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ABSTRACT
In high-dimensional genomic analysis it is of-

ten necessary to conduct feature selection, in or-
der to improve prediction accuracy and to obtain
interpretable classifiers. Traditionally, feature se-
lection relies on computer-intensive procedures
such as cross-validation. However, recently two
approaches have been advocated that both are com-
putationally more efficient: False Non-Discovery
Rates (FNDR) and Higher Criticism (HC). Here,
we describe the rationale behind the two approaches,
conduct an empirical comparison based on syn-
thetic and real data, and discuss the respective
merits of HC-based and FNDR-based feature se-
lection.

1. INTRODUCTION

Feature selection is an integrative part of many
genomic analyses, e.g., in classification of cancer
tissues using microarray data. Without variable
selection the prediction functions are unstable and
can neither be properly estimated nor interpreted.

In the majority of currently employed algo-
rithms feature selection is based on minimizing
prediction error, which is typically estimated by
a variant of cross-validation. As resampling can
be quite demanding in terms of required comput-
ing time, alternative computationally much more
efficient criteria have been proposed. In this note
we focus on feature selection in linear classifica-
tion using two specific selection methods,”Higher
Criticism” (HC) and “False Non-Discovery Rates”
(FNDR).

Originally, HC refers to an approach to mul-
tiple testing [1]. It has been rediscovered in the

context of sparse signal detection [2] and subse-
quently employed for feature selection in high-
dimensional classification [3; 4]. “False Discovery
Rates” (FDR) provide an alternative criterion to
multiple testing [5; 6; 7] and has become stan-
dard in large-scale statistical analysis [8]. Feature
selection in classification based on “False Non-
Discovery Rates” (FNDR) has been suggested re-
cently in [9].

Both FDR/FNDR and HC-based feature se-
lection assume a null model for the observed test
statistics is known, e.g., a normal distribution. Sub-
sequently, a threshold separating null from non-
null features is determined.

Our analysis extends the one of [9] in looking
more closely at the rationale behind HC and of-
fering some results in the context of the so-called
“Rare and Weak” feature model [3; 4].

2. METHODS

2.1. Linear classification rules

Many classification algorithms can be put in the
framework of linear decision rules dk(x), which
assign data x = (x1, . . . , xp)T to the class k
maximizing dk(x). For example, if we represent
each group k by a multivariate normal distribu-
tion N(µk,Σ) with mean µk and common covari-
ance matrix Σ, and assume a prior πk we arrive at
standard multi-class linear discriminant analysis
(LDA) with

dLDA
k (x) = µTkΣ−1x

− 1
2
µTkΣ−1µk + log(πk) .

(1)



Note that dLDA
k (x) is linear in x. LDA is optimal

under the normal assumptions and forms the ba-
sis of most classification algorithms currently em-
ployed in high-dimensional data analysis, includ-
ing Nearest Shrunken Centroids (NSC) or Shrink-
age Discriminant Analysis (SDA), cf. [9; 10].

For a binary prediction (K = 2) it is useful
to consider as decision criterion the difference be-
tween the discriminant scores of the two classes
L(x) = dLDA

1 (x)−dLDA
2 (x), which can be written

as [10]

L(x) = ωT δ(x) + log
(
π1

π2

)
(2)

with feature weights

ω = P−1/2V −1/2(µ1 − µ2) , (3)

and decorrelated predictors

δ(x) = P−1/2V −1/2

(
x− µ1 + µ2

2

)
, (4)

The matrix P contains the correlations among the
predictors, and V is a diagonal matrix with the
variances (thus, Σ = V 1/2PV 1/2). If L(x) ≥ 0
then the test sample x is assigned to class 1, and
otherwise to class 2.

ForXk a random vector drawn from the mul-
tivariate normal N(µk,Σ) associated with class k
this implies

δ(Xk) ∼ N
(
±ω

2
, I

)
(5)

with the plus sign corresponding to k = 1, and
hence

L(Xk) ∼ N
(
±ω

Tω

2
+ log

(
π1

π2

)
,ωTω

)
.

(6)
Knowing the distribution of L(Xk) we can com-
pute the probability α1 = Pr(L(X1) < 0) which
is the nominal misclassification error of incorrectly
assigning an element from group 1 to group 2.
(likewise, α2 = Pr(L(X2) > 0)). Both kinds of
errors can be obtained as

αk = Φ
(
−
ωTω/2± log

(
π2
π1

)
√
ωTω

)
. (7)

2.2. Variable selection

By construction of rule Eq. 2, variables xi with
large corresponding feature weights ωi are most
influential in class prediction, and in addition con-
tribute most to decrease the prediction error in
Eq. 7. Therefore, it is sensible to conduct fea-
ture selection by thresholding features according
to the magnitude of ω2

i . Note that c0 ωi (where
c0 =

√
n1n2/(n1 + n2) is a sample size depen-

dent constant) are the correlation-adjusted t-scores
(also called “cat” scores) introduced in [10].

A key problem in feature selection is that we
do not know the true value of each weight ωi but
instead have to estimate it from data. In turn, this
implies that the prediction error Eq. 7 is also an
estimate (and one that is typically heavily biased).
The nominal error is trivially minimized by includ-
ing all predictors. However, if the coefficients ωi
are estimated with error, then it is no longer bene-
ficial to include all predictors. In contrast, if there
is a large number of candidate predictors but the
actual number of true predictors is small, it is nec-
essary to remove all the random null predictors to
improve prediction accuracy.

Several computationally efficient strategies have
been proposed recently:

• The SDA algorithm of [9] uses control of
False Non-Discovery Rate (FNDR) to iden-
tify the null genes to be eliminated from the
classifier.

• Ebay approach of [11] uses an empirical
Bayes model for the mean difference to esti-
mate the prediction error and uses t-scores
for gene ranking (hence it assumes P = I).
Features are added until the prediction error
falls below a given threshold.

• The Higher-Criticism (HC) approach [3]
outlined in more detailed below uses a proxy
of the estimated prediction error. The num-
ber of included features is determined by
maximizing the HC criterion, which in turn
implies that the estimated prediction error is
minimized.

Note that the FNDR and the Ebay approach rely on
a prespecified error threshold in order to determine
the cut-off, whereas in the HC approach no such
threshold is needed.



2.3. The rationale behind HC

As with the FNDR and Ebay methods the HC ap-
proach starts by arranging features in decreasing
order of magnitude ω(1), . . . , ωp so that ω2

(i) >

ω2
(i+1), and with the aim to include the top t fea-

tures. In the same order we arrange the correspond-
ing p-values π(1), . . . , π(p).

If the number of non-null features is small and
π1 = π2 then can be shown [3; 4] that minimizing
the expected empirical prediction error E(α̂k|t)
for t included predictors is equivalent to maximiz-
ing the expression

TP (t)√
TP (t) + FP (t)

,

where TP (t) and FP (t) denote the expected num-
ber of true and false positives at threshold t. An
empirical estimate of this quantity is given by the
HC criterion

HC(t) = arg max
πi

t/p− π(t)√
t/p · (1− t/p)

. (8)

The optimal number of features to be included
according to Higher Criticism is then given by
t∗ := arg maxt HC(t).

3. RESULTS

3.1. Simulation study

The rare-weak (RW) model [3] is a simple simu-
lation setup that allows to study the performance
of HC and related approaches in a situation where
the number of features is very large but only a few
are relevant for prediction.

Specifically, we repeatedly simulated the ob-
served values of p = 10000 scores ω̂i ∼ N(θi, 1)
where θi = τ for 25 features and θi = 0 for the
remaining 9975 noise features. Varying the value
of τ between 0 and 5 we counted the number of
false and true discoveries using HC and FNDR
thresholding (the latter using local FNDR with a
threshold of 0.2).

The results are shown in Figure 1. If τ is small
and thus the rare features are very weak HC se-
lects many more features than FNDR, with most of
those features being false positives. As τ increases
both methods yield very similar results. In terms
of selection stability the standard deviation of the
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Figure 1. False discovery and false non-discovery
rates under the RW model for HC and FNDR
thresholding.

number of features chosen by FNDR (S.E.=10)
was an order of magnitude lower than that of HC
(S.E.=60).

3.2. Gene expression data

In application to genomic data and LDA/DDA clas-
sification FNDR-based and HC-based threshold-
ing feature selection show similar performance
[9]. In the original HC paper [3] a simplified
three weights classifier using only the signs of
the estimated feature weights is advocated as an
alternative to LDA/DDA. In Tab. 1 and Tab. 2 we
compared this with the LDA and DDA and found
that this approach is competitive on the colon and
prostate cancer data sets considered in [12] but
is clearly outperformed by DDA analysis in the
lymphoma data from [13]. In order to infer the
LDA and DDA parameters we used the shrinkage
approach described in [9]. The error rates shown
in Tab. 1 were obtained by 10-fold cross-validation
with 20 repetitions.

4. DISCUSSION AND CONCLUSION

HC thresholding is an effective feature selection
approach if individual features are rare and weak,
as it is often the case in genomics. However, the
selection variability of HC is an important dis-
advantage compared to using other approaches
such as FNDR. Furthermore, we showed the HC



Method Colon [12] Prostate [12]
FNDR-DDA 0.128 (0.009) 0.068 (0.005)

HC-DDA 0.1304193 (0.008) 0.073 (0.05)
HC-3W 0.157 (0.147) 0.103 (0.008)

Method Hummel-Lymphoma [13]
lfdr-DDA 0.004 (0.001)
HC-DDA 0.002 (0.0007)
HC-3W 0.256 (0.002)

Table 1. Optimal estimated prediction errors for
various data sets and the DDA/3W classifiers in
combination with HC and FNDR thresholding.
The respective associated error is given in brack-
ets.

Method Colon [12] Prostate [12]
FNDR 176 153

HC 200 129
Method Hummel-Lymphoma [13]
FNDR 589

HC 588

Table 2. Number of features selected by the FNDR
and HC feature selection methodologies.

method performs best in a full classification model
(LDA/DDA) rather than with the overly simplistic
HC classifier employed in the original HC paper.
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