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Biological Background: Transcriptomics I

Technologies to “measure” the transcriptome:

• Microarrays

• Next or second generation RNA sequencing (RNAseq)

Limitations of microarrays:

• High levels of background noise due to cross-hybridization

• Only transcripts for which a probe is present on the array can
be measured. Therefore, it is not possible to discover novel
mRNAs in a typical microarray experiment.
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Biological Background: Transcriptomics II

Promises of RNAseq

• Less noisy than microarray data, since the technology does
not suffer from cross-hybridization.

• Detection of novel transcripts and coding regions

• “It seems certain that RNA sequencing is on track to replace
the microarray as the technology of choice for the
characterization of gene expression.”

Challenges in the analysis:

• Normalization

• Count data, integer valued and non-negative
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Statistical Framework
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Data structure

X n × p matrix of sequencing data

• i ∈ 1, ..., n samples

• j ∈ 1, ..., p features or regions of interest

X

p

n

?

6

� -

• si sample-specific constant

• gj gene-specific constant
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Distributions

• Poisson distribution

Xij ∼ Poisson(Nij), Nij = sigj

• expectation: E(Xij) = Nij

• variance: Var(Xij) = Nij

• Negative binomial distribution

Xij ∼ NB(Nij , φj), Nij = sigj

• φj is a gene-specific over-dispersion
• expectation: E(Xij) = Nij

• variance: Var(Xij) = Nij + N2
ijφj

Verena Zuber, Classification and Clustering, 5th June 2012 9



Distributions dependent on class k

• yi = k ∈ 1, ...,K : factor indicating the membership of
sample i to class k

• Poisson distribution

Xij | yi = k ∼ Poisson(Nijdkj), Nij = sigj

• Negative binomial distribution

Xij | yi = k ∼ NB(Nijdkj , φj), Nij = sigj

• dkj : gene-specific, class-specific factor
• dkj > 1 indicates that the jth feature is over-expressed in

class k relative to the baseline
• dkj < 1 indicates that the jth feature is under-expressed in

class k relative to the baseline

• Ck comprises all samples belonging to class k
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Poisson Log Linear Model

Assumptions:

• Poisson distribution

• Independence of features

Poisson log linear model

Xij | yi = k ∼ Poisson(N̂ij d̂kj), N̂ij = ŝi ĝj

Estimation of the gene-specific constant gj :

• ĝj =
∑n

i=1 Xij
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Poisson Log Linear Model

Estimation of the sample-specific constant si
(under identifiability constraint

∑n
i=1 ŝi = 1):

• Total count (ML-estimate):
ŝi =

∑p
j=1 Xij/

∑n
i=1

∑p
j=1 Xij

• Median ratio (Anders and Huber (2010)):
ŝi = mi/

∑n
i=1 mi

mi = medianj

( Xij

(Πn
i ′Xi ′j)1/n

)
• Quantile (Bullard et al. (2010)):
ŝi = qi/

∑n
i=1 qi , where qi is the 75th percentile of the

counts for each sample
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Poisson Log Linear Model

Estimation of the (gene and) class-specific factor dkj :

• Maximum likelihood estimate

d̂kj = XCk j/
∑
i∈Ck

N̂ij

• If XCk j = 0, then d̂kj = 0.
“This can pose a problem for downstream analyses, since this
estimate completely precludes the possibility of a nonzero
count for feature j arising from an observation in class k .”

• Bayesian estimate: Gamma(β, β) prior on dkj results in the
following posterior mean

d̂kj =
XCk j + β∑
i∈Ck

N̂ij + β
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Transformation for overdispersed data

• Biological replicates of sequencing data tend to be
overdispersed relative to the Poisson model
(variance is larger than the expectation)

• Power transformation X ′ij ← Xα
ij

where α ∈ (0, 1] is chosen so that

n∑
i=1

p∑
j=1

(X ′ij − χ′)2

χ′
≈ (n − 1)(p − 1)

with χ′ =
(∑p

j=1 X
′
ij

∑n
i=1 X

′
ij∑n

i=1

∑p
j=1 X

′
ij

)
(Goodness of fit test!)

• “Though the resulting transformed data are not
integer-valued, we nonetheless model them using
the Poisson distribution.”
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Supervised Learning: Classification
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Poisson linear discriminant analysis

• Rather diagonal discriminant analysis (DDA)
due to the independence assumption

• Bayes’ rule to define the probability of belonging to class k
depending on the test data x?

prob(k |x?) =
πk f (x?|k)

f (x?)

∝ πk f (x?|k)

• where f (x?|k) is given by

Xij | yi = k ∼ Poisson(Nijdkj), Nij = sigj

• πk represents the a priori mixing probability for class k
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Discriminant scores

• Poisson discriminant analysis

log{prob(k|x?) =
πk f (x?|k)

f (x?)

∝
p∑

j=1

X ?
j log d̂kj − ŝ?

p∑
j=1

ĝj d̂kj + log π̂k

• For comparison: Fisher’s DDA (Gaussian Distribution)

log{prob(k|x?)} =
πk f (x?|k)

f (x?)

∝ µT
k V−1x? − 1

2
µT
k V−1µk + log(πk)

where µk is the expectation in group k , and V is the
diagonal variance matrix equal in all K groups
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The sparse PLDA classifier

• Standard estimates d̂kj are unequal 1 for all p features

• But for high-dimensional transcriptomics data classifiers
build on a smaller subset of features are desirable

• Soft-threshold estimate (similar to PAM)

d̂kj = 1 + S(a/b − 1, ρ/
√
b)

• Soft-threshold operator with penalization-parameter ρ

S(a/b − 1, ρ/
√
b) = sign(a/b − 1)(| a/b − 1 | −ρ/

√
b)+

• a = XCk j + β (numerator of the Bayesian estimate d̂kj)

• b =
∑

i∈Ck
N̂ij + β (denominator of the Bayesian estimate d̂kj)

• Shrinks d̂kj towards 1 if | a/b − 1 |< ρ/
√
b, and thus

excludes feature j from the classification rule
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Unsupervised Learning: Clustering
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Poisson dissimilarity

• Aim: Clustering based on a n × n dissimilarity matrix
between observations

• Connection of Euclidean distance and log likelihood ratio
statistic under a Gaussian model

Xij ∼ N(µij , σ
2) Xi ′j ∼ N(µi ′j , σ

2)

Testing H0 : µij = µi ′j against
H1: “µij and µi ′j are unrestricted”

results in the following log likelihood ratio statistic

p∑
j=1

(
Xij −

Xij + Xi ′j

2

)
+

p∑
j=1

(
Xi ′j −

Xij + Xi ′j

2

)
=

p∑
j=1

(Xij − Xi ′j)
2

∝ || xi − xj ||2
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Poisson dissimilarity

• Poisson distribution “restricted to xi and xi ′”

Xij ∼ Poisson(N̂ij d̂ij) Xi ′j ∼ Poisson(N̂i ′j d̂i ′j)

• Testing H0 : dij = di ′j = 1 against
H1: “dij and di ′j are unrestricted results”

results in the following log likelihood ratio statistic

p∑
j=1

(
(N̂ij + N̂i ′j)− (N̂ij d̂ij + N̂i ′j d̂i ′j) + (Xij logd̂ij +Xi ′j logd̂i ′j)

)
• Can be used as dissimilarity of xi and xi ′ ; is nonnegative and

equals zero if xi = xi ′
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Results
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Simulation set up

Data is generated by the negative binomial distribution

Xij | yi = k ∼ NB(sigjdkj , φ)

• Overdispersion
• φ = 0.01: very slight overdispersion
• φ = 0.1: substential overdispersion
• φ = 1: very high overdispersion

• si ∼ Unif(0.2, 2.2)

• gj ∼ Exp(1/25)

• K = 3 classes

• p = 10, 000 features and 30% are differentially expressed

• d1j = d2j = d3j = 1: feature j is not differentially expressed

• otherwise log (dkj) ∼ N(0, σ2)
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Real sequencing data sets

• Liver and kidney
The data are available as a Supplementary File associated
with Marioni et al. (2008)

• Yeast
The data are available as a Supplementary File associated
with Anders and Huber (2010)

• Cervical cancer (Witten et al. (2010))
The data are available from Gene Expression Omnibus
[Barrett et al. (2005)] under accession number GSE20592

• Transcription factor binding
The data are available as a Supplementary File associated
with Anders and Huber (2010)
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Competitors

1 Classification
• Nearest Shrunken Centroid (NSC)
• Nearest Shrunken Centroid with sqrt error transformation

2 Clustering
• EdgeR (Robinson, McCarthy, and Smyth (2010))
• Variance Stabilizing Transformation (VST) according to

Anders and Huber (2010)
• Euclidean distance
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Simulation: Classification results
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Sequencing data: Classification results

Verena Zuber, Classification and Clustering, 5th June 2012 27



Simulation: Clustering results
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Sequencing data: Normal vs cancer
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Sequencing data: Technical replicates of n = 10
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Discussion I

• Transcript length bias
“It seems clear that bias due to the total number of counts
per feature is undesirable for the task of identifying
differentially expressed transcripts, since it makes it difficult
to detect differential expression for low-frequency transcripts.
However, it is not clear that such a bias is undesirable in the
case of classification or clustering, since we would like
features about which we have the most information—namely,
the features with the highest total counts—to have the
greatest effect on the classifiers and dissimilarity measures
that we use.”
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Discussion II

• Normalization
“ It has been shown that the manner in which samples are
normalized is of great importance in identifying differentially
expressed features on the basis of sequencing data [Bullard
et al. (2010), Robinson and Oshlack (2010), Anders and
Huber (2010)]. However, in Sections 5 and 6, the
normalization approach appeared to have little effect on the
results obtained. This seems to be due to the fact that the
choice of normalization approach is most important when a
few features with very high counts are differentially expressed
between classes. In that case, identification of differentially
expressed features can be challenging, but classification and
clustering are quite straightforward.”
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Discussion III

• Poisson or Negative binomial distribution?
“The methods proposed seem to work very well if the true
model for the data is Poisson or if there is mild overdispersion
relative to the Poisson model. Performance degrades in the
presence of severe overdispersion. Most sequencing data
seem to be somewhat overdispersed relative to the Poisson
model. It may be that extending the approaches proposed
here to the negative binomial model could result in improved
performance in the presence of overdispersion.”
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Discussion IV

• Independence assumption?

• Transformation into non-integer values?

• Simulation results?

• Classification: No clear superiority over NSC in overdispersed
simulated or in real data

• Clustering: EdgeR performs best
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