# Eine Einführung in R: Das Lineare Modell

Bernd Klaus, Verena Zuber

Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig

9. Dezember 2010

#### I. Lineare Einfachregression

Einleitung MLQ - Schätzung Interpretation und Modelldiagnose

#### II. Multiple Regression

Einleitung Schätzung der Koeffizienten Einfache Modelldiagnose - Residuenanalyse

### III. Umsetzung in R

Einfache Regression Modelldiagnose Multiple Regression I. Lineare Einfachregression II. Multiple Regression III. Umsetzung in R

I. Lineare Einfachregression

# Einleitung

- Ziel der Regressionsanalyse:
   Welchen Einfluss hat eine Größe X auf eine andere
   Zufallsvariable Y?
  - Y: metrische Zielvariable, zu erklärende Variable, Regressand
  - X : erklärende Variable, Regressor (zufällig oder deterministisch)
- ► Daten:

n Realisierungen 
$$(y_1, x_1), \ldots, (y_n, x_n)$$

Die Lineare Regression untersucht, ob ein linearer Zusammenhang zwischen X und Y besteht.

### Modell der Linearen Regression

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- Y: Zielvariable, zu erklärende Variable, Regressand
- X: erklärende Variable, Regressor
- $\triangleright$   $\varepsilon$ : unbeobachtbare Fehlervariable, unabhängig und identisch verteilt (in der Regel als  $N(0,\sigma)$ )
- ightharpoonup zu schätzende Koeffizienten des Models:  $eta_0,eta_1$
- $\triangleright$   $\beta_0$  : Intercept
- $ightharpoonup eta_1$  : Regressionskoeffizient der Variable X

Für i = 1, ..., n Beobachtungen:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
  $i = 1, ..., n$ 

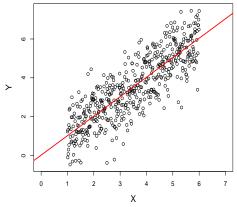


# Annahmen: Lineare Regression

- ► Es besteht ein linearer Zusammenhang zwischen X und Y
- Y ist metrisch und normalverteilt (Kategorial: Logit Regression; Allgemeinere Verteilungen: GLM's)
  - $E(y_i) = \beta_0 + \beta_1 x_i$
  - $ightharpoonup Var(y_i) = \sigma^2$
- ▶ Homoskedastizität, d.h. die Fehler  $\varepsilon_i$  haben die gleiche Varianz:  $Var(\varepsilon_i) = \sigma^2$  für alle i = 1, ..., n
- ▶ Die Fehler  $\varepsilon_i$ , mit i = 1, ..., n, sind unabhängig (GegenBsp: Zeitreihendaten)
- lacktriangle Die Fehler arepsilon sind unabhängig vom Wert der Zielvariable Y

# Beispiel: Simulierte Daten

```
X<-seq(1,6,0.01)
epsilon<-rnorm(length(X), mean=0, sd=1)
Y<-X+epsilon</pre>
```



# Schätzung der $\beta_i$

 $\beta_0$  und  $\beta_1$  können durch Minimierung der Summe des Quadratischen Fehlers geschätzt werden (Kleinste Quadrate Schätzers):

$$\mathsf{MLQ} = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2 \to \mathsf{min!}$$

Dies führt zu folgenden Schätzungen für  $\beta_0$  und  $\beta_1$ :

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{cov(X, Y)}{var(X)}$$
$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}\bar{X}$$

# Testen des $\beta$ -Koeffizienten

Der Regressionskoeffizient  $\beta_1$  der Variable X ist ein Indikator für den linearen Zusammenhang von X und Y. Es gilt:

$$\beta_1 = cor(X, Y) \frac{\sigma_Y}{\sigma_X}$$

#### Daraus folgt:

- $ightharpoonup eta_1 < 0$ : negativer (linearer) Zusammenhang
- $ightharpoonup eta_1 = 0$ : kein (linearer) Zusammenhang
- $\triangleright$   $\beta_1 > 0$ : positiver (linearer) Zusammenhang

Es gibt einen einfachen Test, der angibt, ob  $\beta_1$  signifikant ungleich Null ist, d.h. ob ein signifikanter Zusammenhang zwischen X und Y besteht.

### Zerlegung der Gesamtstreuung

Die Maßzahl  $R^2$  dient als Hinweis darauf, wie gut ein Regressionsmodell zu den Daten passt. Die Idee hinter diesem Maß ist die sogenannte Streuungszerlegung:

$$SQT = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{SQR} + \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}_{SQE}$$

- ▶ SQT: Sum of Squares Total, die Gesamtstreuung (Var(Y))
- ► SQE: Sum of Squares Explained, die durch das Modell erklärte Streuung
- SQR: Sum of Squares Residuals, die Rest- oder Residualstreuung

### Bestimmtheitsmaß $R^2$

Liegen die Punkte  $(y_1, x_1), \ldots, (y_n, x_n)$  alle auf einer Geraden, so ist SQR= 0 und die Gesamtstreuung wäre gleich der erklärten Streuung. Das Bestimmtheitsmaß  $R^2$  ist gegeben durch:

$$R^2 = \frac{\mathsf{SQE}}{\mathsf{SQT}} = 1 - \frac{\mathsf{SQR}}{\mathsf{SQT}} \quad \in [0, 1]$$

Je größer also das  $R^2$  ist, desto besser passt das Modell zu den Daten. Dabei bedeuten:

- ▶  $R^2 = 0$ : Die erklärte Streuung ist 0, d.h. das Modell ist extrem schlecht; X und Y sind nicht linear abhängig
- ▶  $R^2 = 1$ : Die erklärte Streuung entspricht der Gesamtstreuung, das Modell passt perfekt

Einleitung MLQ - Schätzung Interpretation und Modelldiagnose

II. Multiple Regression

### Mehrere erklärende Variablen

- ► Fragestellung: Wie ist der Einfluss mehrerer Variablen X<sub>1</sub>, ..., X<sub>p</sub> auf eine Zielgröße Y?
- ► Realisierungen:  $(y_1, x_{11}, ..., x_{1p}), ..., (y_n, x_{n1}, ..., x_{np})$
- Modell der multiplen linearen Regression mit p erklärenden Größen  $X = X_1, ..., X_p$ :

$$Y = X\beta + \varepsilon$$

$$y_i = \beta_0 + \sum_{j=1}^{p} \beta_j x_{ij} + \varepsilon_i$$
  $i = 1, ..., n, j = 1, ..., p$ 

Dabei ist  $X = (x_{ij})$  die sogenannte Designmatrix.

- ► Vorteil zur einfachen Regression:
  - $\beta_j$  beschreibt den Zusammenhang der j.ten Variable zu Y bedingt auf alle übrigen j-1 Variablen (Kontrolle von ungewollten oder Scheineffekten)

# Least-Squares Schätzer

 $\beta_0, \beta_1, ..., \beta_p$  können (analog zur einfachen linearen Regression) durch Minimierung der Summe des Quadratischen Fehlers geschätzt werden (Kleinste Quadrate oder Least-Squares):

$$MLQ = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{1i} + ... + \beta_p x_{pi}))^2 \rightarrow min!$$

Der Least-Squares Schätzer ergibt sich nach Umformen zu:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

#### Hat-Matrix

Die Matrix

$$H := (X^T X)^{-1} X^T$$

bezeichnet man auch als "Hat"-Matrix, da sie die beobachteten Daten Y in geschätzte Werte  $\hat{Y} = HY$  verwandelt (puts the hat on Y).

Es gilt folgender Zusammenhang zu dem Residuenvektor:

$$r = \hat{Y} - Y = HY - Y = (I_n - H)Y$$
$$r \sim N(0, (I_n - H)\sigma)$$

Die Residuen besitzen also die Varianz / Kovarianz

$$\mathsf{Var}(r_i) = \sigma^2(1-h_{ii})$$
 und  $\mathsf{Cov}(\hat{r}_i,\hat{r}_j) = -\sigma^2(1-h_{ij}) \;, i \neq j$ 



# Residuenanalyse

Da die Residuen alle unterschiedliche Varianz besitzen, skaliert man sie auf einheitliche Varianz:

$$r_{i,\text{stud}} = \frac{r_i}{\hat{\sigma} \cdot \sqrt{1 - h_{ii}}} \sim N(0, \sigma)$$

Frage: Sind die Voraussetzungen für das lineare Modell erfüllt? Zu untersuchen sind:

- 1. Anpassung des Modells an die Daten:
  - ightarrow Residuen gegen gefittete Wert  $\hat{Y}$
- 2. Normalverteilung des Fehlers:
  - ightarrow QQ-Plot: Quantile der Residuen gegen die theoretische NV
- 3. Homoskedastizität des Fehlers:
  - $\rightarrow$  Standardisierte Residuen gegen gefittete Wert  $\hat{Y}$ , wenn die geeignet mit H standardisierten Residuen abhängig von  $\hat{Y}$  sind, deutet dies auf ungleiche Varianzen der Fehler hin

Einleitung Schätzung der Koeffizienten Einfache Modelldiagnose - Residuenanalyse

III. Umsetzung in R

# Beispieldaten: "airquality"

- ▶ Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island
- ➤ Solar.R: Solar radiation in Langleys in the frequency band 4000-7700 Angstroms from 0800 to 1200 hours at Central Park
- ▶ Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport
- ► Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport

Mit diesen Daten kann untersucht werden, welchen Einfluss Sonneneinstrahlung, Wind und Temperatur auf die Ozonwerte haben.



# Beispiel in R

Wir laden den Datensatz "airquality"

- ► data("airquality")
- ► Wir untersuchen das Modell:
- ▶ Ozone<sub>i</sub> =  $\beta_0 + \beta_1$ · Temp<sub>i</sub> +  $\varepsilon_i$
- ... also die Abhängigkeit des Ozons von der Temperatur
- ► Aufruf der Funktion lm()
- ▶ test <- lm( formula= Ozone ~ Temp, data= airquality)
- ▶ test ist ein Objekt der Klasse 1m

### Ausgabe in R:

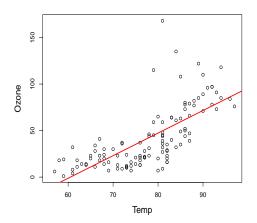
### Coefficients:

```
(Intercept) Temp
-146.995 2.429
```



# Scatterplot: Ozone $\sim$ Temp

```
plot(Temp,Ozone)
abline(test$coefficients, col="red")
```



# Modelldiagnose

► R<sup>2</sup> und andere Maße des Modells : summary(test)

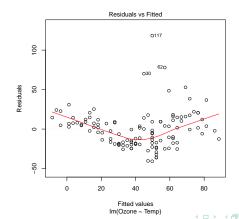
|             | Estimate  | Std. Error | t value | Pr(> t ) |
|-------------|-----------|------------|---------|----------|
| (Intercept) | -146.9955 | 18.2872    | -8.038  | 9.37e-13 |
| Temp        | 2.4287    | 0.2331     | 10.418  | < 2e-16  |

Multiple R-squared: 0.4877, Adjusted R-squared: 0.4832

- ► Koeffizienten: test\$coefficients
- ▶ Gefittete Werte  $\hat{Y}$ : test\$fitted.values
- ► Studentisierte Residuen: ls.diag(test)\$std.res
- ► Hat-Matrix: ls.diag(test)\$hat
- ▶ Verschiedene Diagnoseplots: plot(test) oder plot.lm(test) (u.a. Residuenanalyse)

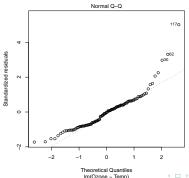
# Modelldiagnose in R I: Residuen gegen gefittete Werte

- Residuen gegen gefittete Werte  $\hat{Y}$  zur Untersuchung der Anpassung des Modells an die Daten
- ► Keine systematische Abweichung, z.B. Trend oder U-Form



### Modelldiagnose in R II: Residuen-QQ

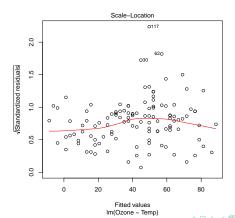
- Plot der studentisierten (besondere Standardisierung) gegen die theoretischen (NV) Residuen zur Untersuchung der Normalverteilung des Fehlers
- ► Wenn die Residuen normalverteilt sind, sollten sie auf der gestrichelten Geraden liegen



# Modelldiagnose in R III: Standardisierte Residuen gegen $\hat{Y}$



- lacktriangle Standardisierte, absolute Residuen gegen gefittete Werte  $\hat{Y}$ zur Untersuchung der Homoskedastizität des Fehlers
- ► Keine systematische Abweichung, z.B. ansteigende Varianz



### Multiple Regression in R

- ► Wir untersuchen nun das Modell:
- ▶ Ozone<sub>i</sub> =  $\beta_0 + \beta_1$ · Temp<sub>i</sub> + $\beta_2$ · Solar.R<sub>i</sub> +  $\varepsilon_i$
- ... also die Abhängigkeit des Ozons von der Temperatur und der Sonneneinstrahlung
- Aufruf der Funktion lm()
- ▶ model2 <- lm( formula= Ozone ~ Temp + Solar.R, data= airquality)

#### Ausgabe in R:

#### Coefficients:

```
(Intercept) Temp Solar.R
-145.70316 2.27847 0.05711
```

### Ausgabe von summary (model2):

|             | Estimate   | Std. Error | t value | Pr(> t ) |
|-------------|------------|------------|---------|----------|
| (Intercept) | -145.70316 | 18.44672   | -7.899  | 2.53e-12 |
| Temp        | 2.27847    | 0.24600    | 9.262   | 2.22e-15 |
| Solar.R     | 0.05711    | 0.02572    | 2.221   | 0.0285   |

Multiple R-squared: 0.5103, Adjusted R-squared: 0.5012

#### Interpretation:

- ▶ Solar.R besitzt ein  $\beta$ , das signifikant von Null verschieden ist ( $\rho$  Wert 0.0285 < 0.05)
- ▶ Das  $\beta$  der Variable Temp verändert sich nur leicht durch die Aufnahme von Solar. R: von 2.4287 zu 2.27847
- ► Das R<sup>2</sup> wird durch die Aufnahme von Solar.R nur noch leicht verbessert: von 0.4832 zu 0.5012
- Durch die beiden Variablen Solar. R und Temp kann die Hälfte der Streuung der Ozonmessungen erklärt werden.

# Spezifikation der Regressionsvariablen

- formula: Hier muss das Modell bzw die Variablen des Modelles spezifiziert werden.
- ► Allgemeiner Aufbau der linearen Einfachregression formula= Y~X
- ▶ Beispiel formula= Ozone  $\sim$  Temp
- ▶ Allgemeiner Aufbau der multiplen linearen Regression formula=  $Y \sim X_1 + X_2 + ... + X_p$
- lacktriangle Beispiel formula= Ozone  $\sim$  Temp + Solar.R

