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Multiple Testing in RNA-Seq experiments

O. Muralidharan et al. 2012. Detecting mutations in mixed sample sequencing data using empirical Bayes.
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Empirical Bayes Analysis in High Dimensional
Microarray Data

Empirical Bayes analysis has a long "tradition” in microarray
data

It usually based on normal distribution assumptions

However RNA Seq data is discrete ...

Can methods from Microarray data be adapted?
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Emperical Bayes Analysis of Microarray Data
Y Y
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Analysis Steps

Typical Workflow in a Nutshell
® Normalize Data

® Compute (regularized) t-scores between sample groups (e.g.
healthy and tumor tissue)

© Asses differential Expression = Multiple Testing
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Example: Golub-Data

REPORTS

Molecular Classification of
Cancer: Class Discovery and
Class Prediction by Gene

Expression Monitoring

T. R. Golub,"**{ D. K. Slonim,"'{ P. Tamayo," €. Huard,"
M. Gaasenbeek,' ). P. Mesirov,” H. Coller," M. L. Loh,?
J. R. Downing,® M. A. Caligiuri,* C. D. Bloomfield,*

E. 5. Lander5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known casses (cass prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.
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Example: Golub-Data

e Data with n = 38 samples (Chips) and p = 3051 Genes

o Additional Information: 2 different Leukemia subtypes: ALL
and AML

e ALL: acute lymphoblastic leukemia (ng = 27)
e AML: acute myeloid leukemia (n; = 11)

e Original aim of the study: Define a molecular signature of the
subtypes (ALL, AML)
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Differential Expression

o Given: k < 2 groups
e Which genes are differentially expressed between ALL and
AML?
e How to quantify differentiall expression?
@ Fold Change: Difference of means between two groups
@® i-score: Standardized difference of means between two groups
© regularized t-score: t-Score with modified variance
estimation, e.g. limma score
(“Smyth - Linear Models and Empirical Bayes Methods for
Assessing Differential Expression in Microarray Experiments

2004")
@ Wilcoxen-score: Nonparametric version of the t-score

e Result: Ranking of genes according to differential expression
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Problem: Multiple Testing

o Similar to ANOVA post-hoc tests, but usually a lot more
tests are performed!

e Ex.: Two tests with Type | ("« —error”) Error (reject Hp,
although Hp is true) of 0.05:

Prob of no false rejection in both tests:
0.95%0.95=0.9025 < 0.95
= The more you test the more probable it is to falsely reject Hp!
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Empirical Bayes Analysis of the Golub Data |

Computing a t-score between the two Leukemia subtypes yields a
ranked list of genes

e "C-myb gene extracted from Human (c-myb) gene, complete
primary cds, and five complete alternatively spliced cds”
"Macmarcks”

e "RETINOBLASTOMA BINDING PROTEIN" P48

e "TCF3 Transcription factor 3 (E2A immunoglobulin enhancer
binding factors E12/E47) “

e "Inducible protein mRNA"

e "CCND3 Cyclin D3*

e "MYL1 Myosin light chain (alkali)*

e "SPTANL1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)“
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Empirical Bayes Analysis of the Golub Data Il

In order to find significant genes "interesting” ones need to
be seperated from "null” genes
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Empirical Null Modelling

e The green lines shows the density of a N(0,0.62) distribution
which serves a model for the "null” cases — Fy

e It can be used to compute p-values: pval = 2 — 2 « Fy(|x])

e They are uniformely distributed under the null!
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Histogram of p-values

There is a peak at 1, = a "signal" is present
There are differentially expressed genes!
e The peak at 1 is a technical artifact here

Type of Statistic: p-Value (eta0 = 0.8339)
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False Discovery Rates

Given
e the p-values
o the proportion of the null statistics 7
e the overall marginal density 7(p)

the local false discovery rate can be computed and a cutoff can be
chosen:

fdr(p) = P("null’|p) = fj(g—) = ?7(7;—)

Finally, include e.g. all genes with fdr < 0.2
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Local False Discovery Rate

(Local) False Discovery Rate
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@ False Discovery Rates in RNA Seq Experiments
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False Discovery Rates in RNA Seq Experiments

o In RNA-Seq experiments the uniformity under the null is lost!

discrete p-values correct null.pdf

Histogram of p-value, correct null
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Fic 1. p-values p; = F; (z;), where z; ~ F; = Poisson (10).
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Solution: Randomized p-values

e Let p(1),...,p(n be the ordered p-values, the modified
p-values r(;) are:

riy = P(i-1) + Unif(pi—1y; p(iy) l
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Randomized p-values, correct null Randomized p-values, incorrect null
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© Application: Modelling of Sequencing Error Rates
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Experimental Design I: Finding Mutations in a
Virus Sequence

e Starting point: a reference Virus sequence and a mutated
sequence (synthetic data)

e Alignment yields non reference counts ("errors")
e = There is an error count x;; and a sequencing depth N
for each position / and each sample |

o Mutations in a sequence then appear as unusually large error
rates x;j /I
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Experimental Design |l: Comparison of Tumor
and normal Tissue

Cancer and healthy tissue from Lymphoma patients (paired
samples!)

Starting point: a tumor (x) and a control sequence (y)
aligned to a reference

= As in the virus sample error rates x;;//N; and y;;/INj;

Biologically interesting positions appear as significant
differences between x;; /N and y;;/N;;
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@ Sources of Variation for Sequencing Error Rates



UNIVERSITAT LEIPZIG

Sources of Variation

@ Natural: Finite sequencing depth N for each genome
position
e x ~ Binomial(N, p)
e The error rate x has a "natural” variation due to finite
sequencing depth!
@ Positional: The sequencing error rate will vary from position
to position
e Aggregate across samples to estimate baseline error
© Across samples: The sequencing error rate will vary across
samples

e Aggregate across positions to estimate sample effects
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Variation - tumor data - two reference samples

Observed error rates in two reference samples, logit scale
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@ Modelling the Variation
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Distribution of error rates

. . P X;i
e Figure shows difference of observed positional error rate &

ij
and mean positional error rate of reference samples

1 Xij ' :
Hi = 3 2 jeref.samples iy O the logit scale:

o logit ;\(/i — logit y;
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Statistical model for the virus data

This suggests the following model for the virus data

logit pjj ~ N(logit u;j + 6j,0J2)
xj|pjj = Binomial(Njj, pij)

e pjj - postional error rate for sample j
e ,i; = postional error rate

e 0; = sample specific error rate bias (constant across
positions)

e 0; = sample specific noise (constant across positions)

= Now we can compute p-values, fit a marginal density
f(p) and compute false discovery rates!
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A similar model holds for the tumor data

logit pjj ~ N(logit p; + 61-,0]?)
logit gij|pij ~ N(logit pj; + nj,sz)
xij|pij» gij = Binomial(Nj;, pjj)
yiilpij> qij = Binomial(Nj;, g;;)

e pjj / g - postional error rate for normal / tumor sample

e /i, = postional error rate

e 0 [/ nj= sample specific error rate bis (constant across
positions)

e 0; [/ 7; = sample specific noise (constant across positions)

= We can fit a null distribution for 7|7, compute

ij i
p-values, fit a marginal density f(p) and compute false
discovery rates!
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@ Results
Virus Data
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p values for virus data

p-values for Reference Samples.
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FIG 5. Histogram of p-values for the virus data, reference samples (top plot) and clinical
samples (bottom plot).
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p Discoveries for the virus data

Our method, | Our method,
- - Flaherty et al.
fdr <0.1 fdr <0.01

True Positives (of 42) 42 39 42

False Positives 1 0 10

Power 100% 93% 100%
False Positive Rate 2.32% 0% 19.23%
TABLE

Detection results on clinical samples of the synthetic virus data.
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@ Results

Tumor Data
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p values for the tumor data - sample pair 7

Randomized p-values, h pair
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o The underdispersion in the figure shows that the null
distributions are systimatically to wide !

e Use the normal transform ®~1(r;) to obtain z-values and fit
an empirical null
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p values for the tumor data - sample pair 7 -
empirical null

Randomized p-values, empirical null, seventh pair

0s 12

FIG 9. Empirical null randomized p-values i; for the seventh normal tumor pair. The
empirical null yields much more uniform p-values (compare to Figure 7).

e much better, but "enriched” near both 0 and 1

e ... the logit scale "exaggerates” differences between p;; and g;;
near 0 and 1

o A difference of 0.002 might correspond to 0.25 on the logit
scale
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Finding mutated positions

e Estimate the change in error rate A at each position for
each sample

Vi i
Aj = P(pjj # qijlx,y) U_i"
N

’J
Yij Xij
=fdr; [ = —
E (NU Nij)

e A position with fdr; < 0.1 and [Aj;| > 0.25 will be called
interesting
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Comparison to an earlier analysis of the tumor
data

e 427 out of ca. 309 000 positions are called mutated

e 22% are in repetitive regions compared to 36% from an
earlier analysis of Natsoulis et. al. (2011)

¢ Repetitive regions provide problems e.g. for mapping
step and have are large false positive rate

e = They are often excluded before searching for mutated
regions

o Proposed method has higher number of calls in non-repetitive
regions than Natsoulis et. al. (2011)

e = may indicate a higher power of the empirical Bayes
method



UNIVERSITAT LEIPZIG

Conclusions

o Empirical Bayes ideas can be adapted to RNA-Seq data

e Methods for continuous data can be applied to randomized
p-values

e The fitting process however is complicated



	Emperical Bayes Analysis of Microarray Data
	False Discovery Rates in RNA Seq Experiments
	Application: Modelling of Sequencing Error Rates
	Sources of Variation for Sequencing Error Rates
	Modelling the Variation
	Results
	Virus Data
	Tumor Data

	Conclusions

