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Introduction

Introduction

normalization:

@ comparison of expression levels between genes within a sample
(same scale)

@ however technical effects introduce a bias in the comparison between
samples

@ = normalization is crucial before performing differential expression

@ calibration method EdgeR takes advantage of within-sample
comparability

differential expression:
@ appropriate distribution for count data

@ incorporate calibration parameters
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Pairwise calibration (EdgeR)

Framework

Yg k ... observed count for gene g in library k

G
Nk = 3" Yz« ... total number of reads for library k
g=1
7g.k -.. number of transcripts of gene g in library k
Lg ... length of gene g
G

Sk =3 Ngklg ... total RNA output of sample k
g=1

L
E(Yex) = Lg;k £ Ny

@ counts are a linear function of the number of transcripts

o library size calibration (Y «/Nx) is appropriate for the comparison
of replicates

@ comparison of biologically different samples may be biased by
varying RNA composition
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kidney vs. liver dataset
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Pairwise calibration (EdgeR)

Trimmed mean of log-foldchange

@ RNA production Sy of one sample cannot be determined directly
@ estimation of relative differences of RNA production fy = S, /S, of a
pair of samples (k, r)
@ assumption: most genes are not differentially expressed
@ = compute robust mean over log-foldchanges:
o double filtering over both mean and difference of log-values
o calculate a weighted mean over the log-foldchanges
e = resacle factors fy = TMM] ), where r is reference sample

> We (k.r) (1082 (Yo k/ Ni) — logz (Ya.r/Nr))
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kidney vs. liver dataset
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Simulation: pair of samples

simulated data sampled from poisson distribution
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Simulation: replicates

Cloonan: log-transformation and quantile normalization
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Differential expression

Differential expression

methods in use:

DegSeq (normal distr.)
EdgeR (negative binomial)
DEseq (negative binomial, multiple groups)

baySeq (negative binomial, multiple groups)

Myrna (permutation based)
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Differential expression

technical replicates: poisson distr.
biologically different samples: negative binomial distr.

Y ~ NB(p, m)

Y ... number of successes in a sequence of Bernoulli trials with
probability p before r failures occur

alternative parametrization:
Gg.e ... proportion of sequenced RNA of gene g for experimental group e

Yg’/ﬁe ~ NB (qg,eNkfka ¢g)
E(Yeke) = tghe = dg.eNefi, Var (Ygue) = tgke + 1 k.oDg

@ test if gg1 is significantly different from g, »
o dispersons ¢, are moderated towards a common disperson
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Differential expression

empirical Bayes approach to detect differential expression

Dg = {Ygu Nk’fk}kzl,...,K
M ... user specified model
O ... vector of parameters of model M

P (Dg|M) P (M)

P(MID;) = =50

calculate marginal likelihood:

P(Dg|M):/P(Dg|0M,M)P(0M|I\/I)d9M
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Differential expression

baySeq |l

P(Dgw):/P(DgwM,M)P(aMW)deM

@ e.g. Poisson-Gamma conjugacy, however no such conjugacy with
negative binomial data

@ => define an empirical distribution on 6y, and estimate the marginal
likelihood numerically

prior P (M) is estimated by iteration:

P (M) = pg, p;:P(/V”Dg)

baySeq:
@ applicable to complex experimental designs
@ computationally intensive
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