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Overview

Objective

Computationally efficient algorithms for quadratic regularisation

Starting point

A set of gene expression arrays X
→ large p (columns), small n (rows).

Output value y we want to predict from the expression values.

Idea

Decompose X in a tricky way and reduce computational effort
(Matrix Inversion).
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Data

Microarray data (p genes, n arrays)

X =

 x11 . . . x1p
...

...
xn1 . . . xnp


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What can we do with gene expression data?

Output value

Usually there exists an additional measure y for each array
(individual, time,...). This could be

cancer class

biological species

survival time

any other quantitative/qualitative measure

Making predictions

A typical goal for a statistician would be to find a model which

shows the association between gene expression and the output
value y

is able to make further predictions for y.
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Predicting y via linear regression

Ordinary least squares

Linear regression could be the model of choice for predicting y as a
continuous measure. To get the model parameters we simply
minimize the sum of squared differences between observed (yi ) and
predicted values (xT

i β).

min
β

n∑
i=1

(yi − xT
i β)2

Solution for classic linear regression

This leads to the well-known solution

β̂ = (XTX )−1XT y
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Linear regression does not work for p > n

Normal equations

When p > n, the so-called normal equations

XTXβ = XT y

which lead to
β̂ = (XTX )−1XT y

do not have a unique solution for β. Instead they provide infinitely
many solutions which

all fit the training data perfectly

usually are not able to make reliable predictions.

In other words: (XTX ) is not invertible.
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Quadratic Penalization

Ridge Regression (Hoerl et al., 1970)

A classic attempt for the p > n situation is to add a quadratic
penalty to the OLS-criteron.

min
β

n∑
i=1

(yi − xT
i β)2 + λβTβ

which leads to the solution

β̂ = (XTX + λI)−1XT y

Benefits

(XTX + λI) is an invertible matrix. We get a unique solution for β.
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Expensive Computation

Matrix Inversion

(XTX + λI) is a p × p matrix. Thus the computational cost of
inverting this matrix is O(p3) operations.

p is large

Typical expression arrays include between 1,000 and 20,000 genes.
For 10,000 genes it means we have to invert a
10, 000× 10, 000-matrix. This involves O(10, 0003) operations.

How long does it take?

Even on a modern PC this is a matter of hours or even days.

9 / 31

Table of contents

1 Motivation

2 Singular value decomposition

3 Examples

4 Summary

10 / 31

Getting ’tricky’

Singular value decomposition (SVD)

Every Matrix X ∈ Rp×n can be decomposited in the following way

X = UDV T = RV T

 X


︸ ︷︷ ︸

nxp

=

 U


︸ ︷︷ ︸

nxn

d1
. . .

dn


︸ ︷︷ ︸

nxn


V


︸ ︷︷ ︸

pxn

T
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Applying SVD to ridge regression

Another solution for ridge regression

Plugging X = RV T into

β̂ = (XTX + λI)︸ ︷︷ ︸
pxp

−1
XT y

one gets

β̂ = V (RTR + λI)︸ ︷︷ ︸
nxn

−1
RT y

Conclusion

We can get the parameters for ridge regression by

applying SVD to X

using R as a ’data-matrix’

multiplying β by V
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About Singular Value Decomposition

Computational costs

Getting the parameters for ridges regression via the SVD trick
involves

reducing p variables to n variables by SVD → O(pn2)

solving n dimensional ridge regression → O(n3)

transforming back to p dimensions → O(np)

Thus it saves inverting a p × p matrix with O(p3) operations.

Software

SVD is a standard linear algebra tool. It is implemented in most
mathematical languages. In R

svd()

fast.svd() → faster for small n, large p
(library(corpcor))
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Applying SVD to other models I

Linear predictors

Many models ’connect’ the variables with the outcome through a
linear predictor. E.g.

logistic regression

linear discriminant analysis

support-vector machines

Loss functions

The parameters are estimated by minimizing a loss function∑n
i=1 L(yi , β0 + xT

i β) which can be the

squared error

negative log-likelihood

etc...
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Applying SVD to other models II

Quadratic regularization

Like linear regression, all models using a linear predictor and some
kind of loss function don’t work properly when p � n.
This can be fixed by adding a quadratic penalty

min
β0,β

n∑
i=1

L(yi , β0 + xT
i β) + λβTβ.

The good news is

The SVD trick can be used with all models in the above
mentioned form.

All aspects of model evaluation can be performed in this
reduced space.
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Reduced space computations

Theorem 1

Let X = RV T be the SVD of X, and denote by ri the ith row of R,
a vector of n predictor values for the ith observation. Consider the
pair of optimization problems:

(β̂0, β̂) = argmin
β0,β∈Rp

n∑
i=1

L(yi , β0 + xT
i β) + λβTβ

(θ̂0, θ̂) = argmin
θ0,θ∈Rn

n∑
i=1

L(yi , θ0 + rT
i θ) + λθT θ

Then β̂0 = θ̂0, and β̂ = V θ̂.

Proof

see Hastie et al., 2004
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Cross-validation I

Where to get λ from?

The regularization parameter λ is often selected by k-fold
cross-validation.

How does cross-validation work?

divide the training data into k groups of size n
k

fit the model to k−1
k and test it on 1

k of the data

repeat this k seperate times

average the results

This is done for a series of values for λ, and a preferred value is
chosen.
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Cross-validation II

Corollary 1

The entire model-selection process via cross-validation can be
performed using a single reduced data set R. Hence, when we
perform cross-validation, we simply sample from the rows of R.

Proof

Cross-validation relies on predictions xTβ, which are equivariant
under orthogonal rotations. 2
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Illustration / Eigengenes

X→R

Eigengenes

If the columns of X are centered, the columns or R

are the principal components of X

also called eigengenes.
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Derivatives I

1st/2nd derivate

If the loss function is based on a log-likelihood we can:

perform score tests with its first derivative

gain variances of the parameters from its second derivative
(information matrix / hessian matrix)

Expensive computation

Differentation in the p-dimensional space is a waste of time.

SVD once again

SVD helps us to obtain the p-dimensional derivates from the
n-dimensional versions.
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Derivatives II

Corollary 2

Define

L(β) =
n∑

i=1

L(yi , β0 + xT
i β), L(θ) =

n∑
i=1

L(yi , β0 + rT
i θ).

Then with θ = V Tβ ⇒ L(β) = L(θ).
If L is differentiable, then

∂L(β)

∂β
= V

∂L(θ)

∂θ
;

∂2L(β)

∂β∂βT
= V

∂2L(θ)

∂θ∂θT
V T ,

with the partial derivatives in the right-hand side evaluated at
θ = V Tβ
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Derivatives III

Proof of Corollary 2

The euqivalence
L(β) = L(θ)

follows immediately from the identity

X = RV T ,

and the fact that xT
i and rT

i are the ith rows of X and R.
The derivatives are simple applications of the chain rule to
L(β) = L(θ). 2
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Parenthesis: Woodbury matrix identity

Matrix inversion lemma

(A + UCV )−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1

where

A is p × p

U is p × n

C is n × n

V is n × p

Link to SVD

For

A = λI
UCV = XTX = (VDUT )(UDV T ) = VD2V T

we see the coherency with SVD.
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Where SVD can be applied

Classes of models

SVD is applicable to all models in the mentioned form, of which
there are many.

Examples

Generalized linear models

The Cox proportional hazards model

Multiple logistic regression

Regularized linear discriminant analysis

Neural networks
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Example 1

Ramaswamy et al., 2001

Multiple logistic regression in order to predict tumor class:

n = 144 training tumor samples

14 tumor classes

p = 16063 genes for each sample

Amount of time for parameter estimation

without SVD → 8 days

using SVD → 0.4 seconds
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Example 2

My own decent example

Simulation of a

gene expression data set X : p = 2000 genes, n = 3 arrays
(rnorm()).

continuous output value y for each array (again rnorm())

Fitting a ridge regression model

conventional → approx. 1 minute

with SVD → less than a second

see ’svd.R’ on course homepage
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Summary I

Why?

Estimating parameters in models for microarray data often involves
inverting large (p × p) matrices. This comes along with high
computational costs.

How?

X = RV T (SVD)

R can be used as a new data matrix with dimension n × n. The
p-dimensional parameter is then calculated in the following way

β̂ = V θ̂ β ∈ Rp, θ ∈ Rn
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Summary II

When?

SVD works with all models involving

a linear predictior

some loss function

a quadratic penalty

And...

Important aspects of model evaluation, such as

cross-validation

testing parameters

can be performed with the reduced data set R.

Does it afford?

The time saving can be enormous!
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