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Empirical Bayes Analysis in High Dimensional

Microarray Data

• Empirical Bayes analysis has a long �tradition� in microarray
data

• It usually based on normal distribution assumptions

• However RNA Seq data is discrete ...

• Can methods from Microarray data be adapted?
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Analysis Steps

Typical Work�ow in a Nutshell

1 Normalize Data

2 Compute (regularized) t-scores between sample groups (e.g.
healthy and tumor tissue)

3 Asses di�erential Expression ⇒ Multiple Testing
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Example: Golub-Data
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Example: Golub-Data

• Data with n = 38 samples (Chips) and p = 3051 Genes

• Additional Information: 2 di�erent Leukemia subtypes: ALL
and AML

• ALL: acute lymphoblastic leukemia (n0 = 27)
• AML: acute myeloid leukemia (n1 = 11)

• Original aim of the study: De�ne a molecular signature of the
subtypes (ALL, AML)
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Di�erential Expression

• Given: k ≤ 2 groups

• Which genes are di�erentially expressed between ALL and
AML?

• How to quantify di�erentiall expression?

1 Fold Change: Di�erence of means between two groups
2 t-score: Standardized di�erence of means between two groups
3 regularized t-score: t-Score with modi�ed variance

estimation, e.g. limma score
(�Smyth - Linear Models and Empirical Bayes Methods for
Assessing Di�erential Expression in Microarray Experiments
2004�)

4 Wilcoxen-score: Nonparametric version of the t-score

• Result: Ranking of genes according to di�erential expression
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Problem: Multiple Testing

• Similar to ANOVA post-hoc tests, but usually a lot more
tests are performed!

• Ex.: Two tests with Type I (�α �error�) Error (reject H0,
although H0 is true) of 0.05:

Multiple Testing, α = 0.05

Prob of no false rejection in both tests:
0.95 ∗ 0.95 = 0.9025 < 0.95

⇒ The more you test the more probable it is to falsely reject H0!
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Empirical Bayes Analysis of the Golub Data I

Computing a t-score between the two Leukemia subtypes yields a
ranked list of genes

• �C-myb gene extracted from Human (c-myb) gene, complete
primary cds, and �ve complete alternatively spliced cds�

• �Macmarcks�

• �RETINOBLASTOMA BINDING PROTEIN� P48

• �TCF3 Transcription factor 3 (E2A immunoglobulin enhancer
binding factors E12/E47) �

• �Inducible protein mRNA�

• �CCND3 Cyclin D3�

• �MYL1 Myosin light chain (alkali)�

• �SPTAN1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)�

• ...
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Empirical Bayes Analysis of the Golub Data II

In order to �nd signi�cant genes �interesting� ones need to

be seperated from �null� genes
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Empirical Null Modelling

• The green lines shows the density of a N(0, 0.62) distribution
which serves a model for the �null� cases � F0

• It can be used to compute p-values: pval = 2− 2 ∗ F0(|x |)
• They are uniformely distributed under the null!
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Histogram of p-values

• There is a peak at 1, ⇒ a �signal� is present

• There are di�erentially expressed genes!

• The peak at 1 is a technical artifact here
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False Discovery Rates

Given

• the p-values

• the proportion of the null statistics η0

• the overall marginal density f (p)

the local false discovery rate can be computed and a cuto� can be
chosen:

local false discovery rate

fdr(p) = P(�null�|p) = η0
f (p) = η0

f (p)

Finally, include e.g. all genes with fdr < 0.2
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Local False Discovery Rate
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False Discovery Rates in RNA Seq Experiments

• In RNA-Seq experiments the uniformity under the null is lost!
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Solution: Randomized p-values

• Let p(1), . . . , p(n) be the ordered p�values, the modi�ed
p-values r(i) are:

Randomized p�values

r(i) = p(i−1) + Unif(p(i−1), p(i))
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Experimental Design I: Finding Mutations in a

Virus Sequence

• Starting point: a reference Virus sequence and a mutated
sequence (synthetic data)

• Alignment yields non reference counts (�errors�)

• ⇒ There is an error count xij and a sequencing depth Nij

for each position i and each sample j

• Mutations in a sequence then appear as unusually large error
rates xij/Nij
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Experimental Design II: Comparison of Tumor

and normal Tissue

• Cancer and healthy tissue from Lymphoma patients (paired
samples!)

• Starting point: a tumor (x) and a control sequence (y)
aligned to a reference

• ⇒ As in the virus sample error rates xij/Nij and yij/Nij

• Biologically interesting positions appear as signi�cant
di�erences between xij/Nij and yij/Nij
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Sources of Variation

1 Natural: Finite sequencing depth N for each genome
position

• x ∼ Binomial(N, p)
• The error rate x has a �natural� variation due to �nite

sequencing depth!

2 Positional: The sequencing error rate will vary from position
to position

• Aggregate across samples to estimate baseline error

3 Across samples: The sequencing error rate will vary across
samples

• Aggregate across positions to estimate sample e�ects
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Variation - tumor data - two reference samples
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Distribution of error rates

• Figure shows di�erence of observed positional error rate
xij

Nij

and mean positional error rate of reference samples
µi = 1

3

∑
j∈ref-samples

xij

Nij
on the logit scale:

• logit
xij

Nij
− logit µi
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Statistical model for the virus data

This suggests the following model for the virus data

Model for the virus data

logit pij ∼ N(logit µi + δj , σ
2
j )

xij |pij = Binomial(Nij , pij)

• pij - postional error rate for sample j

• µi = postional error rate

• δj = sample speci�c error rate bias (constant across
positions)

• σj = sample speci�c noise (constant across positions)

⇒ Now we can compute p-values, �t a marginal density

f (p) and compute false discovery rates!
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A similar model holds for the tumor data

Model for the tumor data with matched normals

logit pij ∼ N(logit µi + δj , σ
2
j )

logit qij |pij ∼ N(logit pij + ηj , τ
2
j )

xij |pij , qij = Binomial(Nij , pij)
yij |pij , qij = Binomial(Nij , qij)

• pij / qij - postional error rate for normal / tumor sample j

• µi = postional error rate
• δj / ηj= sample speci�c error rate bis (constant across
positions)

• σj / τj = sample speci�c noise (constant across positions)

⇒ We can �t a null distribution for
yij

Nij
| xij

Nij
, compute

p-values, �t a marginal density f (p) and compute false

discovery rates!
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p values for virus data
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p Discoveries for the virus data
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p values for the tumor data - sample pair 7

• The underdispersion in the �gure shows that the null
distributions are systimatically to wide !

• Use the normal transform Φ−1(rij) to obtain z-values and �t
an empirical null
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p values for the tumor data - sample pair 7 -

empirical null

• much better, but �enriched� near both 0 and 1

• ... the logit scale �exaggerates� di�erences between pij and qij
near 0 and 1

• A di�erence of 0.002 might correspond to 0.25 on the logit
scale
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Finding mutated positions

• Estimate the change in error rate ∆ij at each position for
each sample

Change in error rate given the data

∆ij = P(pij 6= qij |x , y)

(
yij

Nij
−

xij

Nij

)
= fdrij

(
yij

Nij
−

xij

Nij

)
• A position with fdrij < 0.1 and |∆ij | > 0.25 will be called
interesting
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Comparison to an earlier analysis of the tumor

data

• 427 out of ca. 309 000 positions are called mutated

• 22% are in repetitive regions compared to 36% from an
earlier analysis of Natsoulis et. al. (2011)

• Repetitive regions provide problems e.g. for mapping

step and have are large false positive rate

• ⇒ They are often excluded before searching for mutated
regions

• Proposed method has higher number of calls in non-repetitive
regions than Natsoulis et. al. (2011)

• ⇒ may indicate a higher power of the empirical Bayes
method
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Conclusions

• Empirical Bayes ideas can be adapted to RNA-Seq data

• Methods for continuous data can be applied to randomized
p-values

• The �tting process however is complicated

Bernd Klaus, Multiple testing, 12 June 2012 39


	Emperical Bayes Analysis of Microarray Data
	False Discovery Rates in RNA Seq Experiments
	Application: Modelling of Sequencing Error Rates
	Sources of Variation for Sequencing Error Rates
	Modelling the Variation
	Results
	Virus Data
	Tumor Data

	Conclusions

