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Introduction

normalization:

comparison of expression levels between genes within a sample
(same scale)

however technical effects introduce a bias in the comparison between
samples

⇒ normalization is crucial before performing differential expression

calibration method EdgeR takes advantage of within-sample
comparability

differential expression:

appropriate distribution for count data

incorporate calibration parameters
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Framework

Yg ,k ... observed count for gene g in library k

Nk =
G∑

g=1
Yg ,k ... total number of reads for library k

ηg ,k ... number of transcripts of gene g in library k
Lg ... length of gene g

Sk =
G∑

g=1
ηg ,kLg ... total RNA output of sample k

E (Yg ,k) =
ηg ,kLg

Sk
Nk

counts are a linear function of the number of transcripts

library size calibration (Yg ,k/Nk) is appropriate for the comparison
of replicates

comparison of biologically different samples may be biased by
varying RNA composition
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Trimmed mean of log-foldchange

RNA production Sk of one sample cannot be determined directly

estimation of relative differences of RNA production fk = Sk/Sr of a
pair of samples (k , r)

assumption: most genes are not differentially expressed

⇒ compute robust mean over log-foldchanges:

double filtering over both mean and difference of log-values
calculate a weighted mean over the log-foldchanges
⇒ resacle factors fk = TMM(k,r), where r is reference sample

log2

(
TMM(k,r)

)
=

∑
g∈G∗

wg ,(k,r) (log2 (Yg ,k/Nk)− log2 (Yg ,r/Nr ))∑
g∈G∗

wg ,(k,r)

wg ,(k,r) =

(
1

Yg ,k
− 1

Nk
+

1

Yg ,r
− 1

Nr

)−1
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Simulation: pair of samples

simulated data sampled from poisson distribution



Simulation: replicates

Cloonan: log-transformation and quantile normalization
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Differential expression

methods in use:

DegSeq (normal distr.)

EdgeR (negative binomial)

DEseq (negative binomial, multiple groups)

baySeq (negative binomial, multiple groups)

Myrna (permutation based)
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EdgeR

technical replicates: poisson distr.
biologically different samples: negative binomial distr.

Y ∼ NB (p, m)

Y ... number of successes in a sequence of Bernoulli trials with
probability p before r failures occur

alternative parametrization:
qg ,e ... proportion of sequenced RNA of gene g for experimental group e

Yg ,k,e ∼ NB (qg ,eNk fk , φg )

E (Yg ,k,e) = µg ,k,e = qg ,eNk fk , Var (Yg ,k,e) = µg ,k,e + µ2
g ,k,eφg

test if qg ,1 is significantly different from qg ,2

dispersons φg are moderated towards a common disperson
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baySeq I

empirical Bayes approach to detect differential expression

Dg = {Yg ,k , Nk , fk}k=1,...,K
M ... user specified model
θM ... vector of parameters of model M

P (M|Dg ) =
P (Dg |M) P (M)

P (Dg )

calculate marginal likelihood:

P (Dg |M) =

∫
P (Dg |θM ,M) P (θM |M) dθM
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baySeq II

P (Dg |M) =

∫
P (Dg |θM ,M) P (θM |M) dθM

e.g. Poisson-Gamma conjugacy, however no such conjugacy with
negative binomial data

⇒ define an empirical distribution on θM and estimate the marginal
likelihood numerically

prior P (M) is estimated by iteration:

P (M) = pg , p∗g = P (M|Dg )

baySeq:

applicable to complex experimental designs

computationally intensive
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