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Local False Discovery Rates

The Choice of a Null Hypothesis
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OverviewOverview
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Introduction: Multiple TestingIntroduction: Multiple Testing

„Simultaneous Inference“ meant considering up to 
ten hypothesis tests at the same time.

Because of rapid progress in technology, the 
number of testing problems enlarged up to 5.000 
and more.

The more often you test, the more your type I error 
increases.

Here: Large-scale testing should identify a small 
percentage of interesting cases that deserve 
further investigation.
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Introduction: local fdrIntroduction: local fdr

Different frequentist and Bayesian approaches 
have been invented. The local fdr is an empirical 
Bayes method.
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Hypothesis and StatisticsHypothesis and Statistics

• Collection of null hypothesis

   H1,...,HN               N > 100

• Corresponding test statistics

Y1,...,YN with p values P1,...,PN 

transformed into z-values

zi = Ф-1(Pi)
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Theoretical null hypothesisTheoretical null hypothesis

Because the p values are distributed in the 
following way:

P1,...,PN ~ Unif [0,1] ,

the z-values are distributed

    zi | Hi ~ N (0,1) → theoretical null

if Hi is exactly true.

Else you have to generate an empirical null 
hypothesis.
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Empirical null hypothesisEmpirical null hypothesis

The empirical null hypothesis can be generated in 
different ways.

Just because of large scale testing the number of 
observations permits an empirical estimation of 
the null distribution.

→ empirical null:

zi | Hi ~ N (µ,σ2)
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Probabilities and densitiesProbabilities and densities

First we need the probabilities for each class:

p0 if zi´s correspond to class "Uninteresting"

p1 = 1-p0 if to class "Interesting"

 and their densities:

f0(z) density if Uninteresting

f1(z) density if Interesting

→ mixture density

f(z) = p0f0(z)+p1f1(z)
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Definition: local fdrDefinition: local fdr

The local false discovery rate is defined as:

    fdr(z) = f0
+(z) / f(z)

which is the Bayesian a posteriori, using

     f0
+(z) = p0f0(z).

As decision rule you usually choose a threshold

       fdr(z) < 0.2

corresponding to α ≤ 0.05 for univariate cases.
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Decision ruleDecision rule
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Local FDRLocal FDR

Benjamini and Hochberg developed a different 
FDR-theory which relies on tail-areas rather than 
densities.

F0(z) ,F1(z), F(z) are the corresponding cdf´s.

→ FDR(z) = P( null | Z ≤ z) = F0(z) / F(z) = 

        = Ef( fdr(z) | Z ≤ z)

→ fdr is an advantage in interpreting results for 
individual cases
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Geometrical relationship from FDR to fdrGeometrical relationship from FDR to fdr
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Estimating the unknown densitiesEstimating the unknown densities

The estimation of f(z) is conducted nonparametric, 
usually by Poisson-regression.

Assume a parametric null density f0(z) :

Obtain the center and the half-width of the 
central peak from f(z), defined as

δ0 = arg max {f(z)} 

σ0 = [−
d 2

dz2
log f  z ]

δ0

−
1
2
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Estimating the probabilitiesEstimating the probabilities

By definition p1 is defined as:

→ p0=[∫
−∞

∞

f 0
  z  dz ]

−1

p1=∫
−∞

∞

f 1
  z  dz=∫

−∞

∞

1− fdr  z   f  z  dz
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Example: HIV-studyExample: HIV-study

• 1391 patients
• 6 protease inhibitors
• 74 sites on the viral genom

• x = (x1,...,x6) vector of predictors

• v = (v1,...,v74) vector of responses

→ 6*74 = 444 z-values

    with usual approximation zi = yi/sei
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Example: Estimate f(z)Example: Estimate f(z)
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Example: Theoretical nullExample: Theoretical null
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Example: Assign fExample: Assign f00(z) empirically(z) empirically
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Example: theoretical vs. empiricalExample: theoretical vs. empirical
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Example: Close-up view for calculationExample: Close-up view for calculation
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Summary: AssetsSummary: Assets

• Large-scale testing intends to identify a small percentage 
of "Interesting cases"

• Large-scale testing permits the empirical estimation of a 
null hypothesis

• A minimum of frequentist or Bayesian modeling 
assumptions are required

• Local fdr calculations provide size and power estimations
• fdr depends only on the marginal distribution of the z-

values; independence is not required
• Easy implemetation with familiar software (R)
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Summary: DrawbacksSummary: Drawbacks

• Microarray observations are usually not independent
• Smoothness of f(z) is an important assumption
• No convention for fdr thresholds yet; increasing it can 

deliver unacceptably high proportions of false 
discoveries

• Hi|zi can differ from Hi|z (only "one at a time" inference)

• Misspecification of the null hypothesis undermines all 
forms of simoultaneous inference. Using an empirical 
null avoids this problem but costs estimation efficiency

• Standard deviations for the empirical null are too big for 
comfort as N exceeds 500


