RNAseq: Normalization and differential expression I

Jens Gietzelt

22.05.2012

- Robinson, Oshlack. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology. 2010
- Hardcastle, Kelly. *baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data.* BMC Bioinformatics. 2010

Introduction Pairwise calibration (EdgeR) Differential expression

Outline of the presentation

Pairwise calibration (EdgeR)

Introduction

normalization:

- comparison of expression levels between genes within a sample (same scale)
- however technical effects introduce a bias in the comparison between samples
- ullet \Rightarrow normalization is crucial before performing differential expression
- calibration method EdgeR takes advantage of within-sample comparability

differential expression:

- appropriate distribution for count data
- incorporate calibration parameters

Framework

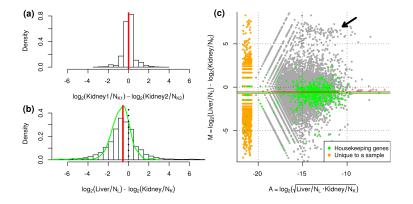
$$\begin{split} Y_{g,k} & \dots \text{ observed count for gene } g \text{ in library } k \\ N_k &= \sum_{g=1}^G Y_{g,k} & \dots \text{ total number of reads for library } k \\ \eta_{g,k} & \dots \text{ number of transcripts of gene } g \text{ in library } k \\ L_g & \dots \text{ length of gene } g \\ S_k &= \sum_{g=1}^G \eta_{g,k} L_g & \dots \text{ total RNA output of sample } k \end{split}$$

$$E\left(Y_{g,k}\right) = \frac{\eta_{g,k}L_g}{S_k}N_k$$

- counts are a linear function of the number of transcripts
- library size calibration $(Y_{g,k}/N_k)$ is appropriate for the comparison of replicates
- comparison of biologically different samples may be biased by varying RNA composition

Jens Gietzelt

kidney vs. liver dataset

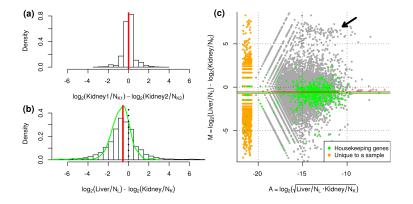


Trimmed mean of log-foldchange

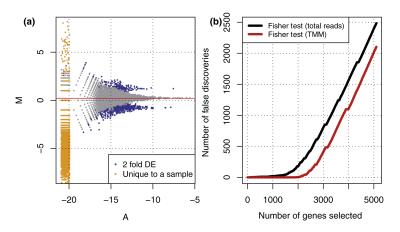
- RNA production S_k of one sample cannot be determined directly
- estimation of relative differences of RNA production $f_k = S_k/S_r$ of a pair of samples (k, r)
- assumption: most genes are not differentially expressed
- \Rightarrow compute robust mean over log-foldchanges:
 - · double filtering over both mean and difference of log-values
 - calculate a weighted mean over the log-foldchanges
 - \Rightarrow resacle factors $f_k = TMM_{(k,r)}$, where r is reference sample

$$\log_{2} \left(TMM_{(k,r)} \right) = \frac{\sum\limits_{g \in G^{*}} w_{g,(k,r)} \left(\log_{2} \left(Y_{g,k} / N_{k} \right) - \log_{2} \left(Y_{g,r} / N_{r} \right) \right)}{\sum\limits_{g \in G^{*}} w_{g,(k,r)}}$$
$$w_{g,(k,r)} = \left(\frac{1}{Y_{g,k}} - \frac{1}{N_{k}} + \frac{1}{Y_{g,r}} - \frac{1}{N_{r}} \right)^{-1}$$

kidney vs. liver dataset

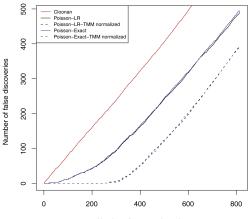


simulated data sampled from poisson distribution



Simulation: replicates

Cloonan: log-transformation and quantile normalization



Number of genes selected

Differential expression

methods in use:

- DegSeq (normal distr.)
- EdgeR (negative binomial)
- DEseq (negative binomial, multiple groups)
- baySeq (negative binomial, multiple groups)
- Myrna (permutation based)

EdgeR

technical replicates: poisson distr.

biologically different samples: negative binomial distr.

```
Y \sim NB(p, m)
```

Y ... number of successes in a sequence of Bernoulli trials with probability p before r failures occur

alternative parametrization:

 $q_{g,e}$... proportion of sequenced RNA of gene g for experimental group e

$$Y_{g,k,e} \sim NB \left(q_{g,e} N_k f_k, \phi_g \right)$$

$$E\left(Y_{g,k,e}\right) = \mu_{g,k,e} = q_{g,e}N_k f_k, \ \text{Var}\left(Y_{g,k,e}\right) = \mu_{g,k,e} + \mu_{g,k,e}^2 \phi_g$$

• test if $q_{g,1}$ is significantly different from $q_{g,2}$

 ${\ensuremath{\bullet}}$ dispersons $\phi_{\ensuremath{g}}$ are moderated towards a common disperson

empirical Bayes approach to detect differential expression

 $D_{g} = \{Y_{g,k}, N_{k}, f_{k}\}_{k=1,...,K}$ M ... user specified model θ_{M} ... vector of parameters of model M

$$P(M|D_g) = \frac{P(D_g|M) P(M)}{P(D_g)}$$

calculate marginal likelihood:

$$P(D_g|M) = \int P(D_g|\theta_M, M) P(\theta_M|M) d\theta_M$$

baySeq II

$$P(D_{g}|M) = \int P(D_{g}|\theta_{M}, M) P(\theta_{M}|M) d\theta_{M}$$

- e.g. Poisson-Gamma conjugacy, however no such conjugacy with negative binomial data
- \Rightarrow define an empirical distribution on θ_M and estimate the marginal likelihood numerically

prior P(M) is estimated by iteration:

$$P(M) = p_g, p_g^* = P(M|D_g)$$

baySeq:

- applicable to complex experimental designs
- computationally intensive