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ABSTRACT
In this study we investigate (linear) Gaussian process (GP)
priors for Bayesian classification comparing with other
more classical penalised classification methods. For train-
ing the GP classifier we employ variational Bayesian es-
timation. In the comparison we include support vector
machines and several diagonal and nondiagonal modifi-
cations of linear discriminant analysis (with and without
penalisation). Relative performance is assessed using syn-
thetic data and real data from gene expression and pro-
teomic experiments. Based on the data analysis, We dis-
cuss the advantages and disadvantages of GP methods for
high-dimensional classification.

1. INTRODUCTION

Gaussian processes refer to nonlinear nonparametric Bay-
esian regression (see [1, 2]), where the values of a function
y are modelled directly without parameterising y(x)[1].
In the Gaussian process framework the prior distribution
for the function values (the targets) is a Gaussian distribu-
tion with usually zero mean and a covariance function that
relates the entries of the p-dimensional inputs (before ob-
serving any targets) by some given criteria. In many cases
the covariance function is chosen so that spatial closeness
implies higher covariance, i.e. the target values of mea-
surements that are spatially close to each other should be
correlated.

The prior distribution for the function values y gives
rise to a space of functions and together with the mea-
sured targets and a likelihood function, where each target
is seen as a Gaussian random variable, posterior predictive
probabilities can be obtained.

Gaussian processes can also be seen as smoothers. The
prior defines the smoothness of the function space and the
role of the likelihood function is to give higher probabili-
ties to functions that are close to the data.

For continuous target values, the likelihood function
can also be defined as Gaussian, and thus the posterior
can be analytically tractable.

For classification (binomial or multinomial), the like-
lihood is usually chosen as a sigmoid function (e.g. logit,

probit). In classification, latent continuous variables are
introduced and priors over them are given. These latent
variables are then squashed through the chosen sigmoid
to produce proper probabilities. For multinomial regres-
sion, variational Bayes can be applied to approximate the
posterior as a Gaussian. Better results are obtained with
the variational Bayes approximation than with Laplace ap-
proximation and the results are comparable to the ones
obtained with MCMC [2].

In genomics and proteomics the dimension of the pro-
cessed data is usually high, in the thousands, whereas the
number of measurements is lower, usually in tens or hun-
dreds. With so little data and so high dimensionality, the
application of any complex classification rule will most
likely yield worse generalisation performance than with
a linear rule. This is mostly due to the increased num-
ber of parameters in the more complex models and the
problem of estimating these parameters. See e.g. [3] for
more discussion. Our experience with analysing high di-
mensional data has also shown that applying e.g. the ra-
dial basis covariance function kernel in the GP classifier
yields often classifiers whose generalisation performance
is random and worse than that of the linear (dot-product)
kernel.

The rest of the paper is organised as follows. In the
section METHODS we describe the basic Gaussian pro-
cess classification framework and the variational Bayes
approximation in classification (as in [2]). In RESULTS
we show the essential results of the comparison study with
other classifiers, some of which able to perform feature
selection and also model shrinkage. We also make some
concluding remarks in section CONCLUSIONS.

2. METHODS

We briefly desribe here the algorithm for the linear two-
class variational Bayesian Gaussian process classification.
The more general version of the variational Bayes algo-
rithm can be found in [2]. We start by defining the model
matrix X = [x1, . . . ,xN ]> ∈ RN×P , the target vector
t ∈ {−1, 1}N×1, the latent GP random variable m ∈



Figure 1. The hierarchical GP model from [2].

RN×1, the auxiliary latent variable y ∈ RN×1 (corre-
sponding to the unknown ground truth, y = m + ε, ε ∼
N (0, 1)), the covariance hyperparameters ϕ ∈ RM×1,
where M is the number of hyperparameters in the chosen
covariance function (here M = N ), and the hyperhyper-
parameters ψ,α. The model is illustrated in Fig. 1 where
K is the number of classes for the more general case and
can now be omitted.

The priors of the latent variables are set m|X,ϕ ∼
GP (ϕ) = N (0,Cϕ), where Cϕ ∈ RN×N gives the GP
covariance function values between the measurements and
y|m ∼ Ny(m, I). For the covariance function hyper-
parameters an independent exponential distribution prior
ϕn ∼ Exp(ψn) is set and a gamma prior is placed on
the mean values of the exponential, i.e. ψn ∼ Γ(α, τ).
The relationship between y and t is given by tn = 1 if
yn > 0. The probit likelihood used here is of the form
P (t = 1|m) = Φ(m).

The joint likelihood for the model, p(t,y,m,ϕ,ψ|X,
α, τ), is given in [2] (left out for clarity). Based on the
joint likelihood and the variational Bayes approximation,
the posterior means (denoted with tildes above the sym-
bols) of the necessary parameters are given by the follow-
ing iterations:

x̃← Cϕ̃ (I +Cϕ̃)−1 (m̃+ p), (1)

ϕ̃←
∑

s

ϕ̃sw(ϕ̃s) (2)

ψ̃n ←
α+ 1
τ + ψ̃n

(3)

where elements of p are given by

pn = tnNm̃n(0, 1)/Φ(tnm̃n).

ϕs are drawn using an importance sampler, i.e. by draw-
ing S samples such that ϕs

n ∼ Exp(ψ̃n) and evaluating

w(ϕ̃s) =
Nm̃(0,Cϕs)∑S

s′=1Nm̃(0,C
ϕs

′ ).
(4)

For more details see [2].
The posterior probability of a new sample belonging

to class 1 is given by evaluating

m̃new = ỹ> (I +Cϕ̃)−1
Cnew

ϕ̃ , (5)

ν̃new =
√

1 + cnew
ϕ̃ − (Cnew

ϕ̃ )> (I +Cϕ̃)−1
Cnew

ϕ̃ ,

(6)

P (tnew = 1|xnew,X, t) = Φ(
m̃new

ν̃new
), (7)

where Cnew
ϕ̃ contains the covariance function values be-

tween the new point and those in X , and cnew
ϕ̃ is the self-

vs-self covariance function value for the test data point.
To evaluate the GP covariances, the input entries in

X are first transformed by subtracting the column means
(note that this is not the same as in evaluating the ordinary
p × p covariance estimate) and then to allow for a class
boundary that does not go through the origin, a column of
ones is added to the design. Dot-products are then eval-
uated between all the row vectors of the transformed X ,
so that entries in Cϕ are given by Cij = x>i diag(ϕ)xj ,
and the N × N covariance matrix is then scaled into the
corresponding correlation matrix. Note that the covari-
ance / correlation matrix used in the GP framework gives
a measure of relatedness between the measurements, not
the variables. Thus we are directly modelling the mea-
surements without parameterising the model.

We initiate the algorithm by drawing m̃ from a normal
distribution, set ϕ̃ = 1 and assume vague priors α =
τ = 10−3 (notice the effect of τ on ψ̃n in the importance
sampler when ψ̃n vanishes). We then perform the updates
in Eqs. 1 to 3 for a maximum of 20 times (a less ad-hoc
stopping criterion will be left for future work) and for each
round draw 300 samples for the importance sampler to
train the classifier.

Having obtained the posterior means for m and ϕ we
can then estimate the posterior probabilities for new sam-
ples as given in Eq. 7

Most of the time in the algorithm will be spent in es-
timating the hyperparameters in the importance sampler,
i.e. in the feature selection phase, involving an O(N3)
step (Eq. 4).

3. RESULTS

To assess the relative performance of different pattern clas-
sification methods, we applied several classifiers in a sim-
ulation study on synthetic data and also with real data.
When applying to real data, cross-validation (CV) was
performed to estimate classification performance.

The competing classifiers chosen for the simulation
study were the shrunken centroids diagonal discriminant
method dubbed PAM [4], shrinkage linear discriminant
analysis (SLDA), shrinkage diagonal discriminant analy-
sis (SDDA) [5], support vector machine (SVM) [6] (with-
out tuning and with the default values for the kernel) and
the partial least squares classifier by [7] and the standard
linear discriminant analysis (LDA) classifier. Since the
sample covariance estimate is singular in the p > n-setting,
the pseudo inverse was used in the standard LDA.

For the analysis of real data we chose the winner of
the simulation study, the SLDA, to compare with the GP
classifier.

3.1. Synthetic data

For the synthetic data we generated training samples (N1 =
25, N2 = 25) for classes 1 and 2 from two multivari-
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Prediction errors on simulated data (Guo et al. 2007)

Figure 2. Simulation results: prediction error rates as box-
plots for the chosen classifiers.

ate Gaussian distributions (p = 1000), specified by µ1

and µ2 and a common covariance matrix Σ. For the co-
variance matrix we chose a block diagonal covariance ma-
trix from [8], with the blocks representing autoregressive
models (correlation 0.99l with l the distance from the di-
agonal). The block size was set to 25 × 25 and the first
50 entries of µ1 were set to 1, otherwise µ1 and µ2 were
set to zero. The performance was then evaluated on 1000
test samples generated from the corresponding multivari-
ate normals (500 from each). The procedure was repeated
10 times and the resulting error rates are plotted in Fig. 2.

The results show that the shrinkage LDA captures the
covariance structure of the problem and classifies the sam-
ples without error. The GP and the diagonal discrimant
analysis based methods (sdda and pam) show an approx-
imately 20% error rate, with the median of the GP being
slighly lower but with a higher variability. This variability
of the GP is probably a result of the unoptimal number of
rounds for the variational Bayes iterations and the impor-
tance sampler.

3.2. Real genomic data

We applied the GP and SLDA classification methods on a
colon cancer microarray data set ([9]) to compare the clas-
sification performance. 10-fold (stratified) CV, repeated 2
times, was used to estimate the classification error rates.
The results are plotted in Fig. 3.

The median values of the classification errors are close
to each other for the classifiers, but the distribution is clearly
lower for the SLDA. To better capture the properties in
the data and to enhance classification performance, sev-
eral covariance functions could be applied in parallel in
the GP approach.

4. CONCLUSIONS

In this paper we considered the two-class classification
problem and employed several classification methods in a
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Figure 3. Results on the colon data: prediction error rates
as box-plots for the GP and SLDA classifiers.

comparison study. The results show that the linear kernel
GP performs similar to the regularised diagonal discrimi-
nant analysis based competitors. The GP implements fea-
ture selection naturally and in a proper probabilistic man-
ner. Operating in the Bayesian framework means also that
the amount of ad-hoc tuning is kept to the minimum and
overfitting is avoided naturally. The computational time
of the GP approach is a limiting factor if the hyperparam-
eters must be estimated, but only dependent on N , not
P . Future work includes e.g. optimising the number of
needed iteration rounds for the importance sampler and
combining the linear covariance kernel with nonlinear ker-
nels (such as the radial basis function).

5. ACKNOWLEDGMENTS

M.A. is a postdoctoral research fellow of the Alexander
von Humboldt Foundation and would like to thank the
foundation for its support.

6. REFERENCES

[1] D. J. C. Mackay, Neural Networks and Machine
Learning (edited by C. M. Bishop), chapter Introduc-
tion to Gaussian Processes, pp. 133–166, NATO ASI
Series, 1998.

[2] M. Girolami and S. Rogers, “Variational bayesian
multinomial probit regression with gaussian process
priors,” Neural Computation, vol. 18, pp. 1790–1817,
2006.

[3] D. Hand, “Classifier technology and the illusion of
progress,” Statistical Science, vol. 21, pp. 1–14, 2006.

[4] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu,
“Diagnosis of multiple cancer types by shrunken cen-
troids of gene expression,” Proceedings of the Na-
tional Academy of Sciences of the USA, vol. 99, pp.
6567–6572, 2002.
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