendations
how this should be done.

The remainder of this paper is organized as follows.
In Section 2 we outline how simulation outcomes can be
formalized in a unified way such that they yield to sta-
tistical analysis. Measures for the statistical analysis are
given in Section 3. Then we present our test cases and
briefly describe how we computed statistics from the re-
sults provided by Dizzy. Finally, we give conclusions and
recommendations for future tool extensions.

2. FORMALIZING SIMULATION OUTCOMES

Stochastic simulations are nothing else than statistical es-
timations using computers. They generate realizations of
random variables with the help of random number genera-
tors. Similarly as for observations from laboratory exper-
iments, several properties can be derived from the realiza-
tions. Thus, from a statistical point of view repeated lab-
oratory experiments and stochastic simulations are equiv-
alent. The only difference is in the way realizations are
generated. In a laboratory experiment they are generated
within a physical real life environment whereas a stochas-
tic simulation imitates real life environments by using ap-
propriate rules.

In practice, each simulation run is finished at some
time and the outcome is a finite sequence of states where

state changes are triggered by reactions and several prop-
erties can be immediately derived for all species. Such
properties can be mathematically described as a function
f of the sequence of states. Since outcomes of stochastic
simulations are realizations of random variables and func-
tions of random variables are again random variables, the
property of interest is also a random variable. We denote
it by Y = f(X(t0), . . . ,X(tm)). Note that although the
set of reaction times is countable, yielding a sequence of
states, the time differences are in general not equal, i.e.
typically ti+1 − ti 6= tj+1 − tj for i 6= j. The random
variableY may be the number of molecules of a species
at some (not necessarily reaction) timet in which case it is
simply the projection to the relevant component ofX(t).
It may also be the mean number of molecules, the time
until a specific number of molecules has been reached or
exhausted. In general,Y might be any imageable property
that can be determined from a sample path. Each time a
realization is generated, it is different in general. Also it
will rarely ever exactly coincide with the ”true” valueY.
Statistical methods are required to assure that no wrong
conclusions are drawn from accidentally untypical exper-
iments. More precisely, a statistical estimation procedure
must be executed up to some predefined accuracy.

According to classical statistics one builds anestima-
tor from several (sayN ) stochastically independent and
identically distributed (iid) random variables, generates
N realizations via experiments, and estimates the prop-
erty of interest by the resulting realization of the estimator.
Since an estimator is itself a random variable it follows a
probability distribution with mean (expectation), variance,
higher moments etc. Hence, it is important to know its
fluctuation. The characteristics of the estimator, in partic-
ular its variance and measures derived from it, determine
the accuracy and the reliability of the estimate.

3. STATISTICAL ACCURACY OF SIMULATIONS

In this section we elaborate on the statistical estimation
procedure which is needed and performed in stochastic
simulations thereby focusing on the expectationE[Y ]. We
particularly emphasize the large time complexity and the
nevertheless remaining inherent uncertainty.

3.1. Point Estimators and Confidence Intervals

Given a sampleY1, . . . , YN , independent and identically
distributed as a univariate random variableY , the natural
estimator forE[Y ] is thesample mean

Ȳ =
1

N

N∑

i=1

Yi. (1)

It is important to note that the sample mean is anunbi-
asedestimator forE[Y ], i.e. E[Ȳ ] = E[Y ]. Unbiased-
ness of an estimator is an obviously desirable property,
but for more complicated properties than the expectation
often not so straightforward to obtain as it might appear.
As a simple example note that an unbiased estimator for



the varianceσ2(Y ) is given by

S2 =
1

N − 1

n∑

i=1

(
Yi − Ȳ

)2
, (2)

whereas the probably first suggestion to divide the sum by
N instead ofN − 1 yields a biased estimator.

As a random variable, an estimator is subject to statis-
tical uncertainty, and the question arising after an estima-
tor has been chosen is that of accuracy or reliability in a
statistical sense. Unbiasedness is not a sufficient criterion
to assure satisfiable accuracy. In addition the estimator’s
variance is of major importance. In fact, what is needed
to make proper statements on the accuracy, in particular
dependent onN , is aconfidence interval.

A confidence interval is a random (dependent on the
random sample) interval that contains the property of in-
terest with some predefined probability1−α, where1−α
is called theconfidence level, which is in practice usually
chosen as 90%, 95% or 99%. According to the central
limit theorem, for sufficiently largeN classical statistics
gives us the confidence interval

C =

[
Ȳ − z1−α/2

√
S2

N
, Ȳ + z1−α/2

√
S2

N

]
(3)

wherez1−α/2 denotes the1 − α/2 quantile of the stan-
dard normal distribution. An important point is how to
interpret confidence intervals. As explained above, exper-
iments generate realizations of all random variables in-
volved in the estimation procedure yielding specific val-
ues called estimates. In particular, for a given set of re-
alizationsy1, . . . , yN one gets a realization of the confi-
dence interval where endpoints are numerical values and
the confidence interval realization either containsE[Y ] or
not. Thus, there is nothing probabilisticafter the real-
izations have been obtained and the endpoints have been
accordingly set to numerical values. It is a wrong in-
terpretation that each single confidence interval realiza-
tion containsE[Y ] with probability 1 − α. The correct
interpretation is that if one constructs a large number of
100 ·(1−α)% confidence interval realizations, each based
onN experiments, the proportion (coverage) of those that
contain (cover)E[Y ] is 1−α. A direct consequence of the
correct interpretation of confidence intervals is that one
might obtain confidence interval realizations that do not
containE[Y ] at all.

3.2. Required Number of Simulation Runs

The width of the confidence interval suggests the amount
of variability in the estimated value. As the interval is
symmetric meaning that̄Y is the midpoint, it is sufficient
to consider the confidence interval half width. In non-
simulative computations the relative error is most often
more meaningful than the absolute error. Similarly, the
relative half width of the confidence interval is an appro-
priate measure of simulation accuracy.

In iterative numerical computations one proceeds by
iterating up to a given accuracy, more specifically up to

a maximum relative error. Analogously, a stochastic sim-
ulation can be viewed as a kind of iteration where sim-
ulation runs must be generated until the accuracy is suf-
ficient which means until the relative confidence interval
half width for a given confidence level is less than a given
maximum error bound. Obviously, the number of required
simulation runs is not fixed in advance since the realiza-
tions of the confidence interval depend on the specific out-
comes of the simulation runs. As an expression for the
number of simulation runs required to meet a predefined
maximum relative error ofβ and a confidence level of
1 − α expression (3) yields

N ≥
z2
1−α/2S

2

β2Ȳ 2
=

z2
1−α/2

β2
·

S2

Ȳ 2
. (4)

SinceS2 andȲ are estimators for the variance and the ex-
pectation, respectively, the ratioS2/Ȳ 2 is an estimator for
c2
Y = σ2/E[Y ]2, the squaredcoefficient of variationof Y

which is sometimes also called the (estimated)relative er-
ror of the estimator̄Y .

Now, we can put specific values for the confidence
level and the maximum relative error into expression (4).
Taking usual values such as a confidence level of 99%
and a maximum relative error of 10% we getz1−α/2 ≈
2.58, β = 0.1, and thusN ≥ 664 ·c2

Y . As we can seeN is
determined by the squared coefficient of variation which
is the reason that in some cases simulation can be very
proper whereas in other cases it results either in runtime
explosion or unsatisfactory inaccuracy. More precisely, if
c2
Y is close enough to zero, a moderate number of simu-

lation runs suffice but ifc2
Y is large, the required amount

of simulation runs grows enormously. As an extreme ex-
ample take a situation where a very small probabilityγ of
some event has to be estimated. Such a probability can be
estimated via the expectation of the event’s indicator func-
tion. Thenc2

Y = (1 − γ)/γ is extremely large for very
small γ. To be more specific, with the accuracy require-
ments stated above the required number of simulation runs
in (4) to estimate a probability of10−9 is N ≥ 6.64 ·1011.

Although the latter example might seem unrealistically
at a first glance, there are in fact a lot of situations where
exactly this problem occurs. Even if we are not concerned
with such extreme cases it must be noted that except for
cases where the squared coefficient of variation of the prop-
erty of interest is close to zero, simulation requires a large
amount of computer time and at least as seriously there
remains a non-negligible probability of getting a wrong
estimate.

4. OBTAINING STATISTICS IN DIZZY

The stochastic simulation algorithms available in Dizzy
are Gillespie’s direct method [2, 3], the so-called Gibson-
Bruck algorithm [1] which is an implementation of an
equivalent interpretation of the Markov chain dynamics,
and two versions of tau-leaping [4], an approximate mul-
tistep approach for accelerated trajectory generation.

Dizzy provides a graphical user interface as well as
a command-line interface. Unfortunately, neither of these



interfaces provides any support for statistical analysis.The
only related option is to compute steady state fluctuations
but with regard to potentially infinite time horizons within
a trajectory. We computed all previously introduced sta-
tistical measures manually for various parameter sets of
two test-cases. The first one, the enzymatic reaction set

E + S
c1−−⇀↽−−
c2

ES
c3−−⇀ E + P (5)

is one of the small examples that comes with Dizzy. The
second one is a part of the bacteriophageλ pathway, the
lysis-lysogeny switch whose reaction kinetics are given in
Table 1. As mentioned in the introduction, for these reac-

Table 1. Lysis-lysogeny switch in bacteriophageλ

2X
c1
−⇀↽− X2 dimerization

D + X2

c2
−⇀↽− DX2 binding 1)

D + X2

c3
−⇀↽− DX∗

2 binding 2)

DX2 + X2

c4
−⇀↽− DX2X2 binding 3)

DX∗

2 + X2

c5
−⇀↽− DX2X2 binding 3)

D
cs
−→ D + X slow transcription

X
cd
−→ ∅ degradation

DX2

cf
−→ DX2 + X enhanced transcription

tion sets we did not find any significant differences in the
statistical accuracy of the stochastic simulation algorithms
implemented in Dizzy. It does not make much sense to
present excessive tables in order to illustrate this. So, also
due to lack of space we omit it.

We were restricted to these rather small examples be-
cause all statistics had to be essentially computed man-
ually. Though Dizzy offers the opportunity for perform-
ing many independent simulation runs specified as the en-
semble size, it does not provide all ”subresults” for each
run. Three output options are available. The plot op-
tion yields, as the name suggests, a plot of the numbers
of molecules versus time but gives no numerical values.
The other options are tables and their storage where the
number of intermediate time points can be specified but
for each time point only mean values of molecular num-
bers averaged over the simulation runs are provided. That
is, only sample means are computed without variances,
etc. Therefore, we obtained the necessary information for
each simulation run one after another. More precisely,
for each configuration we performedN single simulation
runs by invoking the chosen simulation algorithmN times
by hand. The reader may imagine the enormous amount
of time wasted. In fact, this way the simulation became
interactive in that each simulation run had to be started
manually. Fortunately, Dizzy uses fresh random number
also when single runs are manually performed one after
another and not only when many independent runs are
performed automatically. Finally, we proceeded by trans-
ferring the outcomes of each run to a statistical software
package (S-PLUS) which provided us with the desired sta-
tistical measures.

5. CONCLUSIONS AND RECOMMENDATIONS

The statistical accuracy of stochastic simulations is an im-
portant but so far largely neglected issue in order to mea-
sure the reliability of simulation results. A mathematical
framework for unified statistical simulation output analy-
sis can be given by appropriately formalizing simulation
outcomes and handling the property of interest, formally
expressed as a function of random variables which is it-
self a random variable, by means of classical statistics.
User support for statistical analysis is lacking in current
software tools for simulating biological pathways. As sta-
tistical accuracy is essential for meaningful results, such a
user support is highly desirable and strongly recommended.
Hence, future extensions of software tools should inte-
grate the methods outlined here. It seems that this should
not be too difficult to implement and rather straightfor-
ward if the property of interest is related to the number of
molecules at one or more specific times. In such cases, all
required information is actually computed within a stochas-
tic simulation and it remains to appropriately process it
and provide it to the user. Another recommended feature
is to offer the user the opportunity to prespecify the de-
sired statistical accuracy, e.g. in terms of relative errors or
relative confidence interval half-width, and automatically
perform simulation runs until this accuracy is reached. It
would be also of interest to provide a more flexible speci-
fication of the time horizon for each simulation run. Prop-
erties of practical interest are times until the molecules of
certain species are exhausted or certain subsets of the state
space are reached. Accordingly, users should be allowed
to specify such terminating conditions for simulation runs.
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[5] E. Mäkiraatikka et al. Stochastic simulation tools
for cell signaling: survey, evaluation and quantitative
analysis. InProc. 2nd Conf. Foundations of Systems
Biology in Engineering, pages 171–176, 2007.

[6] S. Ramsey, D. Orrell, and H. Boulouri. Dizzy:
Stochastic simulation of large-scale genetic regula-
tory networks. Journal of Bioinformatics and Com-
putational Biology, 3(2):415–436, 2005.



USING NEIGHBORHOOD GRAPHS FOR THE INVESTIGATION OF
E. COLI GENE CLUSTERS

Theresa Scharl1,2 and Friedrich Leisch3

1Department of Statistics and Probability Theory, Vienna University of Technology,
Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria

2Department of Biotechnology, University of Natural Resources and Applied Life Sciences,
Muthgasse 18, A-1190 Vienna, Austria

3Department of Statistics, University of Munich,
Ludwigstraße 33, D-80539 München, Germany

theresa.scharl@ci.tuwien.ac.at, friedrich.leisch@stat.uni-muenchen.de

ABSTRACT

Clustering is commonly used in the analysis of gene
expression data to find groups of co–expressed genes.
The definition of gene clusters is not very clear as
genetic interactions are extremely complex. For this
reason the relationship between clusters is very im-
portant as co–expressed genes can end up in different
clusters. The neighborhood graph is a useful tool to
visualize the cluster structure. In this paper the R
package gcExplorer is presented which is an interac-
tive toolbox for the exploration of gene clusters. Ad-
ditional information about the gene clusters like the
annotation of genes to functional groups (e.g., GO
categories) can easily be investigated. The new visu-
alization toolbox is demonstrated on microarray data
from E. coli.

1. INTRODUCTION

Clusters of co–expressed genes can help to discover
potentially co–regulated genes or association to con-
ditions under investigation. Additionally they might
suggest pathways or interactions between genes. Clus-
ter analysis is frequently used for the first investiga-
tion of a microarray dataset before actually focussing
on particular functional subgroups of interest. Gene
interactions are extremely complex and the definition
of gene clusters is not clear. Further, gene expression
data are very noisy and co–expressed genes can eas-
ily end up in different clusters. In this context cluster
analysis is used as vector quantization as no clear den-
sity clusters exist. The data is divided into artificial
subsets where the relationship between clusters plays
an important role.

The visualization of the cluster structure is impor-
tant in order to investigate the relationships between
clusters. The display of cluster results is very help-
ful to make cluster analysis useful for practitioners.
The Neighborhood graph [1] can be used to display
distances between clusters for centroid–based cluster

solutions. Microarray data are high–dimensional and
complex datasets yielding a high number of clusters.
As the linear projection of the data into two dimen-
sions using for example LDA does not scale well in
the number of clusters there is a need for new visu-
alization techniques which can handle this situation
[2].

In this paper the R package gcExplorer is pre-
sented which is an interactive toolbox for the explo-
ration of gene clusters. The layout algorithms imple-
mented in the open source graph visualization soft-
ware Graphviz are used for non–linear arrangement
of the clusters. gcExplorer contains several possibil-
ities to investigate gene clusters. Further properties of
the clusters are included in the neighborhood graph,
e.g., cluster size or cluster tightness. Additionally ex-
ternal knowledge from differential expression analysis
or functional grouping can be used to investigate the
data. gcExplorer is currently available at the home-
page of the first author (http://www.ci.tuwien.ac.
at/~scharl/Software/) and will be released as an R
package ([3], http://www.R-project.org) soon.

The functionality of gcExplorer is demonstrated
on time–course gene expression data from NCBI Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/geo/), the Escherichia Coli data set with
GEO accession number GSE4357-GSE4380 [4]. E. coli
cells were sampled at several time points (0, 78, 105,
133, 163, 191, 218, 261, 313, 446, 1440 minutes) as
they recover from stationary phase versus the Bonner-
Vogel medium OD 0.5. After filtering out incomplete
and constant observations over time the data set con-
sists of 1672 genes at 11 time points.

2. NEIGHBORHOOD GRAPHS

Neighborhood graphs [1] can be used to visualize clus-
ter solutions of centroid–based cluster algorithms like
K–means and PAM or others where clusters can be
represented by centroids (e.g., QT–Clust, [5]). For a
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Figure 1. A neighborhood graph of a QT–Clust clus-
ter solution for the E. coli data.

given data set XN = {x1, . . . , xN} the distance be-
tween points x and y is given by d(x, y), e.g., the
Euclidean or absolute distance. CK = {c1, . . . , cK}
is a set of centroids and the centroid closest to x is
denoted by

c(x) = argmin
c∈CK

d(x, c).

Minimizing the average distance between each data
point and its closest centroid

D(Xn, CK) =
1
N

N∑
n=1

d(xn, c(xn)) → min
CK

is the task of most cluster algorithms.
Neighborhood graphs use the mean relative dis-

tances between points as edge weights in order to
measure how separated pairs of clusters are. Hence
they display the distance between clusters. In the
graph each node corresponds to a cluster centroid and
two nodes are connected by an edge if there exists
at least one point that has these two as closest and
second–closest centroid.

As described above the centroid closest to x is
denoted by c(x) and the second closest centroid to x
is denoted by

c̃(x) = argmin
c∈CK\{c(x)}

d(x, c).

The set of all points where ck is the closest centroid
is given by

Ak = {xn|c(xn) = ck}.

Now the set of all points where ci is the closest cen-
troid and cj is second–closest is given by

Aij = {xn|c(xn) = ci, c̃(xn) = cj}.

For each observation x s(x) is defined as

s(x) =
2d(x, c(x))

d(x, c(x)) + d(x, c̃(x))
.

s(x) is small if x is close to its cluster centroid and
close to 1 if it is almost equidistant between the two
cluster centroids. The average s–value of all points
where cluster i is closest and cluster j is second closest
can be used as a proximity measure between clusters
and as edge weight in the graph.

sij =

{
|Ai|−1

∑
x∈|Aij | s(x), Aij 6= ∅

0, Aij = ∅

|Ai| is used in the denominator instead of |Aij | to
make sure that a small set Aij consisting only of badly
clustered points with large shadow values does not
induce large cluster similarity.

3. SOFTWARE

R package flexclust [1] is a flexible toolbox for clus-
tering and contains extensible implementations of the
K–centroids and QT–Clust algorithm. The plotting
method for cluster solutions in flexclust is the neigh-
borhood graph using for example LDA for a linear
projection of the data into two dimensions. In gc-
Explorer the neighborhood graph is displayed us-
ing non-linear arrangement of the nodes (see for ex-
ample Figure 1). Bioconductor ([6], http://www.
bioconductor.org) packages graph and Rgraphviz
[7] provide tools for creating, manipulating, and vi-
sualizing graphs in R as well as several non–linear
layout algorithms.

3.1. Using gcExplorer

Now the functionality of the interactive software tool-
box gcExplorer is demonstrated on publicly avail-
able E. coli time–course gene expression data. The
dataset is clustered using the QT–Clust algorithm by
the following R commands

> library("gcExplorer")

> library("flexclust")

> data("GSE4363")

> cl1 = qtclust(GSE4363, radius = 3, simple = FALSE)

> gcExplorer(cl1, filt = 0.1)

The resulting cluster object consists of 17 clusters
and the corresponding neighborhood graph is plot-
ted using function gcExplorer (see Figure 1). The
graph is simplified by using the argument filt. In
this case edges between nodes are only drawn if the
similarity of a cluster to another cluster is at least
10%. The number of edges pointing from one node
to other nodes indicates how distinct the expression
profiles are within the corresponding cluster as well
as between clusters.

Now there are several possibilities to explore this
cluster result. Function gcExplorer is an interactive
function if interactive is set equal to TRUE so the
clusters can be investigated by clicking on the nodes
of the graph. Argument dev offers the possibility to
choose if each cluster should be opened in a new win-
dow or not. The display method for single clusters



is given by the argument panel.function. In the
case of expression profiles over time function gcPro-
file is used as the plotting function. However, any
kind of plotting method can be used instead as well
as the display of a cluster in form of an html table
with links for each gene to databases like NCBI En-
trez Gene (http://www.ncbi.nlm.nih.gov/sites/
entrez?db=gene). The interactive plotting method
can be obtained by the following R commands

> gcExplorer(cl1, interactive = TRUE, dev = "many",

+ panel.function = gcProfile)

There are several possibilities how to include ad-
ditional information about the clusters in the repre-
sentation of nodes. The most simple method is to use
color coding, e.g., to color nodes by cluster size or
cluster tightness.

3.2. Functional Grouping

The annotation of genes to categories or classes is a
very important aspect in the analysis of gene expres-
sion data. The genes can for example be mapped to
functional groups like Gene Ontology (GO, [8]) classi-
fications or to protein complexes. Gene functions are
very complex, therefore genes are usually mapped to
multiple classes. In any case the mapping is known a
priori and does not depend on the experimental data.

External information about the annotation of genes
to functional groups can easily be included in the
neighborhood graph, e.g., the accumulation of GO
classifications in certain gene clusters can be high-
lighted in the node representation. In the implemen-
tation several functional groupings are included, i.e.,
GO classifications about Biological Process, Molec-
ular Function and Cellular Component, the GenPro-
tEC ([9], http://genprotec.mbl.edu/) classification
system for cellular and physiological roles of E. coli
gene products and some information about operons
and regulons from the RegulonDB ([10],
http://regulondb.ccg.unam.mx/).

The information of interest can be included in the
node representation using the corresponding
node.function. Function node.go is used to high-
light clusters with accumulation of certain gene func-
tions. The functional group of interest is passed to
node.go by the argument node.args. In this ex-
ample genes assigned to the GO Biological Process
group (”gobp”) Metabolism (GO number 8152) are
highlighted. This is obtained by the following R com-
mands

> gcExplorer(cl1, interactive = TRUE, dev = "many",

+ panel.function = gcProfile,

+ node.function = node.go,

+ node.args = list(gonr = "8152",

+ source = "gobp"))

In Figure 2 a screenshot of an analysis of the E.
coli data using gcExplorer is given. Nodes of clus-
ters containing genes involved in metabolism are high-

lighted. Clusters 2, 5, 12 and 13 contain a large num-
ber of genes related to metabolism. Clusters 1, 3, 9,
14 and 16 contain a few genes related to metabolism.
In the top right of the screenshot an html table of
cluster 5 is shown containing links to NCBI Entrez
Gene. Additionally the expression profiles of several
clusters involved in metabolism are shown. The ex-
pression profiles are given with the 11 time points
on the x–axis and gene expression on the y–axis. A
legend containing the corresponding gene symbols is
added to each plot.

4. SUMMARY

Cluster analysis is commonly used to find groups of
co–regulated genes in a microarray dataset without
prior knowledge about the gene functions. However,
by clustering expression profiles groups of genes with
similar biological function are found. For this rea-
son clustering provides a good initial investigation of
the data before actually focussing on groups of genes
associated to conditions under investigation. As the
definition of gene clusters is not very clear and genetic
interactions are extremely complex the relationship
between clusters is very important as co–expressed
genes can end up in different clusters.

In this paper an interactive toolbox for the investi-
gation of gene clusters was presented. Neighborhood
graphs were found useful instruments for the inves-
tigation of the underlying cluster structure and for
gaining insight into the relationships between clus-
ters. gcExplorer is very helpful not only for statisti-
cians but also for practitioners to extract useful in-
formation from microarray experiments. It allows
not only to visualize the cluster structure, beyond
the gene clusters are plotted or shown in html tables
with links to databases. Additional properties of the
clusters like cluster size or cluster tightness can be
highlighted as well as external information like func-
tional grouping. Further extensions of the software
are work in progress like the generalization to arbi-
trary organisms.
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ABSTRACT

Time lapse video microscopy facilitates the observation
and analysis of individual cell fates. Information on cel-
lular development, divisional history, and differentiation
are naturally comprised into a pedigree-like structure, de-
noted as cellular genealogy. Characteristics of the differ-
entiation process are potentially imprinted in these cellu-
lar genealogies. Here we study a set of topological mea-
sures that are specifically tailored to extract typical cor-
relation patterns between characteristic cell death events
and to relate them to relevant biological processes. Using
a single-cell based, mathematical model of hematopoietic
stem cell organization we compare differentiation strate-
gies that are based on either the instructive or the selective
action of cell fate specific signals and show their conse-
quences on the level of the cellular genealogies.

1. INTRODUCTION

Although somatic stem cells play a central role in tis-
sue maintenance and repair as well as in cancer initia-
tion and progression, many questions about their orga-
nizational principles are still unresolved. For example,
it is an open question whether asymmetric cell division
events play a functional role for the maintenance of the
stem cell pool or if the observed developmental patterns
are induced by asymmetric cell fates which are not nec-
essarily linked to the cell division event [1, 2]. Moreover,
the nature of multipotency as well as of the dynamic pro-
cesses that initiate and regulate the specification of the di-
versity of functional cells (lineage specification) is only
insufficiently understood [3, 4]. In particular, there are
reports that lineage specification is aninstructive process
in which a combination of cytokines and cell fate specific
signals influences the gene expression pattern of an un-
differentiated cell such that certain lineages are promoted
whereas others are not. In contrast, it has been argued
that lineage specification isselective in the sense that the
intrinsic influence on the gene expression pattern is negli-
gible, but the regulation occurs on the level of differential
survival signals. In the latter setting, cytokines promote
the survival of certain lineages whereas cell determined
towards other lineages are not supported and consequently
undergo cell death [1, 3, 5].

Experimental approaches based on cell population av-
erages are mostly not able to answer the outlined ques-
tions for two reasons: first, stem cell populations have a
certain, hardly reducible, degree of inherent heterogene-
ity which makes it extremely difficult to initiate cultures
of identical and synchronized cells. Second, the popula-
tion approaches do not capture the temporal evolution and
chronology of cellular development as it occurs within a
single cell. However, it is precisely the development of
each individual cell and its progeny that represents a pos-
sible realization of the developmental sequence and re-
tains much of the necessary information: on the correla-
tions between differentiation and cell cycle regulation, on
the timing of lineage specification processes and cell death
events as well as on the role of asymmetric developments.

The application of time lapse video microscopy for
the analysis of cell cultures facilitates the tracing of single
cells, including all its progeny over extended time periods
up to several days. This comprises the temporal analy-
sis of cell specific parameters like morphology, cell cycle
time, motility or the occurrence of cell death within the
population context. All the different information on cel-
lular development, divisional history, and differentiation
can be comprised into a pedigree-like structure in which
the founder cell represents the root and the progeny is ar-
ranged in the branches. These pedigrees are referred to as
cellular genealogies.

Although the numerical methods are still under devel-
opment, the automised analysis of time lapse videos from
cell cultures will soon allow the simultaneous tracking of a
multitude of root cells. The expected resulting cellular ge-
nealogies represent unique examples of the developmen-
tal sequence as they occur under the particular assay con-
ditions. Statistical analysis of these cellular genealogies
can reveal typical patterns of cellular development as they
are imprinted in the topology. The main objective of this
work is the application of a set of recently proposed topo-
logical measures [9] to characterize the differences in the
cellular genealogies that have been derived using either
the instructive or theselective mode of lineage specifica-
tion. Since difficulties in the automatic identification and
tracing of single cells in current image-processing tech-
niques still limit the availability of experimentally derived
cellular genealogies, we use simulated in silico cell cul-



tures in order to approach the stated question. In par-
ticular, we obtain cellular genealogies from a single-cell
based computer-model of hematopoietic stem cell organi-
zation which is able to describe self-renewal, differenti-
ation and lineage specification within heterogeneous cell
populations and which has been verified for different in
vivo and in vitro situations [6, 7, 8]. Based on this model
we show how changes in the particular mode of lineage
specification (instructive vs. selective) influence the topol-
ogy of the cellular genealogies.

2. METHODS

Characterization of cellular genealogies. Cellular ge-
nealogies are derived from the tracking of a single, speci-
fied cell object (root cell) and its entire clonal offspring.

Technically, a cellular genealogy is an unordered tree
graphG = {C,D} in which the edgesC = {ci; i =
1, . . . , N} represent cells and the branching pointsD =
{di; i = 1, . . . , m} represent division events. Unordered
trees are characterized as trees in which the parent-daughter
relationship is significant, but the order among the two
daughter cells is not relevant. Each genealogyG is uniquely
identified by its root cellc0 ∈ C0 which is the cell that
had been chosen as the initial cell of the tracking pro-
cess. Within such a structure cells are ordered into sub-
setCg according to their generationg, starting with the
root cell c0 ∈ C0 and followed by the daughter cells in
the first to thegth generation (ci ∈ C1, C2, . . . ). To each
cell ci belongs either a subsequent division eventdj , giv-
ing rise to two daughter cells (ci ∈ Cdiv, with Cdiv rep-
resenting the subset of all cells which undergo division),
or the cell’s existence terminates without a further divi-
sion either by cell death (ci ∈ Cdeath, with Cdeath repre-
senting the subset of all cells which die within the obser-
vation period) or by termination of the tracking process
(ci ∈ Cterm, with Cterm representing the subset of all cells
with censored observation, i.e. no information about fu-
ture cell fate available). Final cells are termed leaf cells,
i.e. Cleaf = Cdeath ∨Cterm. The degree of relationrpq be-
tween any two cellscp andcq is defined as a topological
distance which measures the number of divisions between
cellscp andcq. Daughter cells that share the same parental
cell are termed siblings. A schematic representation of a
cellular genealogy and an illustration of the distance mea-
sure are provided in Figure 1.

The temporal dimension of the tracking process is usu-
ally encoded in the length of the edges; however this is
an associate information rather than a genuine topological
parameter.

Generation of cellular genealogies. Cellular genealo-
gies are generated from a single-cell based, mathemat-
ical model of hematopoietic stem cell organization that
has been developed in our group [6, 7, 8]. Within the
model stem cells are able to reversibly switch between two
characteristic states: proliferating and quiescent. Cells
that have lost their propensity to change into the quiescent
state continue regular cell divisions within a proliferation
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Figure 1. Schematic sketch of a cellular genealogy.
Within the given five generation genealogyG the thin hor-
izontal lines represent the cellsci ∈ C whereas the divi-
sionsdi ∈ D are marked by the thick vertical bars. The
horizontal dimension is timet with the founding root cell
c0 indicated on the left side. The degree of relationrpq

between any two cellscp andcq is given by the number of
divisions between them. For example, cellsc6 andc8 have
a degree of relationr6,8 = 4 (separated by the divisions
d3, d1, d2, andd4).

phase (differentiating cells) and are finally removed from
the system after a subsequent maturation phase without
further divisions.

In this model lineage specification is described by in-
tracellular propensities for the development of particular
lineage fates. Whereas the quiescent state equalizes the
lineage specific propensities (uncommitted state), the dom-
inance of one or another lineage is established in a stochas-
tic process during proliferation, indicating the process of
lineage commitment. In particular it has been assumed
that bi-potent progenitor cells are influenced by the (in
silico) conditions such that only one of the two possible
lineage fates is promoted and the other one is largely sup-
pressed. For the scope of this work two different modes
of lineage specification have been applied. In theselec-
tive mode, we assume that the cell-intrinsic commitment
process is unbiased and promotes the development of both
possible lineages. However, there is a targeted cell death
process preferentially affecting cells that initiated devel-
opment towards the suppressed lineage, whereas the pre-
ferred lineage is largely unaffected. In contrast, in thein-
structive mode, the cell-intrinsic commitment process is
biased towards the preferred lineage. In this scenario, cell
death occurs randomly in all cells. The parameter config-
uration has been chosen such that the population kinetics
are indistinguishable for both scenarios (Figure 2).

For the application of a number of statistical measures
we compare two sets of 500 cellular genealogies, derived
either under theinstructive or theselective mode of lin-
eage specification. In particular, we have initiated two
cell populations of 500 initially undifferentiated, bi-potent
cells with impaired self-renewal ability which undergo the
desired lineage specification process generating one of the
two possible cell types. The tracking process for each of
the genealogies extends over 200 hours.
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Figure 2.Population development. The growth kinetics
(A) and the temporal development of the lineage specifi-
cation (B) are shown for both cell populations (500 initial
cells in either theinstructive or selective mode of lineage
specification). In (B) the decline of undifferentiated blast
cells and the appearance of committed cells of generic
type A are provided.

3. RESULTS

Addressing the structural differences in the shapes of the
genealogies generated by use of either theinstructive or
theselective mode of lineage specification we apply a set
of measures that we described previously [9]. In partic-
ular the measures on the total number of leaves and the
characteristic path lengths are indicators of the expansion.
In Figure 3A a boxplot for the distribution of the num-
ber of leaves (L = |Cleaf |) is provided for both modes of
lineage specification. Since the population kinetics in Fig-
ure 2 have been fitted to resemble almost identical growth
behavior of the cell cultures, these findings are reflected
on the single cell basis, too. Also for the application of
weighted Colless’ indexCw in Figure 3B , which is a nor-
malized measure of the imbalance within the tree branches,
no significant differences in the frequency of occurrence
for the 500 sample genealogies can be found.

However, as we have outlined previously, it is the prox-
imity between cell death events which can potentially re-
veal whether two events are correlated or not. In particu-
lar, one assumes, that closely related cells share a similar
stage of development, such that these cells undergo sim-
ilar regulating processes, like induced cell death due to
selective lineage specification. In this scenario, cell death

events should occur closer to each other, and more often,
preferentially in sibling cells.

In Figure 3C we show a boxplot for the distribution
of the distance between a cell death event and the closest
other cell death event (rp = minq(rpq ; cp, cq ∈ Cdeath),
averaged over all “dead cells” within a particular geneal-
ogy. It is obvious that theselective mode of lineage spec-
ification leads to shorter average minimal distances be-
tween such cell death events. Furthermore, we have an-
alyzed the fraction of sibling pairs (two cells directly de-
rived from on common parental cells) in which both cells
undergo cell death before they can initiate a further cell
division (cp, cq ∈ Cdeath; cp, cq are siblings). As the cor-
responding boxplots in Figure 3D indicate, this fraction is
increased for theselective mode of lineage specification
as compared to theinstructive mode.

4. DISCUSSION

The availability of time lapse video microscopy and the
establishment of efficient image-processing methods will
soon allow the “high throughput” tracing of single cells
within cell cultures. The interpretation and management
of the resulting cellular genealogies is a challenge to ex-
perimental and theoretical biologists alike. We showed
that cellular genealogies bear a number of additional in-
formation which is not accessible on the population level.
We demonstrated that the application of suitable measures,
such as the average minimal distance between cell death
events or the fraction death sibling cells, is appropriate
to distinguish different modes of lineage specification. In
particular, theselective mode of lineage specification is
characterized by an increased fraction of death siblings as
compared to theinstructive mode while the average min-
imal distance between cell death events is considerably
reduced.

We are aware that the application of the outlined mea-
sures to a set of experimentally derived cellular genealo-
gies does not ultimately allow the identification of the par-
ticular mode of lineage specification since the necessary
reference scenario is missing. However, we take this as a
strong argument in favor of our modeling approach. Given
the population kinetics for the cell culture in question, the
mathematical model can be adapted using either thein-
structive or the selective mode of lineage specification.
The resulting genealogies can act as the reference scenar-
ios to which the experimental data is finally compared.
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ABSTRACT
Stem cells therapy is currently at the frontier of biomed-
ical research. A better understanding of the metabolism
of stem cells is necessary to improve and extend initial
promising results. Nuclear Magnetic Resonance Spec-
troscopy (NMR) allows for a precise measurement of
metabolites in cell extracts. The identification and quan-
tification of these metabolites is essential to model cellu-
lar metabolic network activity. To meet clinical standards
and high throughput demands a full automatic evaluation
is required. A NMR signal processing system is presented
and initial results for the identification and quantification
of metabolites from murine hematopoietic progenitor cell
extracts (FDCPmix cells) and simulated spectra are given.

1. INTRODUCTION

Nuclear Magnetic Resonance Spectroscopy (NMR) is one
of the most promising techniques for the analyses of com-
plex substances such as cell extracts. One prominent
NMR application is metabolite profiling in stem cell biol-
ogy. NMR spectra are high dimensional functional signals
consisting of a multitude of peaks. The peak positions de-
scribe the presence of specific chemical compounds in the
analysed material while the area of the peaks are quan-
titative with respect to the amount of this analyte in the
substance. To meet clinical standards and high through-
put demands a full automatic evaluation is recommended.
Here we present the basic methodology of such a system.
The paper is organized as follows. First we briefly explain
the bio-chemical aspect of the considered studies. Subse-
quently key elements of the automatic analysis system are
described. Thereafter the system behavior is shown in the
analysis of synthetic and real metabolite data. The paper
is closed by the discussion of the results.

2. MATERIAL AND DATASETS

We consider real and simulated 1H NMR spectra recorded
at 700.15 MHz with 65K complex data points. The simu-
lations are done using the gamma-library[1]. It is assumed
that each sample is solved in D2O with DSS added as ref-
erence standard set to 0.0 ppm. The simulated data are
generated from known spin systems [2] and calibrated by
own reference measurements. Thereby we consider the
following metabolites Alanine (Ala), Citric Acid (Cit),
Glycine (Gly), Lactate (Lac), Malate (Mal), Myo-Inositol
(Myo), Serine (Ser) and Succinate (Suc). The biological
data are taken from FDCPMix cells cultivated in three dif-
ferent levels of glucose concentration (1 m-mol, 5 m-mol
and 25 m-mol) in growth medium as specified in [3]. For
each concentration level at least 4 1H NMR spectra have
been recorded.

3. AN AUTOMATIC SYSTEM FOR 1H-NMR
MEASUREMENTS

The NMR data of modern spectrometers are usually ob-
tained in the time domain and thereby given as a set of
sine/cosine waves measured as a function of time and de-
caying toward zero intensity at an exponential rate (free
induction decay). Under ideal conditions we can write the
signal as:

s(t) =
J∑
j

Aje
i(wjt+φj)−t/T∗2j

with Aj as the amplitude, wj as the frequency, φj as the
phase and T ∗

2j
as the effective decay time of all spectral

components j ∈ J . Assuming the exponential decay of
s(t) we obtain the signal as a sum of Lorentzian lines after
application of an FFT.

S(w) =
J∑
j

eiφj (aj(w) + dj(w))

with aj(w) =
AjT∗2j

1+(w−wj)2T∗22j

as the so called absorption

signals and dj(w) =
−AjT∗22j

(w−wj)

1+(w−wj)2T∗22j

as the dispersive sig-

nal. In case of perfect phasing φj = 0,∀j ∈ J , S(w)
becomes:

S(w) =
|J|∑
j

AjT
∗
2j

1 + (w − wj)2T ∗2
2j

For real, biological spectra these assumptions are not
fulfilled in general. Multiple preprocessing steps are
needed to get interpretable data from the Fourier trans-
formed NMR spectra as depicted in Figure 1.

Due to technical reasons for each NMR spectrometer
a short delay between the end and the start of the measure-
ment occurs. This implies that the sine-waves being out of
phase, called the first order phase error (see Fig. 1, plot 1).
Due to further imperfections a second error called zero or-
der phase error occurs. Therefore a phase correction is de-
sired, which can be done using the approach given in [4].
As for most spectral data a baseline correction is necessary
to remove broad, baseline distorting components from the
narrow metabolite NMR signals. The baseline correction
is done using the a cubic interpolation approach as shown
in Figure 2 (simplified).

As another (optional) step the spectra can be de-
convolved see e.g [5], In the deconvolution one tries



Figure 1. Workflow of the preprocessing steps applied in our NMR system. From top-left to bottom-right: We begin with
a fourier transformed signal (out of phase), this error is corrected by phase correction as shown in plot 2, subsequently
the water peak (with known position) is removed (interpolated by a cubic spline) and a baseline correction is applied plot
3 − 4, as an optional step a deconvolution can be tried - plot 5 followed by a peak picking algorithm plot 6.

f u n c t i o n [ vBL ] = b a s e d e t ( v S i g n a l , dDSSPoints )
% S i g n a l s i z e , Window wid th
ns = s i z e ( v S i g n a l , 1 ) ; w = dDSSPoints ;
% Empty windows whole s i g n a l
temp = z e r o s (w, c e i l ( ns /w) ) +NaN ;
% F i l l i n − ove r windows , min ’ s p e r window
temp ( 1 : ns ) = v S i g n a l ; [m, h ] = min ( temp ) ;
g = h>1 & h<w; % mins , n o t a t b o r d e r s
% c a l c minima p o s i t i o n s wi th r e s p . t o x−a x i s
h = w∗ [0 : numel ( h)−1]+h ;
% g e t v a l i d minima and i n t e n s i t i e s
m = m( g ) ; h = h ( g ) ;
% i n t e r p o l a t e
v B a s e l i n e = i n t e r p 1 ( h ,m, 1 : ns , ’ pchip ’ ) ;

Figure 2. Matlab code for baseline correction by piecewise cubic in-
terpolation using a problem adequat segment width.

to remove disturbances by an inverse filtering process.
Thereby we take the DSS signal - detected by the peak
picking mentioned later on - as a reference sref (t). The
reference is considered to be a known signal, disturbed by
some transformation (not considering noise effects). The
signal s(t) is deconvolved using the reference. An ideal
reconstruction sideal(t) is convolved (*) with the modi-
fied s(t), subsequently. Under ideal conditions this leads
to an improvement of signal resolution as shown in [5].
This procedure can be summarized very briefly as:

scomp(t) =
s(t) · sideal(t)

sref (t)

the signal scomp(t) is the ideal spectrum of interest s(t)
i.e. without disturbances. Here we use the convolution
theorem FFT (f ∗ g) = FFT (f) · FFT (g) and add
appropriate zero-padding procedures in the deconvolution
and the convolution step. The deconvolution can be help-
ful to identify signals which are not completely resolved
in the original measurement. The assumption of s(t) be-
ing free of noise, is a critical point, which results in an in-
crease of the noise level for real signals in general, there-
fore the deconvolution has not been used in this exper-
iments. However it may be desirable if a large number
of measurements of the same experiment are available to
compensate artificial - noise related - peaks.

In standard NMR the further steps of metabolite iden-
tification and quantification are done (in general) manu-
ally by fitting a known metabolite spectrum against the
signal, subtracting this pattern from the signal and repeat-
ing the prior steps until the given signal can be reliably
reconstructed from the fitted patterns. This approach is
very time consuming and subjective. Alternatively the
data are binned, leading to a data reduction, the areas in
the bins are calculated and these features of the bins are

fed into a Principal Component Analysis or another anal-
ysis method. Binning in general leads to a very strong
data reduction, is difficult to parametrize adequately (e.g.
width of the bins) and removes a lot of the resolution of
the measurement system. To overcome this a curve fitting
approach (called targeted profiling) was proposed recently
in [6]. Thereby a set of Lorentzians with known positions
and intensity proportions are fitted against the signal and
a subsequent analysis is carried out on the coefficients of
the superpositions of these Lorentzians only. This greatly
improves the former approach of binning leading to a
compact, reliable encoding of the NMR spectra. A crit-
ical point of this approach is the complex fitting proce-
dure the complexity of which is linearly increasing with
the number of tested patterns. Further the assumption of
a Lorentzian peak model for a real NMR peak is sub-
ject of discussion in the NMR community. Typical - real
measurements - show a non Lorentzian peak shape and a
method which would be able to deal with the real shape
would be more desirable and accurate with respect to ex-
perimental practice. Taking this into account we focus on
a peak picking approach which explicitly looks for peaks
having a shape similar to the DSS signal and combine this
approach with the targeted profiling suggested in [6]. The
approach is sketched in Figure 3 and can be summarized
as follows: On the prepared signal, as mentioned before,
we apply a hill climbing search [7] for potential local max-
ima. Thereby only those maxima are kept which have a
comparable height with respect to the DSS signal. Further
constraints such as minimal/maximal peak width/height
can be added to reduce the number of false hits. A line
spectrum is generated at the identified peak positions and
intensities which is convolved with the reference signal
(here the DSS peak). This signal is subtracted from the
original signal and the process is iterated until no further
peaks can be detected. The obtained final peak list con-
sists of multiple, potentially overlapping, peaks which can
be considered as an information preserving reduced repre-
sentation of the original NMR signal. These peak lists are
subsequently compared with respect to known simulated
or real metabolite spectra as depicted in Figure 4. We cal-
culate a list of peak center positions for the measurement,
considering the middle of the half peak height for each
peak. This list is compared to the detected peaks in the
patterns. Here a tolerance of 0.005ppm is chosen. In each
case a matching peak must be in a (size limited) range of
the start/end positions of the metabolite peak pattern. A
high match of the number of peaks from the test pattern
(metabolite) with respect to the peak list in the measured



f u n c t i o n [ peakBin , peakMag ] = h i l l C l i m b i n g ( x , negMagThresh , posMagThresh )
% c o n t a i n e r w i th peak p o s i t i o n s and i n t e n s i t i e s
peakBin = [ ] ; peakMag = [ ] ;
xLen = l e n g t h ( x ) ; % s i g n a l l e n g t h
minPeakMag = min ( x ) ; % minimal i n t e n s i t y i n t h e s i g n a l
tempPeakMag = minPeakMag ; tempPosMagThreshOffse t = 0 . 0 ;

foundPeak = 0 ; % i n d i c a t o r f o r a s t a r t i n g peak
peakCount = 1 ; % peak c o u n t e r
i = 1 ; % c u r r e n t i n d e x i n t h e s i g n a l
s l o p e = x ( i +1)−x ( i ) ; % s l o p e o f t h e c u r r e n t l y i n v e s t i g a t e d r e g i o n
w h i l e i < xLen−1 % w h i l e t e r m i n a t e
% scan p o s i t i v e s l o p e ( s l o p e , p o s i t i o n , i n d i c a t o r , t e m p o r a r y h e i g h t )
[ s l o p e , i , foundPeak , tempPeakMag ] = p o s i t i v e s l o p e s t a r t
% t e m p o r a r i l y s t o r e peak c a n d i d a t e
i f x ( i ) > tempPeakMag % new p o t e n t i a l peak maximum?

tempPeakBin = i ; % p o s i t i o n
tempPeakMag = x ( i ) ; % l o c a l maximum t o compare wi th

end
% scan n e g a t i v e s l o p e
[ s l o p e , i , bAddPeak ] = n e g a t i v e s l o p e s t a r t
i f ( bAddPeak ) % n e g a t i v e s l o o p s e a r c h s u c c e s s f u l

peakBin ( peakCount ) = tempPeakBin ; % s t o r e p o s i t i o n
peakMag ( peakCount ) = tempPeakMag ; % s t o r e magn i tude
peakCount = peakCount +1;
foundPeak = 1 ;
tempPosMagThreshOffse t = x ( i ) ;

end
end
r e t u r n

Figure 3. Pseudo code (simplified) for peak picking - hill climbing part
- using problem adequat negative (0.0) and positive (90% of minimal
peak height) magnitude thresholds (in acc. to DSS).

spectrum is an indicator that the pattern may be present in
the signal. However further checks are needed to support
this hypothesis, e.g. the intensity proportions between as-
sociated peaks (e.g. in a quartet) must be checked. For all
identified patterns a quantification can be tried. Thereby
the area under the matching peaks is calculated and asso-
ciated to the area of the DSS signal, further a scaling by
the number of protons of the DSS (9) with respect to the
number of protons in the metabolite e.g. Ala (4) is done
to obtain a concentration (c) in m mol:

c(Ala) =
area(Ala − 1H) · c(DSS) · 9

area(DSS − 1H) · 4

The identified and quantified metabolites are stored with
further meta informations (e.g. preprocessing parameters)
in an XML file, which can be considered as a metabolite
model for the analysed data set. This metabolite model
will be further subject of a pathway analysis to determine
models for the chemical pathways of the cell estimated by
the observed metabolite concentrations with respect to the
growing medium conditions.

4. EXPERIMENTS

To test the methodology, we start with simulated spectra
of the considered metabolites. Thereby for each metabo-
lite a simulation was generated with an intensity value (I)
of I = 30 for the spin system of the metabolite, with
I = 1 for the DSS signal and I = 100 for the water signal.
These data form the theoretical model for the metabolite
spectra database in our experiments. The application of
this model against itself (the simulations which build this
model) results in a perfect recognition (100% peak match)
and good intensity quantifications. In a next step a mix-
ture of all considered metabolites was simulated at dif-
ferent concentration levels. Again a recognition of 100%
was found. The results are good for the obtained quan-
tifications but also some under/overestimations can be ob-
served. A closer inspection reveals these effects caused
by some overlapping of peaks. For example this effect
can be observed for Myo-Inositol and Glycine which do
not exactly share a common peak, but the glycine peak is
very close to one of the triplets of Myo-Inositol. The same
argumentation applies for Lactate which is close with its
quartet to another Myo-Inositol-Triplet.

Figure 4. Identification of metabolites is based on com-
parison of the peak list (colored and as stems) obtained
from the measured signal with respect to the peak list of a
simulated metabolite (here Phenylalanine [Phe])(left). In
general multiple metabolites can be detected in a spec-
trum. The area of the matching peaks can be used to cal-
culate an estimate of the concentration of the metabolite.
Results are serialized to an XML model which is further
used to model a metabolic network (right).

After this initial experiments of pure synthetic data
we take real measurements of the considered metabolite
spectra. The results are depicted in Table 1. One ob-
serves that the metabolites could be identified in general,
with the exception of Lac and Mal which where given in
very low concentrations. To limit the effect of noise in the
identifications only peaks with a minimal height of 1% of
the DSS size are allowed, relaxing this criterion slightly
solves this problem. However to avoid a large number
of false hits and to keep detected signal intensities suf-
ficiently above the noise level we will keep the minimal
peak height of 1% of the DSS size for subsequently anal-
yses.

In a next step data from the glucose experiment have
been analysed, which are real biological data generated
by metabolic process of FDCPmix cells on three types
of growing media. Some results are depicted in Table 2.
These results are very preliminary due to multiple reasons.
For example the number of spectra for each condition is
very small. Under this light the experiments should only
be considered as an illustrative real life example how to
use the presented system for such types of experiments.
The results are also shown in Figure 5. As already men-
tioned the data support is very limited so its hard to give
any interpretation of the results, but considering the dif-
ferent graphs one may get the impression that for Ala-
nine the third condition will cause a decreased expression.
For succinate one may conclude that the conditions do not
have any effect and for lactate a small increase of the con-
centration can be seen. These results have been checked
by manual inspection and appear to be correct. However,
as already mentioned, there are only few spectra support-
ing the data such that new measurements are necessary to
prove this initial hypotheses. We also compared our find-
ings with respect to an alternative method using the data
analysis package Chenomx 5.0 [6]. Thereby we found a
perfect agreement of the mean concentrations as depicted
in Figure 5. However for some of the metabolites the esti-



Metabo (S) Metabo (I) PM EC QC
Ser Ser 100% 0.50 0.73

Myo Myo 93% 0.34 0.45
Lac (Lac) (100%) 0.07 (0.2)
Gly Gly 100% 0.19 0.43
Suc Suc 100% 0.25 0.41
Cit Cit 100% 0.20 0.34
Mal (Mal) (100%) 0.27 (0.39)
Ala Ala 71% 0.38 0.52

Table 1. Analysis of real measured pure metabolite data
(S) with respect to a synthetic metabolite database (identi-
fication - I). At standard conditions (minimal peak height
1% of DSS almost all metabolites could be identified suc-
cessfully. The experimental protocols note for Lac bad
solving conditions. A closer (manual) inspection of the
spectrum reveals, that the doublet of Lac has been detected
but the quartet is very small and could not be detected.
Without the quartet a concentration of 0.19 is quantified.
A similar situation occurred for malate, lowering the min-
imal peak height of the peak picking algorithm to 0.5% of
the DSS signal both metabolites can be detected (results
in brackets). The percentage of matched peaks is given in
the column (PM), the expected concentration in (EC) and
the quantified concentration in (QC).

mations of Chenomx appear to be unlikely due to artificial
fittings, not sufficiently supported by the analysed data.
These effects have not been found using a peak based ap-
proach, because fits are only tried for identified peaks.

Condition Metabolite PM QC (mean/std)
1 Ala 71 − 85% 0.8/0.47
1 Gly 100% 1.25/0.49
1 Lac 71% 0.2/0.28
1 Suc 100% 0.07/0.1
2 Ala 71 − 100% 0.89/0.7
2 Gly 100% 1.8/0.65
2 Lac 85% 0.6/0.48
2 Suc 100% 0.17/0.09
3 Ala 71 − 85% 0.54/0.37
3 Gly 100% 0.74/0.51
3 Lac 71 − 100% 0.73/0.08
3 Suc 100% 0.09/0.1

Table 2. Analysis of real measured extracts of growing
media with FDCPmix cells. Only those metabolites are
shown which are frequent within the specific conditions
(Ala,Gly,Lac,Suc). Concentrations are given as mean con-
centration values over multiple spectra for a metabolite
in a condition. Condition 1 accounts for a glucose level
of 1mM (5 spectra), condition 2 accounts for glucose of
5mM (6 spectra) and the last condition for a glucose level
of 25mM (4 spectra). If a metabolite has not been de-
tected its concentration is assumed as 0.0 in the calcula-
tions (this is in general correct - verified by manual in-
spection). PM and QC like in Table 1

5. DISCUSSION AND CONCLUSIONS

We presented a system for the automatic identifica-
tion and quantification of metabolites from 1H-NMR-
measurements. The approach is based on peak lists gener-

Figure 5. Mean estimated concentration values calculated
for the three conditions using the prominent metabolites
Ala (*), Lac (o) and Suc. The results are compared with an
analysis done using Chenomx 5.0 (dashed lines - scaled)

ated by a hill climbing peak picker combined with a mea-
surement specific shape subtraction. This allows a sensi-
tive and measurement specific detection of peaks, which
is in general more appropriate then a modeling with a
Lorentzian (only) peak assumption. Another advantage of
our method is the automatic reliability estimation of the
identifications such that false positives are reduced, be-
cause it is only using the identified peaks and does not fit
arbitrary metabolites against the signal.

We have shown that the method can be successfully
applied on simulated spectra, real pure metabolite spectra
and real experimental NMR spectra obtained from grow-
ing medium experiments. Beside of these positive aspects
there are also some remaining challenges. First, the shape
modeling, which is currently based on the DSS signal
could be made more general by use of e.g. a wavelet
based fitting procedure applied on multiple peaks, this
would reduce the effect of noise or artifacts which may
be present on the DSS reference and interfere the subse-
quently peak detection. Further the quantified concentra-
tions are strongly affected by overlapping peaks. A rule
based, knowledge driven, correction of plain area calcula-
tions may be desirable. Constraints on the accounted peak
areas with respect to concurrent metabolites with potential
fuzzy peak sets could be an interesting option to get more
reliable estimates. In a next step the initial results must
be verified by a larger amount of measurements combined
with a modeling of the chemical reactions which also may
be helpful to improve the metabolite model1.
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ABSTRACT

Synchronous oscillations are believed to be important for
neuronal information processing. We use a stochastic mo-
del for parallel point processes to estimate the strength of
synchrony in an oscillating network of neurons recorded
in cat visual cortex. The model has the surprising abil-
ity to predict interactions between the neurons solely on
the basis of the individual processes, i.e., the autocorrelo-
grams. The strength of synchronization is defined as the
mismatch between the predicted and the observed strength
of interaction. This method has the advantage of distin-
guishing changes in the strength of synchrony from chang-
es in the properties of the underlying processes. Thus, the
model provides new approaches for the investigation of
dynamical changes in the joint oscillatory activity of neu-
ronal networks.

1. INTRODUCTION

The synchronization of oscillatory neuronal responses is
likely to play an important role in cortical processing and
is commonly investigated using pairwise cross-correlation
histograms (CCHs; [1], Figure 1).

In a CCH, one uses either the height, the width or the
area of the central peak to investigate the amount of syn-
chronous firing. Such measures are then evaluated statis-
tically by comparing to independent processes [2, 3, 4].
However, this null hypothesis of independent processes
is insufficient to describe the nature of processes with a
common oscillatory rhythm. Therefore, such methods can
only indicate statistically significant deviations from inde-
pendent processes and can thus be only related indirectly
to the properties of the underlying processes.

In the present work, we use a stochastic spike-train
model [5] that describes the oscillatory properties of the
underlying processes and makes simple assumptions about
their interactions. Therefore, the model offers a frame-
work for relating the properties of individual processes,
visible in the auto-correlation histograms (ACHs; [6]), to
the properties of interactions between the processes, vis-
ible in CCHs. This allows for a direct measure of syn-
chrony, which we will define here as the percentage of
spike pairs that take part in the same rhythm.
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Figure 1. Parallel processes with a common oscillatory
rhythm, reflected in ACHs of individual processes and in
CCHs computed for pairs of processes (gray: raw counts,
black: counts smoothed with Gaussian kernel; sd = 1 ms).

2. THE SPIKE-TRAIN MODEL

2.1. Model assumptions

We use a spike-train model for parallel point processes
called the ELO model (Exponential LOcking to a free os-
cillator), which is described in detail elsewhere [5]. The
model assumes a global oscillatory rhythm (called the pa-
cket onset process, POP), shared across all processes and
described by a stationary random walk (Bn)n∈Z with in-
dependent and normally distributed increments B i+1−Bi

with mean µ and variance σ2 (Figure 2, top line). An
event in the POP marks the time points at which the fir-
ing intensities rise for all processes simultaneously (cycle
onset). In each process j, an onset Bi gives rise to an inde-
pendent Poissonian spike packet with an expected number
of spikes αj and exponentially decreasing firing intensity
with time constant τj . With Bnt denoting the last onset
before t, the firing intensity of process j at time t is de-
scribed by

αj

τj

nt∑

i=−∞
e

−(t−Bi)

τj + βj . (1)
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Figure 2. The ELO model for two parallel processes: The
global POP with N (µ, σ2)-distributed increments gives
rise to simultaneous spike packets with exponentially de-
creasing firing intensities with parameters τ1 and τ2, re-
spectively. The corresponding theoretical CCF shows a
central peak and an oscillatory shape.

The smaller τj , the more densely the spikes cluster at the
packet onsets (Figure 2, τ1 < τ2). Since the POP is shared
by all processes, µ and σ are global parameters. In con-
trast, α and τ may differ across units.

2.2. Cross-correlation function

Within this framework, the auto- and cross-correlation func-
tions (ACF, CCF) of processes that comply with the model
assumptions can be derived by decomposition of the pro-
cesses into different packets (Figure 2, bottom panel). The
CCF Fab(s) at shift s ≥ 0 between processes a and b is
then given by (for a proof see [5])

Fab(s) =
αaαb

µ(τa + τb)

{
e−

s
τa

+
∑

j∈Z\{0}
e

s−µj
τa

+
σ2

j

2τ2
a Φ

(
µj−s−σ2

j /τa

σj

)
(2)

+
∑

j∈Z\{0}
e

µj−s

τb
+

σ2
j

2τ2
b Φ

(
s−µj−σ2

j /τb

σj

)}
,

where Φ denotes the standard normal distribution func-
tion. Fab(s) = Fba(−s), and the ACF of a equals Faa.

2.3. Relation between ACF and CCF

It follows that the CCH can be predicted directly from the
properties of the individual ACHs because it depends on
the same parameters. The smaller τa and τb, the higher
the respective ACH peaks, and the higher also the corre-
sponding CCH peak.

This relation can be quantified with the first term of
the CCF, αaαb/(µ(τa +τb))e

− s
τa , which describes the in-

tensity of spike pairs that belong to simultaneous packets
and thus, determines the shape of the central peak. Since

the level of the asymptotic baseline in a CCF is given by
the product of the firing intensities, αaαb

µ2 (Figure 2), the
fraction fh of the total peak height cut at baseline level is
given by

fab
h =

baseline
peak height

=
τa + τb

µ
, (3)

and by f aa
h = 2τa/µ in ACFa. Thus, the simple relation

fab
h = 1/2 · (faa

h + f bb
h ) (4)

shows the direct relation between the height of the CCH
peak and the respective ACHs peaks. We will use this
relation to estimate the degree to which two processes are
locked to the same oscillatory rhythm.

3. FITTING THE MODEL TO A DATA SET

3.1. Parameter estimation

We fitted the ELO model to a sample data set consisting of
neuronal firing activity of 14 multi-units recorded in par-
allel in cat primary visual cortex under visual stimulation
(stimuli are shown in Figure 7, see [7] for experimental
methods). We first estimated the times of the global cy-
cle onsets by smoothing the firing activity of all units with
a Gaussian kernel. Packet onsets were identified as the
points at which 60% of the maximum was reached (gray
dots in the upper panel of Figure 3). This analysis sug-
gested that independence and normal distribution of inter-
vals between spike packets were appropriate assumptions
for the POP. We then estimated the parameters by fitting
the theoretical ACFs (Equation (2)) to the observed ACHs
using a nonlinear least squares algorithm. As mentioned,
µ and σ were chosen to be identical in all units. The fitted
ACFs corresponded well to the empirical ACHs (Figure 3,
bottom panel). For stimulation condition 1, the parameter
estimates were µ̂ = 25.3 ms, σ̂ = 7.3 ms. The values
of τ̂1, . . . , τ̂14 were in the range of 3.5 − 8 ms. Approxi-
mations for variances of the parameter estimates were de-
rived both numerically by the least squares algorithm and
by splitting the data into smaller groups. Both methods
yielded comparable results, with standard errors smaller
than 0.1 ms for µ and σ and 0.1− 0.9 ms for τ1, . . . , τ14.

3.2. Prediction of interactions

With the parameters derived from the ACHs, we predicted
the shape of each CCH by using Equation (2). In many
cases, this prediction corresponded well to the empirically
obtained CCH (Figure 4).

In some cases, the units showed nonstationary rate re-
sponses within trials that were different in both units (Fig-
ure 5, left panel). As a consequence, the observed CCHs
were lower than those predicted from the ACHs (medium
panel). Therefore, nonstationarity was taken into account
by using a correction factor proposed in [5]: We described
the firing rate of a unit as a step function, which we esti-
mated from the overall firing rate across all trials, mea-
sured in windows of 200 ms (bold curves in the left panel
of Figure 5). With the given rate estimates λ1,a, . . . , λk,a
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Figure 3. Investigation of model assumptions and param-
eter estimation. Upper panel: The spikes recorded in the
14 units show a joint oscillatory rhythm that can be de-
scribed by independent and normally distributed intervals.
Bottom: The observed ACHs (colors as in Figure 1) cor-
respond well to the fitted ACFs (medium gray).
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Figure 4. Observed CCHs (colors as in Figure 3) and the-
oretical CCFs (medium gray) predicted from the parame-
ters derived from the corresponding ACHs.

and λ1,b, . . . , λk,b, the raw CCF prediction uses the prod-
uct of the firing rates estimated from the ACHs,

α̂aα̂b =

√∑

i

λ2
i,a

√∑

j

λ2
j,b. (5)

However, the correct prediction would be

r =
∑

i

λi,aλi,b. (6)

We therefore corrected each predicted CCF with the term

cab = r/α̂aα̂b. (7)

Most correction factors ranged between 0.9 and 1 and re-
sulted in good agreement between the predicted and the
empirical CCHs (Figure 5, right panel).
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Figure 5. Nonstationary rate responses along a trial need
to be corrected when predicting a CCH. Left panel shows
firing rates of units 4 (light gray) and 5 (dark gray)
recorded in 20 trials in stimulation condition 1. Direct pre-
diction leads to an erroneous height of the CCH (medium
panel), which can be corrected with Equation (7).

4. THE DEGREE OF UTILIZED SYNCHRONY

A good agreement of the CCF predictions with some of
the empirically obtained CCHs suggests that the model
assumption about all units sharing the same oscillatory
rhythm describes the data well. Therefore, this predic-
tion can be used as a reference: The CCF predicted from
the ACHs indicates the maximal possible strength of syn-
chrony that can be obtained for the given pair of units.
This predicted maximum depends on the ACHs in the fol-
lowing way: If ACHs have small peaks, the predicted
CCH will also have a small peak and vice versa.

This perspective allows one to define the strength of
utilized synchrony, which is the degree to which the ob-
served CCH peak corresponds to the peak predicted under
the above assumption that the units share the same rhythm
(100% locking). Indeed, a number of CCHs showed lower
peaks than predicted from their ACHs (Figure 6, bottom
right panel). This indicates that the units utilize less than
100% of their potential to synchronize, indicating in turn
that oscillation shared across units is weaker than the os-
cillation of each unit individually.

Within the spike-train model, utilized synchrony can
be estimated as follows (Figure 6, upper panel): We as-
sume that the units share the same POP only sometimes
(A), while on other occasions they are locked to indepen-
dent POPs with the same parameters (B). The resulting
CCH is a linear combination of the CCF predicted from
the ACHs (black curve in the second panel) and a flat cor-
relogram resulting from independent processes:

CCH = ϑ · CCFpredicted + (1− ϑ) · baseline. (8)

The parameter ϑ indicates the percentage of spike pairs
that share the same oscillatory rhythm. This number can
be estimated with a least squares approach when compar-
ing the predicted CCF to the observed CCH. When apply-
ing this measure to stimulation condition 1, the estimates
of ϑ ranged between 0.4 − 0.9, with standard errors of
about 0.03. Analogous results were obtained for the other
stimulation conditions.
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Figure 6. If a predicted CCF is higher than the observed
CCH, this could indicate that some spikes share the same
rhythm (A), but others engage in independent rhythms
(B). Such a combination (C) reduces the CCH amplitude
and allows estimating the fraction of spikes in the same
rhythm (utilized synchrony, bottom, colors as Figure 3).

4.1. Changes in utilized synchrony across stimuli

This method allows one to investigate whether the degree
of utilized synchrony changes across stimulation condi-
tions. Even if ACHs do not change and thus the potential
to synchronize is constant, it is possible that units change
utilized synchrony. This directly affects the CCH peak
and can thus account for classical results based on mea-
sures of the peak height [4]. For example, we found that
utilized synchrony was increased for a stimulus with one
moving bar, as compared to two conflicting bars (Figure
7), which is consistent with previous reports, e.g. [8].

However, it is also possible that utilized synchrony
provides a different kind of information than the classical
measures. An indication of such information is shown in
Figure 7 where utilized synchrony could distinguish be-
tween two groups of units, Group A (orientation prefer-
ence 30◦/ 210◦) showing much higher utilization of the
potential to synchronize for stimulus 5 than Group B (ori-
entation preference 150◦/330◦), while Group B synchro-
nized more strongly in stimulus 6. The functional signifi-
cance of these results is yet to be investigated. However, it
indicates that utilized synchrony might provide important
information about the dynamics of neuronal oscillation.

5. DISCUSSION

We use a stochastic model that describes parallel processes
with a joint oscillation and that can predict a CCH di-
rectly from the ACHs. By comparing the observed and the
predicted CCHs, we propose to estimate to which degree
units utilize their potential to synchronize. This allows
one also to distinguish whether changes in a CCH are due
to changes in the individual processes or to changes in uti-
lized synchrony. The method may therefore provide new
information on the dynamics of neuronal synchronization.
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Figure 7. Changes in utilized synchrony across stimuli.
Utilized synchrony increases from stimulus 1 to 2 (upper
right). Bottom: Group A shows high utilized synchrony
in stim. 5, group B shows high synchrony in stim. 6.

6. REFERENCES

[1] D. H. Perkel, G. L. Gerstein, and G. P. Moore, “Neu-
ronal spike trains and stochastic point processes II. Si-
multaneous spike trains,” Biophys. J., vol. 7, no. 4, pp.
419–440, 1967.

[2] M. Abeles, “Quantification, smoothing, and confi-
dence limits for single-units’ histograms,” J. Neu-
rosci. Methods, vol. 5, pp. 317–325, 1982.

[3] A. M. H. J. Aertsen and G. L. Gerstein, “Evalu-
ation of neuronal connectivity: Sensitivity of cross-
correlation,” Brain Res., vol. 340, pp. 341–354, 1985.

[4] P. König, “A method for the quantification of syn-
chrony and oscillatory properties of neuronal activ-
ity,” J. Neurosci. Methods, vol. 54, pp. 31–37, 1994.

[5] G. Schneider, “Messages of oscillatory correlograms
- a spike-train model,” Neural Comp., vol. 20, no. 5,
2008.

[6] D. H. Perkel, G. L. Gerstein, and G. P. Moore, “Neu-
ronal spike trains and stochastic point processes I. The
single spike train,” Biophys. J., vol. 7, no. 4, pp. 391–
418, 1967.

[7] G. Schneider and D. Nikolić, “Detection and assess-
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ABSTRACT

Consider a feed-forward Boolean network with i input and
o output nodes. This system can be decomposed into a
collection of o Boolean functions with i arguments. As-
sume that each argument is assigned a 1 with probability
0 ≤ p ≤ 1 and 0 otherwise. Further assume that noise is
applied to the input by independently flipping the value of
each argument with an average probability ε. It is shown,
that the probability that a function output is affected is less
or equal ε · as(f), where as(f) denotes the average sensi-
tivity of the function.

1. INTRODUCTION

In the late 1960s Stuart Kauffman [1] was among the first
researchers that came up with the idea to model genetic
regulatory networks by interacting binary memory ele-
ments, whereas the interactions are described by Boolean
functions.

From the networks dynamics point of view, Kauffman
found that there exist two broad regimes under which such
networks occur. In the ordered phase single transient er-
rors tend to vanish, therefore they act only on a local level.
In the disordered phase such errors are likely to affect
large part of the network. It has been argued, that for liv-
ing organisms it is preferable to exist at the border of the
two regimes, which seems to represent a trade-off between
robustness and adaptivity.

Kauffman also came up with the idea of studying ran-
dom networks to learn more about the general conditions
under which order can exist in Boolean networks [1]. Now-
adays it is well known that, at least for the simple type
of networks studied by Kauffman, the so called NK-net-
works, the sensitivity of the functions, more precisely the
expectation of it, plays a key role [2]. Roughly speaking,
the sensitivity is a measure for the probability that a per-
turbation at the input will affect the output of the function
(see Equation (1) in Section 2 for the precise definition).
From this point of view it is easy to see that only networks
with comparably low sensitivity of their function will be
dynamically stable.

An interesting question arises in this context. Con-
sider a feed-forward Boolean network with i input and o
output nodes. This might be either the whole system or a
part of it, in the simplest case a single Boolean function
(if o = 1). If this system is robust against a single error

at its inputs, will it also be robust against multiple random
errors, i.e., noise, occurring with low probability at its in-
puts? To be more precise, if we randomly flip the value at
each input with probability ε, what is the probability that
the system still computes the correct value (as if ε would
be 0)? Quite obviously we can view this network as a col-
lection of o Boolean functions with i inputs, for simplicity
we assume that all of them have the same delay, that is the
time the functions need to compute their value. Note that
we make no assumptions about the implementation of this
functions except that there are no feedback loops. Hence
it is to sufficient to study single Boolean functions. We
will show the following: Given a Boolean function with
n arguments. To each argument we independently assign
a 1 with probability 0 ≤ p ≤ 1 and 0 otherwise. Further
assume that noise is applied by independently flipping the
value of each input with a average probability ε, the pre-
cise procedure will be described in the next section. Then
the probability that the output of the function is affected
is at most ε · as(f), where as(f) denotes the average sen-
sitivity of the function. We will formalize and prove the
result in the following two sections.

Let us now return to our initial question. The result
shows that a feed-forward Boolean network is able to deal
with noisy inputs, if the sensitivity of each of the oBoolean
functions is at most 1. From an other point of view this
means that it does not amplify noise, a quite important
property if you think of them as a part of a larger system.

2. MAIN RESULT

We consider the set of all Boolean functions with n ar-
guments, denoted by Bn

.= {f : Ωn → Ω}, where Ω =
{0, 1}. Throughout the paper we assume that the inputs
of the functions are chosen at random from the set of all
possible vectors of dimension n, according the probability
measure µp which is defined as

µp(x) =
n∏
i=1

µp(xi)

for x ∈ Ωn, where ∀i ∈ {1, . . . , n}

µp(xi) =

{
p if xi = 1
1− p if xi = 0

for 0 < p < 1.



The sensitivity of a function f at input x ∈ Ωn is defined
as

s(f,x) .= # {y ∈ Ωn|dH(x,y) = 1 and f(x) 6= f(y)} .

Here dH(·, ·) denotes the Hamming distance between two
vectors. The average sensitivity is defined as

as(f) .=
∑

x∈Ωn

µ(x)s(f,x). (1)

Now suppose we apply noise to the input of the function.
Usually it is assumed that each input is flipped with a low
probability, 0 ≤ ε ≤ 1/2. Denoting the resulting noisy
input Nε(x) one is interested in

ρ̃f = Pr
x∼µp

[f(x) 6= f(Nε(x))]. (2)

Note that we usually will omit the subscript. For reasons
that will become obvious later, we will use a different
noise model. Let 0 ≤ δ ≤ 1. Then the input y = Nδ(x)
is obtained as follows: With probability δ we set yi = xi
and with probability 1− δ

yi =

{
1 with probability p
0 with probability 1− p

.

This δ-noise is closely related to the ε-noise. Let

δ = 1− ε

2p(1− p)
and 0 ≤ ε ≤ 2p(1− p). (3)

Note that if p 6= 1
2 we need to restrict ε to values less than

1
2 to ensure δ ≥ 0. Now

Pr[yi 6= xi|xi = 0] = ε
2(1−p)

and Pr[yi 6= xi|xi = 1] = ε
2p .

As can be seen, for p 6= 1/2 the probability of flipping an
input depends on its value. For example, for p < 1/2 an
error is more likely if xi = 1 than for xi = 0. However
we note that the average probability for an error is always
given by

Pr[yi 6= xi] = ε.

Instead of ρ̃f we will study

ρf = Pr[f(x) 6= f(Nδ(x))]. (4)

Now our result can be formulated as follows:

Lemma 1. Given a Boolean function f : Ωn → Ω with
average sensitivity as(f), suppose the inputs are chosen
at random according to µp, with 0 ≤ p ≤ 1. Then

ρf ≤ as(f) · ε (5)

where ρf is given according (4) and δ according (3). Hence
if a function has average sensitivity of at most 1, it will not
amplify the noise at the input.

The proof will be given in the following section. In
fact, once we set up the mathematical machinery, Lemma
1 is a nearly trivial corollary. It is worth noting that if we
consider ρf as a function of ε then

dρf (ε)
dε

∣∣∣∣
ε=0

= as(f), (6)

a fact already known for p = 1
2 (see [3],[4]).

3. PROOF OF MAIN RESULT

As our proof bases on the Fourier analysis of Boolean
functions we will first give a brief summary of the topic
in the first subsection. In this work we will stick closely
to [5, 6, 7]. Note that such techniques were used much
earlier, as stated by Xiao and Massey [8]. The first who
used the Fourier (or Walsh) transform on Boolean func-
tions was Golomb [9] in the 1950’s. The second subsec-
tion will cover the spectral representation of the average
sensitivity for non-uniform measures [7], where the third
subsection will discuss the so called noise operator [5].
Lemma 1 will then follow as a simple corollary.

3.1. Fourier transform on the cube

In the following we will consider Fn
.= {f : Ωn → R}.

ObviouslyBn ⊂ Fn. As we defined a probability measure
on the possible inputs, we can view a function f ∈ Fn as
a random variable mapping into the real numbers. We will
denote the expectation value of a function f with respect
to µp as

E
x∼µp

[f ] =
∑

x∈Ωn

f(x)µp(x).

Similarly

E
x∼µp

[f · g] =
∑

x∈Ωn

g(x)f(x)µp(x). (7)

Note that we usually omit the subscript if it is understood
from the context. Equation (7) gives rise to an inner prod-
uct defined on F , let f, g ∈ F then define

〈f |g〉 .= E
x∼µp

[f · g].

We note that the inner product depends on µp and it is bi
linear that is for any function f1, f2, f, g ∈ F

〈f1 + f2|g〉 = 〈f1|g〉+ 〈f2|g〉

and
〈f |g〉 = 〈g|f〉 .

If 〈f |g〉 = 0 we say that the functions are orthogonal. The
inner product can be used to define the Euclidean norm,
i.e.,

||f ||2
.=
√
〈f |f〉 =

√
E[f2].

Now we are ready to define an orthonormal basis for the
vector space F as introduced by Talagrand [6].

For all i ∈ {1, . . . , n} we define

Φi(x) .=


√

p
1−p if xi = 0

−
√

1−p
p if xi = 1

, (8)

and for all 0 6= u ∈ Ωn

Φu(x) =
∏

{i|ui=1}

Φi(x). (9)

For the all zero vector 0 we set

Φ0(x) .= 1.



Now the set of functions

{Φu(x)}u∈Ωn

forms an orthonormal basis of Fn, that is

〈Φu|Φv〉 =

{
1 if u = v
0 if u 6= v

,

and, obviously from above, ||Φu||2 = 1. Hence any func-
tion f can be expressed as a Fourier series, i.e., a linear
combination of base vectors

f(x) =
∑

u∈Ωn

f̂(u)Φu(x)

where the coefficients f̂(u) can be found by the Fourier
transform

f̂(u) = 〈f |Φu〉 .

Note that Parseval’s theorem also holds for the biased Fourier
transform, namely for any function f ∈ Fn

||f ||22 = 〈f |f〉 =
∑

u∈Ωn

f̂(u)2.

Although one can apply the Fourier transform to a Boolean
function f directly, we will usually consider the Fourier
transform of the character function of f

χf : Ωn → {1,−1}, χf (x) = (−1)f(x),

that is, we simply substitute 0 → 1 and 1 → −1. Note
that

χ̂f (u) = 〈χf |Φu〉

and ∑
u∈Ωn

χ̂f (u)2 = 1. (10)

3.2. Average sensitivity

It is well known that for the uniform measure µ(x) with
p = 1/2 the average sensitivity can be related to the Fourier
spectra of the function, [10, 11]. For non-uniform prod-
uct measures a similar relation holds (for example [7],
but note the different constant factor due to the different
range):

Lemma 2. For any Boolean function f ∈ Bn,

as(f) =
1

4p(1− p)
∑

u∈Ωn

|u|χ̂f (u)2. (11)

Here, and in the following, |u| denotes the Hamming
weight of u. Note that for p = 1/2 we get the usual re-
lationship [11], but with a different constant factor. For
completeness, we will give the proof of (11) in the re-
maining part of this subsection.

Proof. Define the influence [12] of variable i on the func-
tion f as

Ii(f) .= Pr[f(x) 6= f(x⊕ i)]

where x ⊕ i is the vector obtained from x by flipping its
ith component. Note that

as(f) =
∑

1≤i≤n

Ii(f), (12)

(see [5] which also holds in our case). Further, for a func-
tion in Fn, define the operator

∆if(x) .=

{
(1− p) · (f(x)− f(x⊕ i)) if xi = 1
p · (f(x)− f(x⊕ i)) if xi = 0

.

The operator ∆i is designed such that

∆iΦu(x) =

{
Φu(x) if ui = 1
0 if ui = 0

, (13)

see [6]. Therefore, as ∆i is a linear operator, for any func-
tion f ∈ Fn

∆if =
∑

u∈Ωn

f̂(u)∆iΦu

=
∑

u:ui=1

f̂(u).

It can be easily checked that for a Boolean function f ∈
Bn the influence of the argument i can be get from the
Euclidean norm of ∆iχf

Ii(f) =
1

4p(1− p)
||∆iχf ||22

=
1

4p(1− p)
∑

u:ui=1

χ̂f (u)2

where the second line follows from Parseval’s theorem
and (13). Now (11) follows by summing up over all i (as
of (12)).

3.3. Applying noise

To describe the effect of the δ-noise to a function f we
define the noise operator Tδ [5, 13] as follows

(Tδf)(x) .= E[f(Nδ(x))].

From the linearity of the expectation, we immediately see
that Tδ is a linear operator. Now it will become obvious,
why it is more convenient to study Tδ . One can easily
check that

TδΦu = δ|u|Φu, (14)

hence the base vectors Φu are Eigenvectors of Tδ with
corresponding Eigenvalue δ|u| (see also [7]). The noise
operator can now be used to compute ρf .

Lemma 3. Assume that f is Boolean, then

ρf =
1
2

(1− 〈Tδχf |χf 〉) . (15)



Proof.

〈χf |Tδχf 〉 = E[χf · Tεχf ]
= E[χf (x) · χf (Nδ(x))].

For any binary random variable X : Ωn → {−1, 1}

E[X] = 1− 2 Pr[X = −1],

and on the other hand

Pr[χf (x) · χf (Nδ(x)) = −1] = ρf .

The inner product on the left hand side of (15) is closely
connected to the spectra of χf . Applying Fourier expan-
sion together with the linearity of Tδ and its property (14)
yields

〈Tδχf |χf 〉 =
∑

u∈Ωn

χ̂f (u)δ|u| 〈χf |Φu〉

=
∑

u∈Ωn

δ|u|χ̂f (u)2.

Hence we proved the following lemma:

Lemma 4. Given f ∈ Bn.

ρf =
1
2

(
1−

∑
u∈Ωn

δ|u|χ̂f (u)2

)
. (16)

Now we can finally prove our Lemma 1. In fact not
much work is left (note also that (6) follows from above
by differentiating).

Proof of Lemma 1. We recall that

δ = 1− ε

2p(1− p)
.

Note that for any natural number x ≥ 0

δx =
(

1− ε

2p(1− p)

)x
can be bounded as follows

δx ≥ 1− x

2p(1− p)
ε.

Applying this inequality to (16) and remembering (10) we
get Equation (5):

ρf ≤ ε ·
1

4p(1− p)
∑

u∈Ωn

|u|χ̂f (u)2

= ε · as(f)

where the second line follows from (11).
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[3] J. Kesseli, P. Rämö, and O. Yli-Harja, “On spectral
techniques in analysis of Boolean networks,” Phys-
ica D: Nonlinear Phenomena, vol. 206, pp. 49–61,
2005.

[4] R. W. O’Donnell, Computational Applications of
Noise Sensitvity, Ph.D. thesis, MIT, June 2003.

[5] J. Kahn, G. Kalai, and N. Linial, “The influence of
variables on Boolean functions,” in Proc. 29th Ann.
IEEE Foundations of Comp. Sci. IEEE, Oct 1988,
pp. 68–80.

[6] M. Talagrand, “On Russos’s approximate zero-one
law,” The Annals of Probability, vol. 22, no. 3, pp.
1576–1587, 1994.

[7] E. Friedgut, “Boolean functions with low average
sensitivity depend on few coordinates,” Combina-
torica, vol. 18, no. 1, pp. 27–35, 1998.

[8] G.-Z. Xiao and J. Massey, “A spectral characteri-
zation of correlation-immune combining functions,”
Transaction on Information Theory, vol. 34, no. 3,
May 1988.

[9] S. Golomb, “On the classification of Boolean func-
tions,” Transaction on Information Theory, vol. 5,
pp. 176–186, May 1959.

[10] S. Hurst, D. Miller, and J. Muzio, “Spectral method
of Boolean function complexity,” Electronics Let-
ters, vol. 18, no. 13, pp. 572–574, June 1982.

[11] A. Bernasconi, Mathematical Techniques for the
Analysis of Boolean Functions, Ph.D. thesis, Di-
partimento di Informatica, Universita di Pisa, March
1998.

[12] M. Ben-Or and N. Linial, “Collective coin flip-
ping,” in Randomness and Computation, S. Micali,
Ed. Academic Press, New York, 1990.

[13] I. Benjamini, G. Kalai, and O. Schramm, “Noise
sensitivity of Boolean functions and applications
to percolation,” Publications Mathématiques de
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ABSTRACT

Integrating high-throughput measurements with informa-
tion about gene and protein interactions reduces noise and
supports a mechanistic interpretation of the data. Data
from phenotypic screens such as RNAi or genetic associ-
ation studies can be mapped onto protein interaction net-
works to identify the pathways responsible for the ob-
served phenotypes.
Here, we propose a new algorithm, termed TopModule,
for the identification of functional modules in biological
networks. The algorithm extracts statistically and bio-
logically reliable subnetworks associated with the respec-
tive phenotypic effects. TopModule accounts for node
and edge scores, considers the network topology when as-
sessing significance of modules, and is designed to deal
with sparse data. Example applications of TopModule to
expression measurements, RNAi screens, and expression
quantitative trait locus (eQTL) data are discussed.

1. MOTIVATIONS

The improvement and the automation of genome-wide scre-
ens provides a huge amount of data turning the data anal-
ysis and the data interpretation into a bottleneck [1]. The
phenotypic screen data are subject to noise because the
detection of the phenotype can be inaccurate or affected
by off-target effects (example: RNAi screens). Moreover
it can be difficult to explain observed genotype-phenotype
associations exclusively based on phenotypic data.
In order to address these issues and to correctly under-
stand the role of each gene in the specific (emergent) cel-
lular process it is necessary to integrate the phenotypic
information with other genomic and proteomic data, and
to map these data onto functional networks [2]. Func-
tional networks are a simple and useful graph represen-
tation of the interactions of biological entities (genes, pro-
teins, metabolites) in living systems.
The aim of this method is to analyse phenotypic screening
data in combination with gene interaction data in order
to explain cellular processes and molecular functions at a
molecular and genetic level. With this approach it is pos-
sible to generate concrete hypotheses about the underlying
mechanism governing the observed phenotypic changes.

Here we assume screens associating a quantitative pheno-
type with individual genes. Examples of such screens are
RNAi screens or genome wide association studies.
One way to integrate phenotypic screening data with net-
work information is to screen the interaction network for
active subnetworks, i.e. connected regions of the network
related to significant changes of the observed phenotype
[2]. Such modules would consist of components involved
in the same or related pathways.

2. METHOD

The method proposed here, TopModule, works using an
interaction network and the phenotypic data. The interac-
tion network represents the model of how elements of the
whole system act together. The output of TopModule is a
set of statistically significant modules that could explain
the observed phenotype.
TopModule allows for using quantitative edge scores indi-
cating the confidence level of the interaction. The network
represents the scaffold on which TopModule works. The
first step of the method is to map the phenotypic data onto
this scaffold. The mapping is done assigning the pheno-
typic values to the genes (nodes) as attributes. In this way
we obtained a network where:

• the edge scores are the confidence levels taken from
the database;

• the node scores represent each gene’s contribution
to the observed phenotype.

TopModule applies a greedy search for finding connected
regions of the network that show significantly enriched
node scores.
There are two pre-processing steps before performing the
searching:

1. Rescaling of all node scores using a smoothing pro-
cedure (optional step, Fig.1a). The goal of rescaling
is to correct for gaps in the network. The rescaling
takes into account scores of neighboring nodes.

2. Definition of a seed node list on the basis of the
user preferences (known relevant genes, best scor-
ing nodes, etc. ...). Each node of this set will itera-



Figure 1. TopModule pipeline.

tively be the starting point for the searching proce-
dure (Fig.1b).

TopModule proceeds as follows :

1. Score expansion using the real (non randomized)
phenotypic data (Fig.1c). Starting from the seed the
searching procedure moves in the direction of the
highest scoring neighbour (best score) of the cur-
rent module. Nodes are iteratively added and after
each iteration a module score is computed (average
node score).

2. A user defined number of score expansions on ran-
domly shuffled node scores (Fig.1d). Each score ex-
pansion starts from the same topological seed node.

3. Assessment of the statistical significance of each
module (Fig.1e-f). This assessment is done by com-
paring the module score to scores obtained from the
score expansion on the randomized data.

For each seed node TopModule determines a potential mo-
dule along with its statistical significance. Modules can be
compared across different seed nodes to gain higher sta-
tistical confidence.

3. RESULTS

We report and discuss the results obtained after applying
TopModule to RNAi screens, quantitative trait loci (QTL)
data and expression measurements.

3.1. RNAi data

We have applied TopModule to a recently published RNAi
screen [3]. After the initial genome-wide screen (primary

Figure 2. The most significant module obtained using
TopModule on RNAi data. The colour of the nodes cod-
ifies the strength of the phenotype observed in the initial
genome-wide screen (DNA content in G1 phase). Darker
colour indicates a stronger phenotype. Triangles are genes
which were confirmed to be G1-arrest related in detailed
subsequent experiments. Circles are genes that were not
tested/verified even if they showed a G1-arrest phenotype.
Squares are genes identified as S-arrest related (there are
only 2).

screen) more refined experiments have been done for a
smaller set of candidate genes. Finally 1351 genes were
assigned to four functional classes: G0/G1 arrest, S arrest,
G2 arrest and cell division defects. The remaining genes
were not classified [3].
We hypothesized that TopModule would be able to find
the ‘true’ cycling genes by identifying a connected mo-
dule of significant hits from the first (genome-wide) screen.
Hence, we applied TopModule to the G1-arrest phenotype
(DNA content in the G0/1 phase) by mapping the pheno-
type scores onto a high confidence human interaction net-
work consisting of STRING [4] (edge confidence scores
> 0.7) and the in-vivo interactions from HPRD [5] (9513
nodes, 64019 interactions).
TopModule identified a significant module of 106 nodes
(Fig.2) containing 76 genes that were confirmed in the de-
tailed experiments of the original study (71.7%, P-value <
10−16). Hence, TopModule was able to identify a signif-
icant number of true G1 arrest-related genes exclusively
based on the primary screen and without further experi-
mental testing. Also, the network module contained genes
that did not show a significant phenotype in the primary
screen, but which were later confirmed to be also related to
G1-arrest [3], i.e. TopModule was able to detect false neg-
atives. We compared TopModule results with the results
of another published method called Active Module[2]. Per-
forming a seaching with this second method we obtained a



significant module of 106 nodes (nodes appearing in more
than 50% of the searches) containing only 47 genes that
were confirmed to be G1-arrest related (40%, P-value=
0.36). Hence, TopModule performed better than Active
Module.

3.2. eQTL data

TopModule was applied to expression quantitative trait
loci (eQTL) data to assess its ability to recapitulate known
regulatory pathways [6]. Genotype and expression data
were downloaded from WebQTL [7]. Random Forests
[8], a tree-based ensemble classification and regression
method, has previously been used to identify genetic loci
linked to phenotypes [9]. Using Random Forests in a ge-
netic linkage study has several benefits, including implicit
cross-validation of the model, the inclusion of many loci
simultaneously in a predictive model, and the natural con-
text tree-based regression provides for using categorical
variables (markers) to predict a continuous value (expres-
sion). Here we used Random Forests to calculate the con-
tribution of each marker to the accurate prediction of ex-
pression. Each marker was assigned an importance score
which indicates how much the model’s predictive ability is
reduced when the marker’s values are randomly permuted.
This importance value was divided by its standard error to
obtain a Z-score, from which a P-value is calculated.
Two approaches for identifying significant eQTL were com-
pared. First, we calculated the Benjamini-Hochberg FDR
[10] from the obtained P-values, and used FDR < 0.01 as
a cut-off for significant loci. Since there are more genes in
the network than markers, we mapped the marker scores
to the genes in the network by assigning each gene the
score of the nearest marker. Second, we used the un-
adjusted P-values as input for TopModule. Again, we
mapped marker scores to genes as previously described.
TopModule was performed using the STRING [4] net-
work as the topology (scores > 0.7). Thirty seed nodes
were selected based on their ability to lead to high-scoring
modules within 20 steps. Score expansions were cut at the
last local minimum before exceeding a permutation-based
P-value of 0.01 (1000 permutations). A smoothing coeffi-
cient of 0.25 was used. Modules were defined as compris-
ing nodes appearing in more than 50% of the searches that
achieved significance at the stated P-value < 0.01 level.
We evaluated eQTL by examining the expression of the
ID1 gene, a well-known target of the TGF-β signaling
pathway. Using an FDR cut-off of 0.01, we identified
6 genes as putative eQTL for ID1 (Ltbp1, Wisp1, Myc,
Sla, Ddef1, and Tg), two of which are annotated in the
TGF-β pathway (Ltbp1 and Myc). Using TopModule, we
identified a significant module of 6 genes (Ltbp1, Tgfb1,
Bmp2, Thbs3, Comp, and Smad3), all of which are up-
stream of ID1 in the TGF-β pathway. Interestingly, sev-
eral of the module nodes did not have significant P-values
(P < 0.05) when considered in isolation, and would cer-
tainly have been excluded from further investigation under
a cut-off approach. However, when considered together in
their network context, they yield both statistical and bio-

logical significance.

3.3. Expression data

During differentiation progenitor cells significantly change
concentrations of a range of proteins that are relevant for
the new character of the cells. Czupalla et al. [11] have
investigated the changes of protein and mRNA concen-
trations in differentiating osteoclasts. The model system
for these experiments was the mouse myeloid Raw 264.7
cell line which differentiates in vitro into osteoclasts. The
authors found very little overlap between genes that sig-
nificantly increased their mRNA concentrations and those
that increased protein levels. We applied TopModule in
order to better understand the causes and mechanisms of
this finding. Here, we focus on genes with either elevated
mRNA or protein levels in the fully differentiated osteo-
clasts.
We applied TopModule independently using first protein
concentrations and subsequently mRNA concentrations as
node scores. The interaction network was obtained from
STRING [4] (edge confidence scores > 0.7). TopModule
determined two distinct network modules (Fig.3) that are
regulated either transcriptionally or post-transcriptionally.
Finally, we compared the resulting network modules.
The protein and mRNA modules contained 119 and 100
genes, respectively, with only one node (gene) being com-
mon to both modules.

Interactions in the protein module are more dense than
those in the mRNA one (densities 0.11 and 0.06 respec-
tively), indicating that the first module presumably com-
prises proteins that form complexes whereas the latter genes
probably belong to one or more biological pathways present
in mature osteoclasts. Although there are many interac-
tions connecting the two modules, they are clearly distinct
sub-networks with a higher connectivity within than be-
tween modules (density of the complete network in Fig.3:
0.04). Next, we searched for the enrichment of certain
gene functions in the two modules. We found that genes
belonging to the protein module are primarily located in
the mitochondrion - which can perhaps explain the high
connectivity of the subnetwork. On the other hand, genes
from the mRNA module are mainly located in ER, Golgi
apparatus, lysosomes and hyperoxysomes, which are all
known to be involved in the specific functioning of osteo-
clasts.

4. CONCLUSION

We presented here a novel method, TopModule, to iden-
tify statistically and biologically significant subnetworks
in biological networks using a greedy search. This method
takes into account not only the network topology but also
the node scores. One important feature of TopModule is
its broad applicability. We have tested it on different kinds
of phenotypic data: RNAi, eQTL and gene expression
data. In all cases the main benefit of using TopModule is
its ability to identify interactions between relevant genes,
which may lead to detailed hypotheses about underlying



Figure 3. Network modules with significantly elevated
protein (top) and mRNA (bottom) levels in maturated os-
teoclasts. The only gene present in both modules is shown
between them (diamond node shape). Node colour in-
dicates measured concentration changes. Black: sig-
nificantly elevated protein/mRNA concentration. White
nodes did not show a significant concentration change in
the experiments.

molecular mechanism. TopModule also showed the abil-
ity to detect false positives and false negatives present in
the original experimental data.
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ABSTRACT

Data-driven metric adaptation is proposed for proteome
analysis of 2D-gel electrophoretic plots aiming at identi-
fication of stress related proteins in two barley cultivars
with different response towards different salt stress con-
ditions. Gradient descent is applied to the ratio of intra-
and inter-class distance sums to optimize the matrix para-
meters of generalized Mahalanobis distances in order to
separate the several hundred dimensional data of protein
intensities in the transformation space. The resulting ma-
trix contains mutual dependence of spots, explaining dif-
ferential stress reactions and putative protein interactions.
We present interesting results obtained by the new met-
ric learning method that possesses general applicability in
biomedical data analysis.

Keywords: Supervised feature characterization, adaptive
matrix metric, attribute dependence modeling.

1. INTRODUCTION

The identification of gene and protein dependences is an
essential step for the inference of interaction networks from
experimental data. Both network inference and the explo-
ration of the obtained connectivity structure are hot topics
in systems biology [5]. Typical approaches for the auto-
matic reconstruction of network topologies make use of
correlation measures [4], Bayesian inference [9], or infor-
mation theoretic statistics [8] in order to model the mutual
dependence of network nodes. Among different benefi-
cial properties these models also possess some unwanted
properties, ranging from being rather simplistic or suffer-
ing from high computational complexity to requiring addi-
tional assumptions like density estimates. The assessment
of the quality of the inferred networks is usually prob-
lematic. One general reason is that test statistics might
be inappropriate for reflecting biological experience [3].
A more specific problem is the biological probing and
confirmation of the huge number of potential interaction
partners. Alternatively, the promising concept of learning
metrics from the area of machine learning research [6, 13]
can be utilized for network construction by modeling at-
tribute pairs. Data-driven metric adaptation also helps to
reduce the curse of dimensionality occurring during the

analysis of high-throughput data. In our case, protein data
of 2D electrophoretic gels are considered providing inten-
sities of many protein spots measured in a relatively low
number of available experiments. A minimalistic attribute
characterization method is used for rating the influence of
attribute pairs on the spatial arrangement of class-specific
data clouds in vector space, expressed by an adaptive ma-
trix metric, as recently utilized in matrix learning vec-
tor quantization [11]. The method presented here aims
at minimizing within-class differences while maximizing
inter-class distances by rescaling the data space based on
a trained transformation matrix without building an ex-
plicit classification model [12]. Although this aim resem-
bles the one of linear discriminant analysis (LDA) [2], the
transform maintains the original data dimensionality and
is thus not reduced to an a priori low-dimensional LDA
subspace. The new method yields an estimate of a label-
specific inverse covariance matrix and might be consid-
ered as supervised whitening operation. Some concepts
can be related to the threshold gradient descent method [7].

2. METHOD – MATRIX LEARNING

As input q-dimensional row vectors x ∈ R
1×q are as-

sumed to be taken from a set containing n data vectors
{x1, x2, . . . , xn}. The proposed metric adaptation requires
a class-specific label c(k) for each data vector xk. We de-
fine the main building block of the method, the matrix-
based metric dij

Ω ∈ [0;∞) for data vectors xi and xj :

dij
Ω = dΩ(xi, xj) = (xi − xj) ·Λ · (xi − xj)

T

,

(Λ = Ω ·ΩT

) ∈ R
q×q . (1)

The identity matrix Λ = Ω = I induces the special case
of the squared Euclidean distance; other diagonal matri-
ces yield weighted squared Euclidean distances. Arbitrary
positive-definite matrices Λ lead to very general metrics
that can express rotation and translation which do not af-
fect distances between points, and scaling and shearing
which do affect them. A triangular or symmetric matrix Ω

would be sufficient to express any such configuration by
Eqn. 1. Faster convergence can be observed, though, if the
full matrix is adapted in the matrix optimization scheme



for minimizing the label-specific metric stress criterion:

s(Ω) :=
�n

i=1

�n
j=1

dΩ(xi,xj)·δij
�n

i=1

�n
j=1

dΩ(xi,xj)·(1−δij)
= dC

dD

with δij =
{

0 : c(i) �=c(j)
1 : c(i)=c(j)

. (2)

Distances dij
Ω between all n data vectors xi and xj depend

on the adaptive matrix parameters Ω = (Ωkl) k=1...q
l=1...m

of
interest. The numerator represents within-class data vari-
ability, which should be small. The denominator is related
to inter-class distances, which should be large. Thus, op-
timization of s(Ω) handles both parts of the fraction si-
multaneously. Compromise solutions must be found in
cases when within-class variation, potentially caused by
outliers, needs compression, while inter-class separability
would require inflation.

Although similar at first glance, the proposed approach
is structurally different to LDA, because the inverse LDA-
like ratio in Eqn. 2 is optimized in the original data space,
not in the projection to the most prominent class separat-
ing LDA direction [12]. In contrast to LDA where co-
variance matrices and class centers can be initially com-
puted and then reused, this is not possible in the proposed
method, because the metric adaptation affects both class
centers and data covariances. Full matrix adaptation, though,
creates higher computational demands of the optimization
method described in the following.

The cost function s(Ω) gets iteratively minimized by
gradient descent. This requires adaptation of the matrix Ω

in small steps γ into the direction of steepest gradient

Ω← Ω− γ · ∂s(Ω)

∂Ω
(3)

obtained by the chain rule

∂s(Ω)

∂Ω
=

n∑

i=1

n∑

j=1

∂s(Ω)

∂dij
Ω

· ∂dij
Ω

∂Ω
. (4)

The derivative of the fraction s(Ω) = dC/dD in Eqn. 2 is

∂s(Ω)

∂dij
Ω

=
δij · dD

d2
D

+
(δij − 1) · dC

d2
D

=

{
1/dD : c(i) = c(j)

−dC/d2
D : c(i) �= c(j)

. (5)

The right factor in Eqn. 4 is the matrix derivative of Eqn. 1:

∂dij
Ω

∂Ω
= 2 · (xi − xj)

T · (xi − xj) ·Ω . (6)

In practice, the gradient from Eqn. 4, is computed and
reused as long the cost function decreases. Increase of
s(Ω) triggers a recomputation of the gradient. The step
size γ is dynamically determined as the initial size γ0, be-
ing exponentially cooled down by rate η, divided by the
maximum absolute element in the matrix ∂s(Ω)/∂Ω.

For running the iterative optimization, the initial step
size γ0 can be chosen as a value below one, such as 0.01

used here. In general, between 50 and 2500 iterations are
necessary, depending on the saturation characteristics of
the logged cost function value. It was set to 50 in this
study. The exponential cooling rate was set to η = 0.995.
For initialization of matrix Ω random matrix element sam-
pling from uniform noise in the interval [−0.5; 0.5] is pro-
posed as first step. This noise matrix A ∈ R

q×q is then
broken by QR-decomposition into A = Q ·R, of which
the Q-part is known to form an orthonormal basis with
Q·QT = I . Thus, although Ω = Q contains random con-
figurations, its self-product leads to the intuitive squared
Euclidean distance in the beginning of optimization.

3. RESULTS – PROTEOME DATA ANALYSIS

Abiotic stress factors have severe effects on the growth as
well as on the yield of crop plants, and proteome analysis
of stress responses is widely used for unraveling tolerance
mechanisms for crop improvement [1, 10]. Our data has
been created in a proteomic study concerning metabolic
reactions of two barley cultivars, Steptoe and Morex, to
different salt stress conditions, ranging from zero NaCl
concentration via 100mM to 150mM. The main task is the
identification of protein pairs in root parts affected by salt
stress, but with different regulation dynamics between the
salt-sensitive Steptoe line and the salt-tolerant Morex line.
Using 2D-gels separating along pH and mass gradient,
images with protein-specific spot distributions were ob-
tained. After image processing, a number of 997 common
spots in all gel images was obtained for further analysis.
Since three technical replicates per experimental condi-
tion were taken, a total number of 18 images was available
for differential analysis of the spot combinations charac-
teristic of the three salt treatments.

Matrix learning has been done independently for the
Morex and Steptoe lines. In order to increase the reli-
ability of the results, 100 repetitions with random matrix
initializations have been created, leading to a total number
of 200 trained 997x997 matrices Λi = Ωi · ΩT

i . Within
each such symmetric matrix the ranks of its lower trian-
gular elements, including the diagonal, were calculated.
Especially high and low ranks are linked to protein pairs
separating between the three salt stress conditions. Since
metabolic differences of Steptoe and Morex regarding salt
treatments are looked for, only those pairs with very dif-
ferent ranks between both lines are of interest. Thus, the
absolute differences of average ranks of the 100 Steptoe
and 100 Morex results were taken as ordering criterion of
all protein pairs. For illustration, the top 100 protein pairs
are considered in more detail. In that list all standard de-
viations of ranks are below 12.8, which indicates a high
reproducibility of the found protein pairs; for comparison,
the expectation of randomly drawn rank differences would
be 1/3 · 997 · (997 + 1)/2 = 165834.3.

The connectivity structure of the strongly associated
top 100 protein pairs is shown in Fig. 1. Two protein spots,
543 and 94, can be identified as network hubs. These
are linked to many other spots of interest. Spots within
bold ellipses were identified as candidate proteins in an
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Figure 1. Protein-protein network derived from 2D gels containing patterns of differential protein abundance induced by
salt-stress. The top 100 dependent pairs of protein spots, indexed by numbers, are shown. Edge gray levels indicate the
ranking, the darker the stronger. The connection from 543 to 94 is the strongest. Bold face ellipses denote spots identified
as interesting in previous studies, gray filling indicates spots close to the background intensity.

independent previous study. Plain ellipses are new can-
didates that have not been detected previously by single
spot analysis. It must be stated, though, that also spots
close to the background intensity have been found. These,
shaded in gray, cannot be considered as biologically rele-
vant. Yet, scale-free inspection indicates that magnitudes
alone are not the only consistent class-separation criteria.

Model compression. Since the matrix model of 997x997
is huge in contrast to the (2x9) x 997 experimental protein
spots, compression is an important issue. Eigen decom-
position of Λ = S ·W ·W−1 into the diagonal eigen-
value matrix S and the eigenvector matrix W helps to
reach substantial reduction. For the protein-specific ma-
trices the largest eigenvalues are about 7-fold greater than
their predecessors which themselves are twice larger than
their predecessors. These first two eigenvectors w1 and
w2 therefore define outstanding directions in the scaling
matrix Λ. This matrix can be approximately reconstructed
by [w1w2] · [w1w2]

T. Each experiment x is projected into
a class-separating subspace by x · [w1w2]

T. This is shown
in the right panel of Fig. 2, where the within-class vari-
ation of the technical repetitions is virtually completely
suppressed in contrast to the scatter plot obtained by ordi-
nary PCA projection, displayed in the left panel of Fig. 2.
This result indicates that relevant directions for noise can-
cellation have been found by matrix learning.

4. CONCLUSIONS

The presented matrix metric learning approach offers a
new way to extracting biomarkers, advancing the tradi-
tional assessment of individual data attributes to attribute
pairs. As illustrated for protein data, dependent treatment-
specific substances can be identified. This allows the con-
struction of undirected network structures with weight-
ed edges, a first step towards the inspection of possible
protein interactions. Multi-parallel data sources like the
considered protein gels create big challenges, because the
number of experiments are usually substantially lower than
the number of attributes. Therefore, metric adaptation is
generally considered as beneficial to counter-act the curse
of dimensionality. Confidence in the proposed method is
derived from the observation that training showed very
stable results despite random initializations of Ω. How-
ever, additional data for the validation of the trained met-
ric are needed, and attention must be put to the role of
pairs with low-intensity partners. In order to force fur-
ther model regularization and for a significant speedup of
adaptation, the direct training of only the first k eigenvec-
tors of Λ are currently considered.

Thanks to the anonymous reviewer for the valuable com-
ments. The work is supported by grant XP3624HP/0606T,
Ministry of Culture Saxony-Anhalt, Germany.
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ABSTRACT

Biological Networks have received much attention in re-
cent years, but statistical tools for network analysis are
still in their infancy. In this paper we focus on Protein
Interaction Networks (PINs) that typically comprise thou-
sands of proteins and interactions. PINs are the result of
long evolutionary histories. Here we adopt simple mathe-
matical models that capture essentials of protein evolution
and develop statistical methods to estimate evolutionary
PIN parameters. Our initial approach is based on a re-
cursion for the likelihood, but it becomes computationally
intractable for reasonably sized networks. Our second ap-
proach is based on summary statistics and likelihood-free
inference. We discuss problems with selection of sum-
maries, convergence, and credibility and apply the meth-
ods onHelicobacter pylori andPlasmodium falciparum
data.

1. INTRODUCTION

Today it is possible to obtain massive amounts of data re-
lating to the molecular complexity, organization and struc-
ture of a single cell or organism. These data can be ob-
tained in a single experiment and have thus geared the
biosciences towards system-level science or systems bi-
ology, where the attempt is to understand the system and
its organization in broader and overall terms, rather than
understanding the system’s individual components one by
one.

One system-level data type that is becoming available
is PIN data. A PIN data set is a collection of experimen-
tally determined interactions ( physical binding between
proteins). As such, a PIN data set is an incomplete ob-
servation of the interactome, the entire collection of all
proteins in a cell or organism together with their interac-
tions.

Evolution has shaped the form of an organism’s inter-
actome. In principle, we should therefore be able to learn
about the processes responsible for this evolution by ana-
lyzing PIN data sets from the organism. The idea is that
different evolutionary processes leave different traces in
the PIN data but also that parameters describing the pro-
cesses may differ between organisms. For example the
authors of [1] investigate which type of model best ex-
plains aD. melonagaster PIN data set. However, they do

not attempt to estimate the parameters in the models, but
base their conclusions on how well the models (evaluated
over a range of parameters) account for the motifs seen in
the PIN data.

In [2] (and references therein) different distributions
are fitted to the degree sequence observed in various PIN
data sets. While this provides insight into the differences
between organisms, it does not provide insight into the
processes generating the differences – simply because the
distributions are not based on evolutionary models. The
approach taken in [1] has the strength that it utilizes more
information in the data than just the degree sequence and
thus has a higher chance of uncovering relevant features.

In this paper we present statistical analysis of PIN data
sets based on mathematical model of network evolution.
We focus on two data sets, aH. pylori data set [3] and a
P. falciparum data set [4]. Statistical analysis of network
data is far from straightforward and we discuss different
approaches to inference [5, 6]. We first develop a scheme
for maximum likelihood inference using a full data set (i.e.
an entire network), but find that it is limited in several
respects. Subsequently, we develop a likelihood-free in-
ference (LFI) approach, based on Approximate Bayesian
Computation (ABC) and summary statistics [7], and show
that it is much more flexible than the likelihood approach.
Importantly, we find that reliable inference requires con-
sideration of many, carefully chosen network summaries
simultaneously.

Having settled on a statistical method we apply the
method to the two data sets and discuss the results in rela-
tion to biological knowledge and mathematical properties
of the underlying model.

2. EVOLUTION OF THE INTERACTOME

Various processes contribute to the evolution of the inter-
actome [8, 9]. The importance of gene duplication to bi-
ological evolution has long been recognized and substan-
tial evidence that elucidate the importance and the mech-
anisms of this process in higher organisms has been col-
lected from genomic sequence data, either in the form of
whole genome duplication (WGD) or as single gene du-
plication (SGD) [10, 9]. In the two species we use here,
H. pylori andP. facliparum there is no recorded evidence
of WGD and we will simply ignore it in the following dis-



cussion, though we note that for other species such asS.
cerevisiea WGDs have played an important role [11].

2.1. Single gene duplication

In most SGDs, a gene is tandemly duplicated. Just after
a successful duplication, the child and the parental genes
have exactly the same functions, but over a relatively short
evolutionary time [10, 9], the two genes may diverge, re-
sulting in different fates of the duplicates: i) one gene may
be silenced (non-functionalization), ii) both genes are pre-
served such that one is redundant to the other, iii) one gene
may acquire a new function while the function of the other
is retained (neo-functionalization), and iv) both genes are
changed through mutations and partly acquire new func-
tions (sub-functionalization). The latter is very attractive
[10] as it does not rely on sparse occurrences of bene-
fial mutations, but on loss-of-function mutations in regu-
latory regions. Further, sub-functionalization is a natural
mechanism for specialization of gene products to different
tissues and cells. In contrast, for iii) to occur the acqui-
sition of novel interactions through benefial mutations is
required.

2.2. Attachment processes

Besides SGD (and WGD) a number of other processes
contribute to the evolution of the interactome, which we
collectively refer to asattachment processes. These in-
clude various forms of horizontal transfer of genetic ma-
terial between organisms (typically bacteria), integration
of viral DNA into the host genome and translocation of
genetic material within an organism. All of these may
lead to the formation of novel genes.

2.3. The model

We adopt a model that emphasises iv) as the most impor-
tant consequence of SGD and distinguish two processes,
SGD andpreferential attachment (PA). The model is a
Randomly Grown Graph (RGG) and has four parameters
θ = (α, p, q, r). A RGG is a Markov chain in the sense
that the graph (network)Gt+1 = (Vt+1, Et+1) at stept+1
only depends on the graphGt = (Vt, Et) at stept, wheret
denotes the size of the network. At stept+ 1 do:

[SGD] With probabilityα choose a node,vold, at ran-
dom inGt and introduce a new nodevnew. For each neigh-
bour, v, of vold, create a link betweenvnew andv with
probabilityp; otherwise with probabilityr erase the link
(vold, v) and create the link(vnew, v). Create a link be-
tweenvold andvnew with probabilityq.

[PA] With probability1−α choose a node,vold, with
probability proportional to its degree inGt and introduce
a new nodevnew. Create a link betweenvold andvnew.

The model is symmetric inr in the sense thatr and
1 − r produce statistically indistinguishable networks. In
our analysis we fixr to 0.5 to reduce the number of param-
eters. PIN data sets are incomplete and noisy in several
respects; e.g. they only contain a fraction of all proteins

in the interactome (incomplete sampling) and also contain
both false positive and false negative links (noise). Here
we only consider incomplete sampling and assume that
the sampling fraction is known (estimated from the num-
ber of open reading frames in the genome).

3. STATISTICAL METHODS

We first discuss the likelihood of an entire network, and
then move on to LFI.

3.1. The likelihood of a full network

Ideally, we would compute the likelihood of an oberserved
PIN data set,

L(θ,Data) = P (Data|θ).

This would allow us to perform a likelihood analysis or
engage in a Bayesian analysis of the posterior distribution

P (θ|Data) ∝ P (Data|θ)p(θ),

wherep(θ) is a prior onθ. However, calculatingP (Data|θ)
is computationally very demanding even for small net-
works.

In [5] the likelihood is calculated recursively. Denote
by δ(Gt, v) the graphGt with the nodev removed. If it is
possible to go fromδ(Gt, v) to Gt by SGD or PA then we
say thatv is removable and denote the set of removable
nodes byR(Gt). Armed with this notation, the likelihood
of an entire network,Gt, takes the form

L(θ,Gt) =
1

t

∑

v∈R(Gt)

ω(θ,Gt, v)L(θ, δ(Gt, v)), (1)

where
ω(θ,Gt, v) = P (Gt|δ(Gt, v), θ)

is the conditional probability of generatingGt fromδ(Gt, v).
The factor1/t is the probability thatv is the last added
node and the quantityω is a sum over all nodes that could
have given rise tov by SGD or PA.

We note that the likelihood is written in a form that
may facilitate approximate procedures such as Importance
Sampling (IS) or MCMC [12, 13]. However, only in the
casesα = 0 and/orr = 0, 1 is the set of removable
nodes fairly small; in all other cases the set consists of all
nodes in the network [5] and it becomes computationally
untractable.

Furthermore, as an additional complication, sampling
is not taken into account in the recursion above, because
sampling cannot be considered at each step in the recur-
sion, and is best implemented after the network has achieved
the desired size. Other approaches are therefore required.

3.2. Likelihood-free inference

To circumvent the problems with calculating the likeli-
hood we turn to methods of ABC and LFI [7].

The basic idea in ABC is to combine Bayesian ap-
proaches with summary approaches. Rather than target-
ing the posterior distribution given the full data we aim at



calculating the posterior distribution given a summary of
the data. This approach in addition requires to choose a
reasonable set of summaries.

For a given set of summary statisticsS = (S1, . . . , Sk)
we adopt a MCMC scheme to simulate the posterior distri-
butionP (θ|S) – now conditional on the set of summaries
and not on the full PIN data. Denote byS0 the set of ob-
served summary statistics. We proceed in the following
way:

[A] If now atθ, propose a move toθ′ according to the
proposal densityq(θ → θ′)

[B] Generate a network according toθ′, sample the
required number of nodes and calculate the summariesS′

[C] DefineC =
∏k

i=1 1(di(S
′

i, Si0) < ǫi) and calcu-
late

h(θ, θ′) = min

(
1,
p(θ′)q(θ′ → θ)

p(θ)q(θ → θ′)
C

)
,

whereǫi > 0 is a threshold anddi a distance measure

[D] Acceptθ′ with probabilityh(θ, θ′) and otherwise
stay atθ; go to [A].

Besides the summaries, we need to chooseǫi anddi.
For the thresholds we choose a tempering scheme such
that the thresholds decrease during the burn-in period. The
final thresholds are decided upon based on MCMC diag-
nostics (see e.g. [12]). Thedis are taken to be Euclidian.

4. STATISTICAL ANALYSIS OF PIN DATA

In this section we present results from the analyses of the
H. pylori and theP. falciparum PIN data sets. Due to space
limitations we are unable to present these results in full,
but refer the reader to [6].

4.1. Summary statistics

Table 1 shows the effect of varying the summary statistics.
In earlier papers only the degree sequence is used (see e.g.
[14, 2]) and Table 1 clearly demonstrates that inference is
unreliable when judged solely from the degree sequence.
Interestingly, the estimate ofp is much lower when based
on the degree sequence only. However, as soon as several
summary statistics are applied, the exact number and the
particular choice of summaries become less important.

Choosing a distance measure and a precision threshold
ǫ further influences the inference. As expected, credibil-
ity intervals become more narrow when smaller thresholds
are applied; however this is at the cost a lower acceptance
probability in the MCMC (h is lower) and additionally,
burn-in occurs later in the MCMC.

4.2. H. pylori and P. falciparum

The H. pylori PIN data set comprises 675 proteins and
1,096 links [3]. The sampling fraction is estimated to 45%
[6]. In contrast, theP. falciparum PIN data set is larger,
comprising 1,271 proteins and 2,642 links [4]. The sam-
pling fraction is 24% [6]. Table 2 shows the estimates of
the three parameters.

p q α
I 0.32 (0.09,0.69) 0.55 (0.19,0.87) 0.57 (0.24,0.87)
II 0.57 (0.44,0.75) 0.05 (0.01,0.10) 0.78 (0.64,0.92)
III 0.56 (0.44,0.79) 0.05 (0.00,0.09) 0.79 (0.64,0.93)

Table 1. Shown are the maximum posterior estimates ofp,
q andα, together with 80% credibility intervals for three
sets of summary statistics. I) Degree Sequence (ND); II)
Distribution of distances between nodes (’within reach’,
WR), Diameter (DIA), Cluster coefficient (CC), Average
degree (AD), and size of largest connected component;
III) WR, ND, CC and FRAG. TheH. pylori data set is
used.

p q α
Hp 0.57 (0.44,0.75) 0.05 (0.01,0.10) 0.78 (0.64,0.92)
Pf 0.52 (0.46,0.59) 0.05 (0.00,0.09) 0.93 (0.87,0.98)

Table 2. Shown are the maximum posterior estimates of
p, q andα, together with 80% credibility intervals for Hp)
H. pylori and Pf)P. falciparum. Summary statistics: WR,
DIA, CC, AD and FRAG.

The estimates are very similar forp andq. However,
the 80% credibility intervals are wider forH. pylori than
for P. falciparum which we attribute to the difference in
network order – theP. falciparum PIN data set is almost
twice as big. Intuitively, the difference in the estimates
of α are biologically reasonable:H. pylori is a small bac-
terium, and bacteria are often subject to horizontal transfer
of genetic material. In contrast,P. falciparum is a unicel-
lular eukaryote, and attachment processes are believed to
occur rarely in eukaryotes [9].

5. MATHEMATICAL INSIGHT

The Markov property of the model allow us to deduce
a number of statements about the model. The expected
number,nt(k), of nodes of degreek fulfills the relation

nt+1(k) =

(
1 −

1 + kp

t

)
nt(k)+

1 + (k − 1)p

t
nt(k−1)

+2
∑

j≥k−1

(
j

k − 1

)
ψk(1 − ψ)j−k+1 nt(j)

t
,

whereψ = (1 + p)/2, r = 1/2 andq = α = 1 (for
convenience). A similar recursion can be obtained for an
arbitrary set of parameters, but is more complicated. An
argument for the correctness of the recursion can be found
in [15, 16].

Here we are concerned with the existence of a limit-
ing degree distribution as the network becomes large. We
distinguish several different scenarios:

• If αp < 0.5 then there exists an equilibrium distri-
bution (ergodic recurrent solution)

• If α = 1 andp < 0.533... then an infinitely large
network has infinitely many nodes of arbitrary degree, but



an equilibrium distribution is not guarenteed to exist (re-
current solution)

• If α = 1 andp > 0.562... then an infinitely large
network has finitely many nodes of arbitrary degree, but
potentially an infinite number of degree 0 (transient solu-
tion)

• If α < 1 then an infinitely large network has in-
finitely many nodes of arbitrary degree, but an equilibrium
distribution is not guarenteed to exist (recurrent solution).

Note that forα = 1, there is a small window between
0.533 and 0.562 where we do not know what happens.
The first bullet point is closely related to the average de-
gree in the (infinitely large) network,

2 − 2(1 − q)α

1 − 2αp
,

if αp < 0.5 and otherwise infinity. Assuming the esti-
mates in Table 2, both networks have a stable or an equi-
librium distribution over time: ForH. pylori, αp = 0.44
and forP. falciparum, αp = 0.48. However, in both cases
αp is close to the point where we do not know whether the
network stabilizes or not.

6. CONCLUSION

We have demonstated that using advanced statistical tools
such as ABC or LFI it is possible to achieve inference on
parameters describing the evolution of the interactomes of
H. pylori and P. falsiparum. However, the matahemati-
cal models we apply are very basic and only mimic true
evolution in an approximate sense. Nonetheless, the pa-
rameter estimates we find are in accordance with intuition
and biological knowledge achieved by other means.
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