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Biological background (I):

Structure of a protein coding mRNA

The structure of a typical human protein coding mRNA including the untranslated regions (UTRs)
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Non coding RNAs:

Type Size Function
=  microRNA (miRNA) 21-23 nt  regulation of gene expression
= small interfering RNA (siRNA) 19-23 nt  antiviral mechanisms
= piwi-interacting RNA (piRNA) 26-31 nt interaction with piwi proteins/spermatogenesis
= small nuclear RNA (shRNA) 100-300 nt RNA splicing
= small nucleolar RNA (snoRNA) - modification of other RNAs
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Biological Background (II):

Processing
= Splicing / Alternative Splicing / Trans-Splicing
= RNA editing

Secondary structures
= Example hairpin structure:

Biological Background



RNA-Seq technology -Aims:

Catalogue all species of transcript including:
MRNAs, non-coding RNAs and small RNAs

Determine the transcriptional structure of genes
in terms of:

= Start sites

= 5”and 3’ ends

= Splicing patterns

= QOther post-transcriptional modifications

= Quantification of expression levels and comparison
(different conditions, tissues, etc.)
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RNA-Seq analysis (I):

mRNA
[ ] or —
E—— E—— —
RNA fragments J' cDMNA

Long RNAs are first converted into a library of cDNA
fragments through either:
RNA fragmentation or DNA fragmentation
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RNA-Seq analysis (1I):

In contrast to small RNAs (like piRNAs, miRNAs, siRNAs)
larger RNA must be fragmented

RNA fragmentation or cDNA fragmentation (different techniques)

Methods create different type of bias:

RNA: RNA frgmentation
depletion for ends

cDNA:
biased towards 5" end

&
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cDNA fragmentation
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RNA-Seq analysis (III):

mRNA
— —
RNA fragments l' cDNA
l with adaptors

ATCACAGTGGGACTCCATAARATTTTTCT
CGAAGGACCAGCAGAAACGAGACNNYY
GGACAGAGTCCCCAGCCGEGCTGAAGEEE
ATGAAACATTAAAGTCAAACAATATGAR

Short sequence reads

Sequencing adaptors (blue) are subsequently added to
each cDNA fragment and a short sequence is obtained
from each cDNA using high-throughput sequencing
Technology

(typical read length: 30-400 bp depending on technology)
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RNA-Seq analysis (IV):

mRNA
I ] or
TTTTTTTT
RNA fragment J' <DNA
l with adapt;
ATCACAGTGGGACTCCATAAATTTTTCT
CCAAGCGACCAGCAGAAACCACACENNNNY Short sequence reads
GGACAGAGTCCCCAGCGGGCTGAAGGGG
ATGAAACATTAAAGTCAAACAATATGARA
CRF
Coding sequence = I
-2
S Bronicreads
-----1 —_— > == —
1 [E— — [—
Junction reads ey poly(A) end reads
— — =
— — = — —
— — = — Mapped sequence reads

The resulting sequence reads are aligned with the reference
genome or transcriptome and classified as three types:
exonic reads, junction reads and poly(A) end-reads.

(de novo assembly also possible => attractive for non-model organisms)
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RNA-Seq analysis (V):

mRNA
e .
RNA fragments l' cDNA
e e e e EST library

with adaptors

|

ATCACAGTGGGACTCCATAAATTTTTCT
CGAAGGACCAGCAGAAACGACACNNNNY
GGACAGAGTCCCCAGCGGGCTGAAGGGE
ATGAAACATTAAAGTCAAACAATATGAR

______ ‘

Short sequence reads

ORF
Coding sequence =

S Bonicreads
nctonrosis_ ﬁndm These three types are used to

Mapped sequence reads

Base-resolution expression profile g e n e ra te a ba Se- reso | Uti O n

expression profile for each gene
m Mm Example:

A yeast ORF with one intron

RNA expression level

Nucleotide position
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RNA-Seq - Bioinformatic challenges (I):

Storing, retrieving and processing of large amounts of data
Base calling
Quality analysis for bases and reads

=> FastQ files

Mapping/aligning RNA-Seq reads
(Alternative: assemble contigs and align them to genome)

= Multiple alignment possible for some reads
= Sequencing errors and polymorphisms
=>SAM/BAM files

RNA-Seq - Bioinformatic challenges



RNA-Seq - Bioinformatic challenges (II):
Specific challenges for RNA-Seq:

Exon junctions and poly(A) ends
= Jdentification of poly(A) -> long stretches of A or T at end of reads
= Splice sites:
— Specific sequence context: CT — AG dinucleotides
— Low expression for intronic regions
— Known or predicted splice sites
— Detection of new sites (e.g. via split read mapping)

Overlapping genes

RNA editing

Secondary structure of transcripts
Quantification of expression signals

RNA-Seq - Bioinformatic challenges



Coverage, sequencing depth and costs:
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Figure 5| Coverage versus depth. a | 80% of yeast genes were detected
at 4 million uniquely mapped RNA-Seq reads, and coverage reaches
a plateau afterwards despite the increasing sequencing depth.
Expressed genes are defined as having at least four independent
reads from a 50-bp window at the 3’ end. Data is taken from REF. 18.

b
100
=y
9
E. 10
i
=
i
m
&
g 4
g
=
-]
— ES
— R
0l T T T T T T T 1
0 10 20 30 40 50 &0 70 80

Number of mapped tags (million)

b | The number of unique start sites detected starts ta reach a plateau
when the depth of sequencing reaches 80 million in two mouse tran-
scriptomes. ES, embryonic stem cells; EB, embryonic bady. Figure is
modified, with permission, from REF. 22 © (2008) Macmillan Publishers
Ltd. All rights reserved.

Number of detected genes (coverage) and costs increase
with sequence depth (number of analyzed read)

Calculation of coverage is less straightforward in
transcriptome analysis (transcription activity varies)

imise. RNA-Seq - Coverage 13




RNA-Seq - Comparable technologies:
Tiling array analysis
Classical sequencing of cDNA or EST

Classical gene expression arrays
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Transcriptome mapping using tiling arrays:

25nt ~35 nt
probe spacing
Chip design
microarray
hybridizing mRNA transcript
< -

Hybridization to Tiling array
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Advantages of RNA-Seq:

Table 1 | Advantages of RNA-Seq compared with other transcriptomics methods

Technology Tiling microarray cDNA or EST sequencing RNA-Seq
Technology specifications

Principle Hybridization Sanger sequencing High-throughput sequencing
Resolution From several to 100 bp Single base Single base
Throughput High Low High

Reliance on genomic sequence Yes No In some cases
Background noise High Low Low
Application

Simultaneously map transcribed regions and gene expression  Yes Limited for gene expression  Yes

Dynamic range to quantify gene expression level Up to afew-hundredfold Not practical >8,000-fold
Ability to distinguish different isoforms Limited Yes Yes

Ability to distinguish allelic expression Limited Yes Yes

Practical issues

Required amount of RNA High High Low

Cost for mapping transcriptomes of large genomes High High Relatively low

Wang Z. et al. 2009

In addition RNA-Seq can reveal sequence
variation, i.e. mutations or SNPs
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Advantages of RNA-Seq (II):

Background and saturation:
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Figure 2 | Quantifying expression levels: RNA-Seq and microarray
compared. Expression levels are shown, as measured by RNA-Seq
and tiling arrays, for Saccharomyces cerevisiae cells grown in nutrient-
rich media. The two methods agree fairly well for genes with

medium levels of expression (middle), but correlation is very low for
genes with either low or high expression levels. The tiling array data
used in this figure is taken from REF 2, and the RNA-Seq data is taken
from REF. 18.

Wang Z. et al. 2009
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New insights:

More precise estimation of starts, ends and splice sites
for transcripts

Detection of novel transcribed regions
Discovery of splicing isoforms and RNA editing

Detection of mutations and SNPs and analysis of the
influence on transcription and post-transcriptional
modification

RNA-Seq - New insights



Expression quantification:

ReCount - database:

= Collection of preprocessed RNA-Seq data
= http://bowtie-bio.sf.net/recount

Study Organism Number of bio reps Number of reads
BodyMap human 19 2,197,622,79%
Cheung human 41 834,584,950
Core human 2 8,670,342

Gilad human 6 41,356,738
MAQC human 14 71,970,164
Montgomery human 60 *B86,468,054
Pickrell human 69 *886468054
Sultan human 4 6,573,643
Wang human 22 2234820019

Katz mouse 4 14368471
Mortazavi mouse 3 61,732,881
Trapnell mouse 4 111,376,152
Yang mouse 1 27883862
Bottomly mouse 21 343445340
Magalakshmi yeast 4 7688602
Hammer rat 8 156178477
modENCODE - worm WOrmm 46 1451,119823
modENCOLE - fly fly 147 2278788557
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Preprocessing and construction of count tables:

For paired-end sequencing only first mate pair was considered
Pooling of technical replicates

Alignment using bowtie algorithm:
= Not more than 2 mismatches per read allowed
= Reads with multiple alignment discarded
= Read longer than 35 bp truncated to 35 bp

= Qverlapping of alignment of reads with gene footprint
from middle position of read

Expression quantification - ReCount database



Example applications (I):

Analysis of data from multiple studies
= Comparison of the same 29 individuals from 2 studies

- (A) immortalized B-cells

- (B) lymphoblastoid cell lines
=> similar cell types

Differential gene expression

= Paired t-test with
Benjamini-Hochberg correction

= ~28% of genes were differentially
expressed
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Figure 1 Histogram of adjusted p-values from differential
expression analysis on the 29 samples included in both
Cheung and Montgomery. The p-values in the histogram are from
paired t-tests on the 25% of genes with nonzero counts in at least
one of the two studies. The peak near zero is somewhat indicative

of technical variability between the two studies
\

Evidence for dramatic batch effects!

Expression quantification - ReCount database




Example applications (II):

Similar analysis for differential expression between

different ethnicities
= Comparison of:

- (A) Utah resident (CEU ancestry),

- (B) Nigeria (Yoruba ancestry)
Differential gene expression

= Paired t-test with

Benjamini-Hochberg correction

= ~36% of genes were differentially
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Figure 2 Histogram of adjusted p-values from analysis of
eXpressed differential expression betw?en YRl and CEU populations. The
p-values in the histogram are from two-sample t-tests on the 25%

of genes with nonzero counts in at least one of the two studies,
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Thank you for your
attention!




