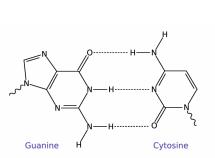
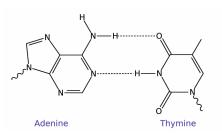
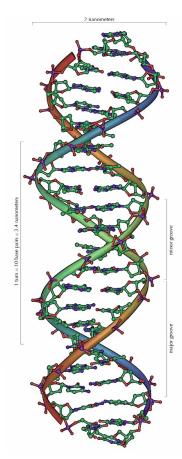
Next-generation DNA sequencing


Diana Le Duc, M.D. Biochemistry Institute, Medical Faculty, University of Leipzig

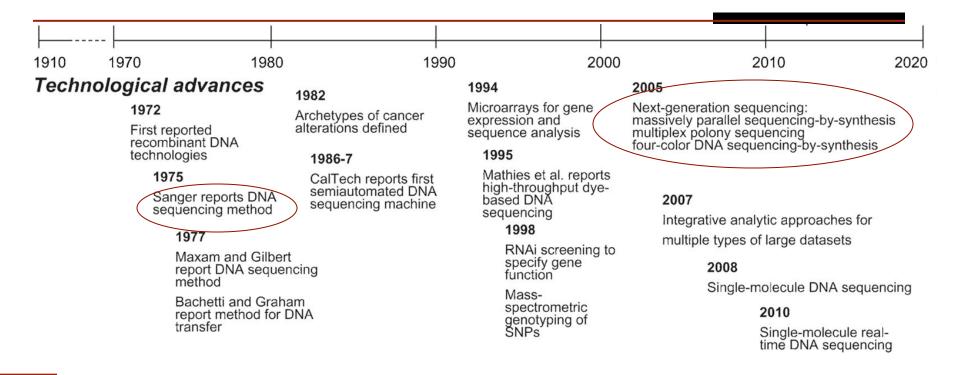

Statistical Analysis of RNA-Seq Data, University of Leipzig, 18th of April 2012


Gabriela-Diana.LeDuc@medizin.uni-leipzig.de

Deoxyribonucleic acid (DNA)

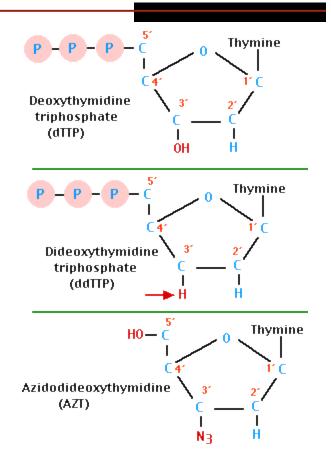
- Discovery (Miescher, 1869)
- Carrier of genetic information (Avery/MacLeod/ McCarty, 1944)
- Structural model (Watson/ Crick/Wilkins/Franklin, 1953)
- Replication using complementary base pairing
- Reading its information start early 1970s

Why Sequencing?


- Medicine
- Forensics
- Biology
- Agriculture

AS YOU CAN SEE FROM YOUR GENETIC PRINTOUT YOU ONLY THINK YOU'RE DEPRESSED WHEREAS YOU ARE IN FACT A JOLLY, HAPPY FULL OF THE JOYS OF SPRING TYPE PERSON!

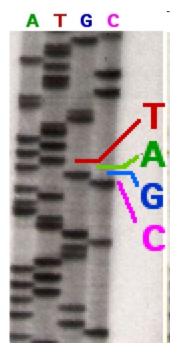
00



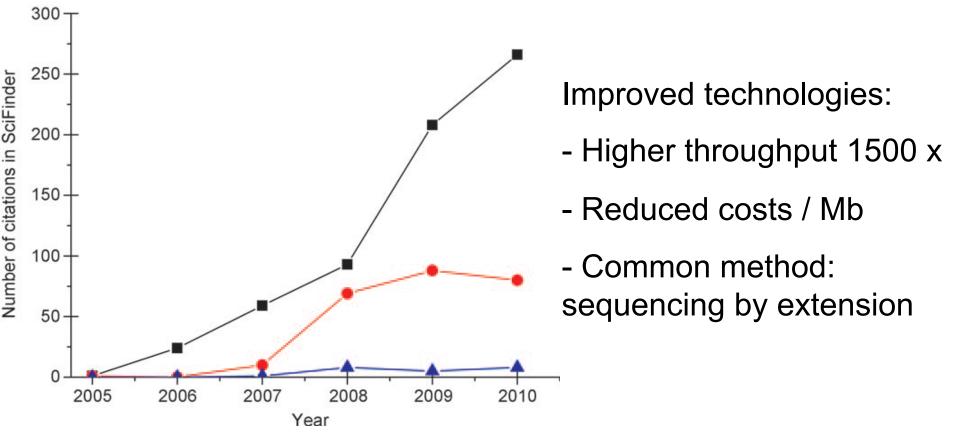
DNA Sequencing

Sanger sequencing

- DNA Sequencing = determining the order of the nucleotide bases
- single-stranded DNA template
- DNA primer
- DNA polymerase
- Normal dNTPs
- Terminating nucleotide
 Sanger Video


Sanger sequencing overview

- genomic DNA is fragmented
- cloned to a plasmid vector -> transform


E. coli

a single bacterial colony is picked ->

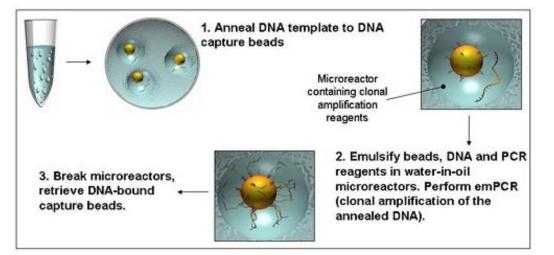
plasmid DNA isolated

Sequencing technologies – Sequencing Revolution

DOI: 10.1002/anie.201003880

NGS – What Platforms are there?

- Illumina/Solexa reversible terminator chemistry
- Principle of SOLiD sequencing by ligation
- 454 Pyrosequencing
- Ion Torrent Personal genome Machine
- Single Molecule Sequencing

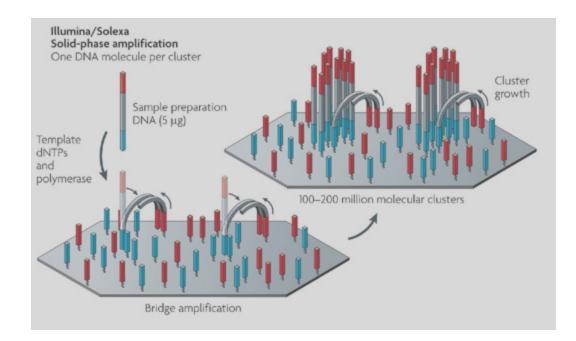

Sequencing technologies – shared attributes

- Template preparation
- Sequencing and imaging
- Data analysis

Sequencing technologies – NGS template preparation

A. Clonally amplified templates - cell free system:

Emulsion PCR <u>Emulsion PCR Video</u>

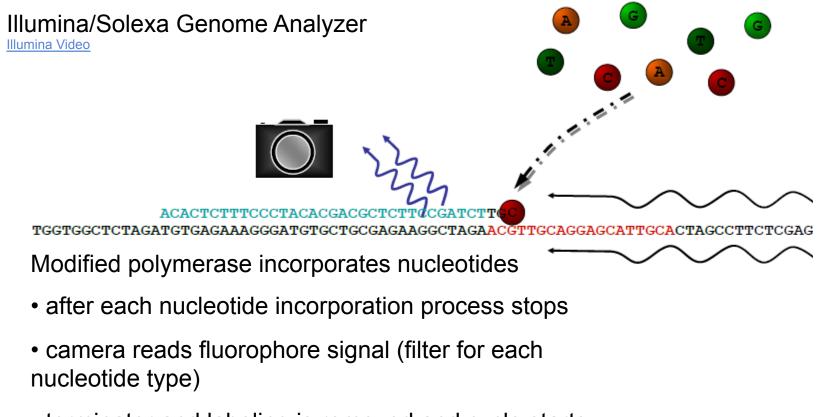

standard microscope slide (Polonator)
aminocoated glass surface (Life/APG; Polonator)
PicoTiterPlate (PTP) wells (Roche/454)
microchip sensor (Ion Torrent)

Metzker, M. L. Sequencing technologies - the next generation. Nat Rev Genet 11, 31-46.

Sequencing technologies – NGS template preparation

A. Clonally amplified templates - cell free system:

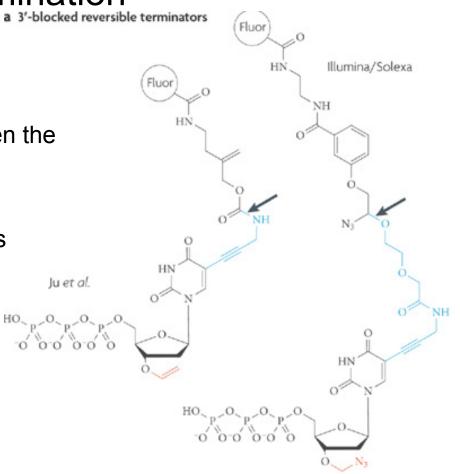
Solid-phase amplification Bridge PCR Video



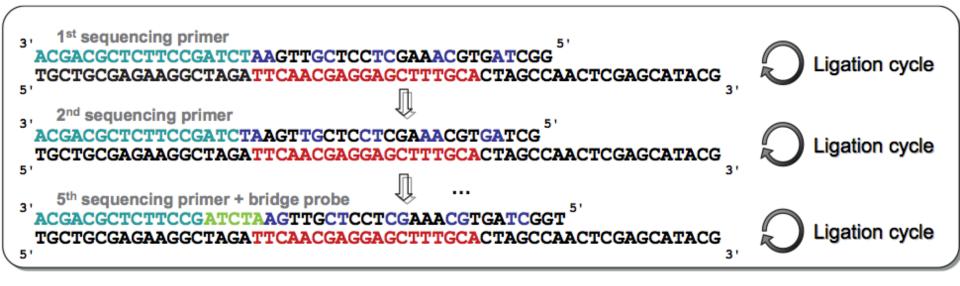
Sequencing technologies – NGS template preparation

- B. Single-molecule templates:
- Require less starting material
- Immobilized on the solid surface by

Primers: Helicos BioSciences Template: Helicos BioSciences Polymerase: Pacific Biosciences, Life/Visigen, LI-COR Biosciences


1. Cyclic reversible termination

terminator and labeling is removed and cycle starts again


1. Cyclic reversible termination

- Substitutions with higher frequency when the previous base is 'G'
- Underrepresentation of GC- rich regions

- 1. Cyclic reversible termination
 - 3'-unblocked reversible terminators
 - LaserGen Lightning Terminators
 - Helicos BioSciences Virtual Terminators
 - Cleavage of only one bond

- 2. Sequencing by ligation
- Difference DNA ligase
- Hybridization of a fluorescently labelled probe
- SOLiD cycle of 1,2-probe hybridization

Read position	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
Universal seq primer (n) 3'		•	•				•	•				•	•				•	•				•	•				•	•				•	•			
Universal seq primer (n–1) 3'	•	•				•	•				•	•				•	•				•	•				•	•				•	•				
Universal seq primer (n–2) 3'	Bridg	ge p	orot	be	•	•				•	•				•	•				•	•				•	•				•	•				•	•

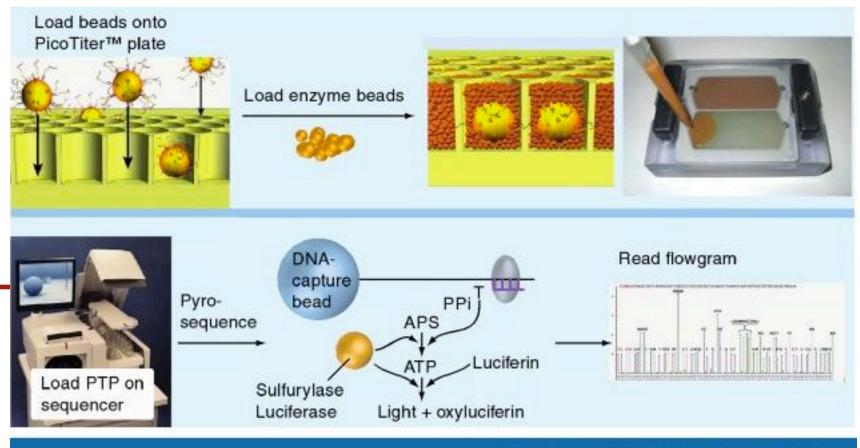
2

3

Indicates positions of interrogation

Bridge probe

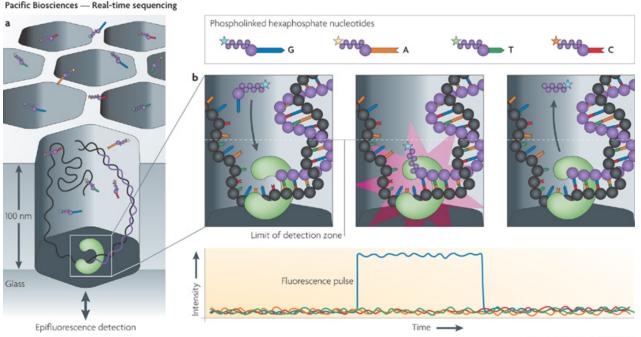
Bridge probe • •


Ligation cycle 1 2 3 4 5 6 7

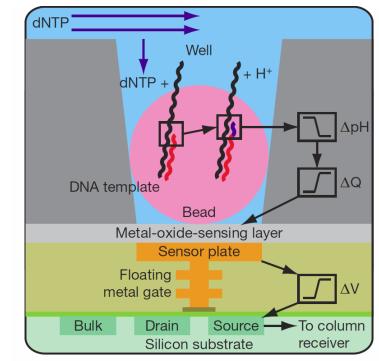
Universal seg primer (n-3)

5 Universal seq primer (n-4)

- 2. Sequencing by ligation errors:
 - Substitutions
 - Underrepresentation of AT- and GC- rich regions


3. Pyrosequencing 454 Video

Source: Future Virol © 2011 Future Medicine Ltd

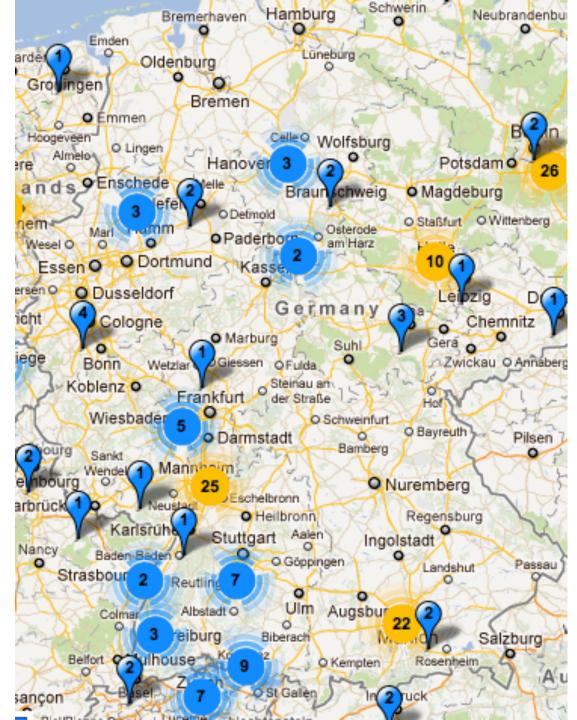

- 3. Pyrosequencing errors:
- For homopolymeric reads -> unreliable sequence
- Insertions
- Deletions

- 4. Real-time sequencing:
 - Pacific Biosciences
 - Continuous imaging of dye-labelled nucleotides incorporation

Nature Reviews | Genetics

- 5. Ion Semiconductor Sequencing Internet Video
- incorporation of dNTP into DNA strand -> release of H⁺
- ΔpH detected by an ionsensitive field-effect transistor

Comparison of different NGS platforms


	Throughput	Length	Quality	Costs
Sanger	6 Mb/day	800nt	10 ⁻⁴ - 10 ⁻⁵	500\$/Mb
454	750Mb/day	400nt	10 ⁻³ - 10 ⁻⁴	~20\$/Mb
Ion Torrent	1600Mb/day	200nt	10 ⁻² - 10 ⁻³	~10\$/Mb
Illumina	100000Mb/day	125nt	10 ⁻² - 10 ⁻³	~0.40\$/Mb
SOLiD 4	100000Mb/day	125nt	10 ⁻² - 10 ⁻³	~0.40\$/Mb
Helicos	5000Mb/day	32nt	10 ⁻²	~0.40\$/Mb

Sequencing around the World

Number of sequencing machines by country

lumber of machines
diffect of machines
18
00
37
35
9
4
6
1
8
4
1 3 3 3 9 4 6 1 8

Leipzig
10 Sequencing Machines,
4th place in

Germany

Centres with platform

Number of centres
279
265
178
173
101
26
23
5

Bioinformatics tools for:

- Alignment
- Base calling/polymorphism detection
- De novo assembly
- Genome browsing or annotation
- Challenging problems:
 - De novo assembly of short reads -> mate-paired libraries required
 - Reads in repetitive regions

Vol 463 21 January 2010 doi:10.1038/nature08696

nature

ARTICLES

The sequence and *de novo* assembly of the giant panda genome

Ruiqiang Li^{1,2}*, Wei Fan¹*, Geng Tian^{1,3}*, Hongmei Zhu¹*, Lin He^{4,5}*, Jing Cai^{3,6}*, Quanfei Huang¹, Qingle Cai^{1,7}, Bo Li¹, Yinqi Bai¹, Zhihe Zhang⁸, Yaping Zhang⁶, Wen Wang⁶, Jun Li¹, Fuwen Wei⁹, Heng Li¹⁰, Min Jian¹, Jianwen Li¹, Zhaolei Zhang¹¹, Rasmus Nielsen¹², Dawei Li¹, Wanjun Gu¹³, Zhentao Yang¹, Zhaoling Xuan¹, Oliver A. Ryder¹⁴, Frederick Chi-Ching Leung¹⁵, Yan Zhou¹, Jianjun Cao¹, Xiao Sun¹⁶, Yonggui Fu¹⁷, Xiaodong Fang¹, Xiaosen Guo¹, Bo Wang¹, Rong Hou⁸, Fujun Shen⁸, Bo Mu¹, Peixiang Ni¹, Runmao Lin¹, Wubin Qian¹, Guodong Wang^{3,6}, Chang Yu¹, Wenhui Nie⁶, Jinhuan Wang⁶, Zhigang Wu¹, Huiqing Liang¹, Jiumeng Min^{1,7}, Qi Wu⁹, Shifeng Cheng^{1,7}, Jue Ruan^{1,3}, Mingwei Wang¹, Zhongbin Shi¹, Ming Wen¹, Binghang Liu¹, Xiaoli Ren¹, Huisong Zheng¹, Dong Dong¹¹, Kathleen Cook¹¹, Gao Shan¹, Hao Zhang¹, Carolin Kosiol¹⁸, Xueying Xie¹³, Zuhong Lu¹³, Hancheng Zheng¹, Yingrui Li^{1,3}, Cynthia C. Steiner¹⁴, Tommy Tsan-Yuk Lam¹⁵, Siyuan Lin¹, Qinghui Zhang¹, Guoqing Li¹, Jing Tian¹, Timing Gong¹, Hongde Liu¹⁶, Dejin Zhang¹⁶, Lin Fang¹, Chen Ye¹, Juanbin Zhang¹, Wenbo Hu¹⁷, Anlong Xu¹⁷, Yuanyuan Ren¹, Guojie Zhang^{1,3,6}, Michael W. Bruford¹⁹, Qibin Li^{1,3}, Lijia Ma^{1,3}, Yiran Guo^{1,3}, Na An¹, Yujie Hu^{1,3}, Yang Zheng^{1,3}, Yongyong Shi⁵, Zhiqiang Li⁵, Qing Liu¹, Yanling Chen¹, Jing Zhao¹, Ning Qu^{1,7}, Shancen Zhao¹, Feng Tian¹, Xiaoling Wang¹, Haiyin Wang¹, Lizhi Xu¹, Xiao Liu¹, Tomas Vinar²⁰, Yajun Wang²¹, Tak-Wah Lam²², Siu-Ming Yiu²². Shiping Liu²³. Hemin Zhang²⁴. Desheng Li²⁴. Yan Huang²⁴. Xia Wang¹. Guohua Yang¹. Zhi Jiang¹.

OPEN OR ACCESS Freely available online

PLOS BIOLOGY

Multi-Platform Next-Generation Sequencing of the Domestic Turkey (*Meleagris gallopavo*): Genome Assembly and Analysis

Rami A. Dalloul¹⁹, Julie A. Long²⁹, Aleksey V. Zimin³⁹, Luqman Aslam⁴, Kathryn Beal⁵, Le Ann Blomberg², Pascal Bouffard⁶, David W. Burt⁷, Oswald Crasta^{8,9}, Richard P. M. A. Crooijmans⁴, Kristal Cooper⁸, Roger A. Coulombe¹⁰, Supriyo De¹¹, Mary E. Delany¹², Jerry B. Dodgson¹³, Jennifer J. Dong¹⁴, Clive Evans⁸, Karin M. Frederickson⁶, Paul Flicek⁵, Liliana Florea¹⁵, Otto Folkerts^{8,9}, Martien A. M. Groenen⁴, Tim T. Harkins⁶, Javier Herrero⁵, Steve Hoffmann^{16,17}, Hendrik-Jan Megens⁴, Andrew Jiang¹², Pieter de Jong¹⁸, Pete Kaiser¹⁹, Heebal Kim²⁰, Kyu-Won Kim²⁰, Sungwon Kim¹, David Langenberger¹⁶, Mi-Kyung Lee¹⁴, Taeheon Lee²⁰, Shrinivasrao Mane⁸, Guillaume Marcais³, Manja Marz^{16,21}, Audrey P. McElroy¹, Thero Modise⁸, Mikhail Nefedov¹⁸, Cédric Notredame²², Ian R. Paton⁷, William S. Payne¹³, Geo Pertea¹⁵, Dennis Prickett¹⁹, Daniela Puiu¹⁵, Dan Qioa²³, Emanuele Raineri²², Magali Ruffier²⁴, Steven L. Salzberg²⁵, Michael C. Schatz²⁵, Chantel Scheuring¹⁴, Carl J. Schmidt²⁶, Steven Schroeder²⁷, Stephen M. J. Searle²⁴, Edward J. Smith¹, Jacqueline Smith⁷, Tad S. Sonstegard²⁷, Peter F. Stadler^{16,28,29,30,31}, Hakim Tafer^{16,30}, Zhijian (Jake) Tu³², Curtis P. Van Tassell^{27,33}, Albert J. Vilella⁵, Kelly P. Williams⁸, James A. Yorke³, Liqing Zhang²³, Hong-Bin Zhang¹⁴, Xiaojun Zhang¹⁴, Yang Zhang¹⁴, Kent M. Reed^{34*}

1 Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia, United States of America, 2 Animal Biosciences and Biotechnology Laboratory, USDA Agricultural Research Service, Beltsville, Maryland, United States of America, 3 Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America, 4 Animal Breeding and Genomics Centre, Wageningen University, Wageningen, the Netherlands, 5 European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, University of Edinburgh, Roslin, Midlothian, United Kingdom, 8 Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America, 9 Chromatin Inc., Champaign, Illinois, United States of America, 10 Department of Veterinary Sciences, Utah State University, Logan, Utah, United States of America, 11 Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America, 12 Department of Animal Science, University of California, Davis, California, United States of America, 13 Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America, 14 Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America, 15 Center for Bioinformatics University of Leipzig, Germany, 17 LIFE Project, University of Edipoingrup, University of Leipzig, Germany, 19 Institute for Animal Research Center at Oakland, Oakland, California, University of Baryland, College Park, Maryland, United States of America, 19 Institute for Animal Research Center at Oakland, Oakland, California, University of America, 19 Institute for Animal Health, Compter, University of Leipzig, Germany, 18 Children's Hospital and Research Center at Oakland, Oakland, California, University of America, 19 Institute for Animal Health, Compton Genetics, Department, Of America, 19 Institute for Anima

■ \$ 1000 genome sequencing and

\$ 1000000 data analysis

NGS applications

- Genome resequencing: polymorphism and mutation discovery in humans (1000
 Genomes Project)
- "Omics": transcriptomics, proteomics, metabolomics, microbiomes

NGS applications

Transcriptome sequencing:

Gene expression

Alternative splicing

Transcript annotation

SNPs

Somatic mutations

NGS applications Future

- Throughput and costs of sequencing will allow to characterize genetic variation within and between species in great detail
- Will become routine
- Greatest challenge is extracting biologically or clinically meaningful information

My Projects

- 1. Kiwi sequencing Illumina HiScan 2
- 2. Transcriptome analysis and comparison GPCR

34 knock out – wild type C57BL/6

Kiwi

Goals:

- Assessment of wing development genes: Mutations
 Signatures of selection
 Functional assessment
- 2. G protein coupled receptors

Ensembl Gene ID	Associated Gene Name
ENSGALG0000001532	E1NPH2_CHICK
ENSGALG0000006379	<u>SHH</u>
ENSGALG0000007562	EGF4
ENSGALG0000007706	Q90696_CHICK
ENSGALG0000007834	SALL4
ENSGALG0000008253	TBX5_CHICK
ENSGALG0000009495	FGFR2
ENSGALG00000010863	TWISTNB
ENSGALG00000011630	<u>GLI2</u>
ENSGALG00000012329	<u>GLI3</u>
ENSGALG00000014872	FGF10
ENSGALG0000023904	<u>FIBIN</u>

Kiwi

Further goals:

- 3. Phylogeny tree
- 4. Genome assembly

Scientific Partners:

- BGI-G10K: Prof. Guojie Zhang
- MPI EVA: Bioinformatics group Janet Kelso
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, University of Auckland, Auckland, New Zealand: Prof. David Lambert

Transcriptome analysis


Goals:

Differences in gene expression KO vs. WT

Involved metabolic pathways

Assess genes with immunologic involvement

Thank you!

