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Genetic Networks

e Most analysis of RNA-Seq data (e.g. differential expression,
clustering, classification) ignores the dependencies among
genes.

e In contrast, in genetics networks one is specifically interested
in these dependencies.
Questions:

@ What are suitable statistical models for dependency networks
for count data?

® How do we learn these networks from actual biological data?
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Graphical Models

For microarray data a common way to model dependencies are
graphical models, e.g., Gaussian Graphical Models (GGMs).

For sequence data a similar approach is needed: Poisson
graphical model.

Allen and Liu propose a to use a log-linear graphical model
(llgm) similar to regression-based GGMs and develop a fast
algorithm based on lasso regression suitable for estimation from
high-dimensional data.
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Previous Work on Poisson Graphical Models

There exist some literature on graphical models for count data
and contingency tables, for example:

Whittaker 1990
Madigan et al 1995
Lauritzen 1996
Hastie et al 2009

However, all these algorithms do not work well for large number
of variables. Inference for dimension d > 20 is infeasible.

Allen and Liu (2012) address this issue by introducing the ligm
algorithm.
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Poisson vs. Negative Binomial Model
and Preprocessing

Allen and Liu use the Poisson distribution rather than the
Negative Binomial.

But overdispersion is accounted for in preprocessing:

@ genes with zero counts, that are constant or with low
variance are filtered out.

@® adjustment for sequence depth via scale factors (e.g. Anders
and Huber 2012).

© power transform X< with o € [0; 1] to correct overdispersion.
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Log-Linear Model

Conventional linear model:

p=EY|X;i=x)=>_ Bixi
with normal error.

log linear model:

logpu =log E(Y|Xi = x;) = Zﬁixi

with Poisson error
(in GLM speak: Poisson regression with natural log link function)
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Log-Linear Model: Properties

automatically ensures that p > 0

the predictors x; need not be integers (preprocessing!)

effects of predictor are multiplicative, as

w= H ePixi

the regression coefficients can be estimated by ML, penalized
ML (e.g. lasso or elastic net) or Bayesian approaches.
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Gaussian Graphical Model: Basics

Starting point:

e genes Xi,..., Xy are jointly normal distributed with mean p
and covariance ¥ and corresponding correlation matrix
P = (pij)

From P we compute partial correlations P:
* Q=P = (wj)
~ wjj
* P = ey
A vanishing partial correlation coefficient §;; = 0 implies (for

normal data) conditional independence of gene i and j given all
other genes.

Non-zero coefficients are represented by edges — GGM network.
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GGM: Regression View

Partial correlation between X; and X, can also be computed by
linear regression:

1
E(Xu|Xj = )21 = > Blx
J#1
2
E(X|X; = )22 = > Bix
J#2
and
=2 _ A1A2
rij = 5351
Partial correlation is the geometric mean of the two regression
coefficients (one for each direction of an edge in a network).



GGM: Neighborhood Selection

Meinshausen and Biihlmann (2006) propose the neighborhood
selection approach to inference of GGM networks:

e for each potential edge between X; and X; estimate the
corresponding regression coefficients B{ and BJ’ using
L1-penalized regression ("lasso").

e |asso has built-in variable selection: coefficients can be
exactly zero.

e include an edge in the graph if both coefficients are non-zero
(alternative: if at least one of them is non-zero).

Advantages: very fast and can be applied to very high dimensions.
Drawback: this procedure does not always produce a consistent
global joint distribution (e.g. the resulting implied covariance is
not guaranteed to be positive definite.
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ligm Algorithm

Inspired by GGM neighborhood selection Allen and Liu propose
their local ligm (log-linear graphical model) algorithm:

e use L1-penalized log-linear regression to estimate regression
coefficients.

e optimal regularization parameter is chosen via stability
selection (Meinshausen and Biihlmann 2010).

e construct a llgm network by including an edge between if at
least of the two regression coefficients corresponding to an
edge is non-zero (union). Alternatively, include an edge only
if both coefficients are non-zero (intersection).

Advantages: very fast and can be applied to very high dimensions.
Drawback: this procedure does not necessarily produce a
consistent global Poisson graphical model.
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Simulations: Setup

Three graphs structures are simulated (50 nodes):
@ hub network
@ scale-free network

© random network

Poisson data with sample size n = 200 for these networks are
simulated using an algorithm by Karlis (2003).

Comparison with GGM lasso algorithm (directly on count data or
on log-transformed count data).
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Simulations: Hub Network
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Simulations: Scale-Free Network
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Simulations: Random Network
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Simulations: Results

o the llgm algorithm greatly outperforms GGM-based
algorithms on hub and scale-free networks.

o for GGM graphs it does not matter whether the data are
log-transformed.

e for random networks the ROC curves of all methods are
approximately equal.



UNIVERSITAT LEIPZIG

microRNA Data Set

e aim: infer network to discover relationship among
microRNAs (breast cancer samples).

o data set: 544 patients and 524 microRNA:s.

o after preprocessing and filtering 262 microRNAs remained for
analysis (n = 544, d = 262).
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Inferred microRNA Network
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microRNA Network Details

Node-degrees follows a power-law (scale free network).

many well-known hub genes are recovered.

plus additional potentially interesting hub genes.

micoRNA cluster identified without transcript location

Biological hypothesis obtained from network reconstruction:
mir-379 is a regulatory microRNA for breast cancer progression.
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Discussion

A framework for inferring Poisson graphical networks from
count data was developed.

e Based on Poisson L1-penalized regression combined with
neighborhood selection.

o Applicable to much higher dimension than previous
algorithms.

e The proposed approach clearly outperforms in simulations
GGM networks inferred from the same data.

o Using a microRNA data set previously known facts were
recovered and new biological hypotheses were generated for
further validation.
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