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Genetic Networks

• Most analysis of RNA-Seq data (e.g. differential expression,
clustering, classification) ignores the dependencies among
genes.

• In contrast, in genetics networks one is specifically interested
in these dependencies.

Questions:

1 What are suitable statistical models for dependency networks
for count data?

2 How do we learn these networks from actual biological data?
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Graphical Models

For microarray data a common way to model dependencies are
graphical models, e.g., Gaussian Graphical Models (GGMs).

For sequence data a similar approach is needed: Poisson
graphical model.

Allen and Liu propose a to use a log-linear graphical model
(llgm) similar to regression-based GGMs and develop a fast
algorithm based on lasso regression suitable for estimation from
high-dimensional data.
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Previous Work on Poisson Graphical Models

There exist some literature on graphical models for count data
and contingency tables, for example:

• Whittaker 1990

• Madigan et al 1995

• Lauritzen 1996

• Hastie et al 2009

However, all these algorithms do not work well for large number
of variables. Inference for dimension d > 20 is infeasible.

Allen and Liu (2012) address this issue by introducing the llgm
algorithm.
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Poisson vs. Negative Binomial Model
and Preprocessing

Allen and Liu use the Poisson distribution rather than the
Negative Binomial.

But overdispersion is accounted for in preprocessing:

1 genes with zero counts, that are constant or with low
variance are filtered out.

2 adjustment for sequence depth via scale factors (e.g. Anders
and Huber 2012).

3 power transform Xα with α ∈ [0; 1] to correct overdispersion.
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Log-Linear Model

Conventional linear model:

µ = E (Y |Xi = xi ) =
∑

βixi

with normal error.

log linear model:

logµ = log E (Y |Xi = xi ) =
∑

βixi

with Poisson error
(in GLM speak: Poisson regression with natural log link function)
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Log-Linear Model: Properties

• automatically ensures that µ > 0

• the predictors xi need not be integers (preprocessing!)

• effects of predictor are multiplicative, as

µ =
∏

eβixi

• the regression coefficients can be estimated by ML, penalized
ML (e.g. lasso or elastic net) or Bayesian approaches.
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Gaussian Graphical Model: Basics

Starting point:

• genes X1, . . . ,Xd are jointly normal distributed with mean µ
and covariance Σ and corresponding correlation matrix
P = (ρij)

From P we compute partial correlations P̃:

• Ω = P−1 = (ωij)

• ρ̃ij = − ωij√
ωiiωjj

A vanishing partial correlation coefficient ρ̃ij = 0 implies (for
normal data) conditional independence of gene i and j given all
other genes.
Non-zero coefficients are represented by edges → GGM network.
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GGM: Regression View

Partial correlation between X1 and X2 can also be computed by
linear regression:

E (X1|Xj = xj)j 6=1 =
∑
j 6=1

β1j xj

E (X2|Xj = xj)j 6=2 =
∑
j 6=2

β2j xj

and
r̃2ij = β̂12 β̂

2
1

Partial correlation is the geometric mean of the two regression
coefficients (one for each direction of an edge in a network).
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GGM: Neighborhood Selection

Meinshausen and Bühlmann (2006) propose the neighborhood
selection approach to inference of GGM networks:

• for each potential edge between Xi and Xj estimate the

corresponding regression coefficients β̂ji and β̂ij using
L1-penalized regression (”lasso”).

• lasso has built-in variable selection: coefficients can be
exactly zero.

• include an edge in the graph if both coefficients are non-zero
(alternative: if at least one of them is non-zero).

Advantages: very fast and can be applied to very high dimensions.
Drawback: this procedure does not always produce a consistent
global joint distribution (e.g. the resulting implied covariance is
not guaranteed to be positive definite.
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llgm Algorithm

Inspired by GGM neighborhood selection Allen and Liu propose
their local llgm (log-linear graphical model) algorithm:

• use L1-penalized log-linear regression to estimate regression
coefficients.

• optimal regularization parameter is chosen via stability
selection (Meinshausen and Bühlmann 2010).

• construct a llgm network by including an edge between if at
least of the two regression coefficients corresponding to an
edge is non-zero (union). Alternatively, include an edge only
if both coefficients are non-zero (intersection).

Advantages: very fast and can be applied to very high dimensions.
Drawback: this procedure does not necessarily produce a
consistent global Poisson graphical model.
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Simulations: Setup

Three graphs structures are simulated (50 nodes):

1 hub network

2 scale-free network

3 random network

Poisson data with sample size n = 200 for these networks are
simulated using an algorithm by Karlis (2003).

Comparison with GGM lasso algorithm (directly on count data or
on log-transformed count data).

Korbinian Strimmer, RNA-Seq Networks, 19/6/2012 14



Simulations: Hub Network
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Simulations: Scale-Free Network
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Simulations: Random Network
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Simulations: Results

• the llgm algorithm greatly outperforms GGM-based
algorithms on hub and scale-free networks.

• for GGM graphs it does not matter whether the data are
log-transformed.

• for random networks the ROC curves of all methods are
approximately equal.
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microRNA Data Set

• aim: infer network to discover relationship among
microRNAs (breast cancer samples).

• data set: 544 patients and 524 microRNAs.

• after preprocessing and filtering 262 microRNAs remained for
analysis (n = 544, d = 262).
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Inferred microRNA Network
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microRNA Network Details

• Node-degrees follows a power-law (scale free network).

• many well-known hub genes are recovered.

• plus additional potentially interesting hub genes.

• micoRNA cluster identified without transcript location

Biological hypothesis obtained from network reconstruction:
mir-379 is a regulatory microRNA for breast cancer progression.
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Discussion

• A framework for inferring Poisson graphical networks from
count data was developed.

• Based on Poisson L1-penalized regression combined with
neighborhood selection.

• Applicable to much higher dimension than previous
algorithms.

• The proposed approach clearly outperforms in simulations
GGM networks inferred from the same data.

• Using a microRNA data set previously known facts were
recovered and new biological hypotheses were generated for
further validation.
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