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Overview

Objective

Computationally efficient algorithms for quadratic regularisation

Starting point

@ A set of gene expression arrays X
— large p (columns), small n (rows).

@ Output value y we want to predict from the expression values.

Idea

Decompose X in a tricky way and reduce computational effort
(Matrix Inversion).
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What can we do with gene expression data? Predicting y via linear regression
QuipE velin: _ o Ordinary least squares
U.su.all_y there_ exists an a.ddltlonal el g ol sl iy Linear regression could be the model of choice for predicting y as a
(individual, time,...). This could be . )
continuous measure. To get the model parameters we simply
@ cancer class minimize the sum of squared differences between observed (y;) and
@ biological species predicted values (x. 3).
@ survival time n
@ any other quantitative/qualitative measure min Z (vi — X,Tﬁ)z
‘ fia |
Making predictions
A typical goal for a statistician would be to find a model which Solution for classic linear regression
@ shows the association between gene expression and the output This leads to the well-known solution
I "
ey B=XTX)"XTy
@ is able to make further predictions for y. <
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Linear regression does not work for p > n Quadratic Penalization
Normal equations Ridge Regression (Hoerl et al., 1970)
When p > n, the so-called normal equations A classic attempt for the p > n situation is to add a quadratic
penalty to the OLS-criteron.
XTXg=XTy
n
. T 512 T
which lead to min>_ (vi = X' B)° + A876
B=(X"X)"XTy i=1
do not have a unique solution for 3. Instead they provide infinitely which leads to the solution
luti hich A
many so.u ions w.|<.: B (XTX+A)"1XTy
o all fit the training data perfectly /
@ usually are not able to make reliable predictions. Benefits
. T . . B
In other words: (X7 X) is not invertible. | (XTX + Al) is an invertible matrix. We get a unique solution for j.
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Expensive Computation

Table of contents

Matrix Inversion

(XTX + Al) is a p x p matrix. Thus the computational cost of
inverting this matrix is O(p®) operations.

p is large
Typical expression arrays include between 1,000 and 20,000 genes.

For 10,000 genes it means we have to invert a
10,000 x 10,000-matrix. This involves O(10,000%) operations.

How long does it take?

Even on a modern PC this is a matter of hours or even days.

© Singular value decomposition
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Getting 'tricky’ Getting 'tricky’
Singular value decomposition (SVD) Singular value decomposition (SVD)
Every Matrix X € RP*" can be decomposited in the following way Every Matrix X € RP*" can be decomposited in the following way
X =UDvT =RVT X =UpvT =RVT
_ T _ T
R
d]_ dl
X = v % X = v %
dn dn
—_—— ———
nxp nxn nxn nxp nxn nxn
L J L J
pxn pxn
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Applying SVD to ridge regression About Singular Value Decomposition
Another solution for ridge regression Computational costs
Plugging X = RV into Getting the parameters for ridges regression via the SVD trick
L involves
A_ (xT “1lyT . . .
p=XX+AD) X'y e reducing p variables to n variables by SVD — O(pn?)
pxp e solving n dimensional ridge regression — O(n%)
one gets o transforming back to p dimensions — O(np)
A =il
B=V((RTR+ ) Ry Thus it saves inverting a p x p matrix with O(p3) operations.
N———
nxn
Software
Conclusion SVD is a standard linear algebra tool. It is implemented in most
We can get the parameters for ridge regression by mathematical languages. In R
@ applying SVD to X e svd()
@ using R as a 'data-matrix’ o fast.svd() — faster for small n, large p
e multiplying 8 by V (Library(corpcor))
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Applying SVD to other models I Applying SVD to other models 1T
Linear predictors Quadratic regularization
Many mode.ls ‘connect’ the variables with the outcome through a Like linear regression, all models using a linear predictor and some
linear predictor. E.g. kind of loss function don't work properly when p > n.
@ logistic regression This can be fixed by adding a quadratic penalty
@ linear discriminant analysis i
@ support-vector machines min Z L(y;, Bo + X;Tﬁ) + AﬁTﬂ
Bo,B =
Loss functions
The parameters are estimated by minimizing a loss function The good news is
S Lyis Bo +x,-Tﬁ) which can be the @ The SVD trick can be used with all models in the above
e squared error mentioned form.
o negative log-likelihood @ All aspects of model evaluation can be performed in this
reduced space.
@ etc...
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Reduced space computations Cross-validation I

Theorem 1
Let X = RV T be the SVD of X, and denote by r; the ith row of R, Where to get A from?
a vector of n predictor values for the ith observation. Consider the The regularization parameter X is often selected by k-fold
pair of optimization problems: cross-validation.
- idati ?
(0o, B) = argmin y _ L(yi, fo + x 8) + ABT 3 How does cross-validation work?
Bo,BERP “—{ o divide the training data into k groups of size 7
D o fit the model to % and test it on % of the data
(60,0) = aergemin Z L(y;, 00 +r"0) + 2076 o repeat this k seperate times
,O0ER "
° = @ average the results
Then ffo = o, and 5 = V. J This is done for a series of values for A, and a preferred value is
chosen.
Proof ’
see Hastie et al., 2004 |
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Cross-validation II lllustration / Eigengenes
X—R
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Corollary 1

The entire model-selection process via cross-validation can be
performed using a single reduced data set R. Hence, when we
perform cross-validation, we simply sample from the rows of R.

Proof
Cross-validation relies on predictions x” 3, which are equivariant ‘
under orthogonal rotations. O Eigengenes
‘ If the columns of X are centered, the columns or R
@ are the principal components of X
@ also called eigengenes. |
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Derivatives | Derivatives 11
Corollary 2
1st/2nd derivate Define
If the loss function is based on a log-likelihood we can: n n
@ perform score tests with its first derivative L(B) = Z Lyi, B0 +x"B), L(6) = Z L(y;, o+ r;" 0).
i=1 i=1

@ gain variances of the parameters from its second derivative
(information matrix / hessian matrix) Then with § = VT3 = L(B) = L(B).
If L is differentiable, then

oL(B) _ |, 0L().

Expensive computation

Differentation in the p-dimensional space is a waste of time.

J B a0 '
SVD once again 92L(B) _ ,0%L(0) VT
SVD helps us to obtain the p-dimensional derivates from the 0popT — " 0006T ~
n-dimensional versions. b with the partial derivatives in the right-hand side evaluated at
0=VTg3
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Derivatives III Parenthesis: Woodbury matrix identity

Matrix inversion lemma

A+ UCV)t=A1—Atyct+vaty)tval
Proof of Corollary 2 ( ) ( )

where
L(B) = L(0) e Aispxp
e Uispxn

The eugivalence

follows immediately from the identity
e Cisnxn

=
X=RV", e Visnxp

and the fact that x;” and r.” are the ith rows of X and R.

The derivatives are simple applications of the chain rule to Lo ouD
L(B) = L(6). O For
’ e A=)

o UCV =XTX = (VDUT)(UDVT) = vD2VT

we see the coherency with SVD.
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Where SVD can be applied

Classes of models

SVD is applicable to all models in the mentioned form, of which
there are many.

Examples

@ Generalized linear models

© Examples @ The Cox proportional hazards model
o Multiple logistic regression
@ Regularized linear discriminant analysis
@ Neural networks
24/31 25/31
Example 1 Example 2
Ramaswamy et al., 2001 My own. decent example
Multiple logistic regression in order to predict tumor class: Simulation of a
o 1= 144 iraining tumor samples @ gene expression data set X: p = 2000 genes, n = 3 arrays
(rnorm()).
@ 14 tumor classes . :
@ continuous output value y for each array (again rnorm())
@ p = 16063 genes for each sample . . .
. o Fitting a ridge regression model
Amount of time for parameter estimation - .
. @ conventional — approx. 1 minute
e without SVD — 8 days .
) @ with SVD — less than a second
@ using SVD — 0.4 seconds , ,
see 'svd.R’ on course homepage
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Table of contents Summary I
Why?
Estimating parameters in models for microarray data often involves
inverting large (p X p) matrices. This comes along with high
computational costs.
How?
X=RvT (SVD)
R can be used as a new data matrix with dimension n x n. The
Os p-dimensional parameter is then calculated in the following way
ummary
B=Vh BERPOR"
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Summary II Literature
When? Hastie, T. and Tibshirani, R Effici drati
SVD works with all models involving ° astle,. ..an 1bs |ran|‘, o AL .IClenF q‘ua ratic
; - regularization for expression arrays. Biostatistics 5:329-340.
t
@ alinear predic |.or o Alter, O., Brown, P. and Botstein, D. 2000. Singular value
@ some loss function decomposition for genome-wide expression data processing
@ a quadratic penalty and modelling. Proceedings of the National Academy of
Sciences, USA 97, 10101-10106
And... @ Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S.,
Important aspects of model evaluation, such as Yeang, C., Angelo, M., Ladd, C., Reich, M., Latulippe, E.,
@ cross-validation Mesirov, J. et al., (2001). Multiclass cancer diagnosis using
o testing parameters tumor gene expression signature. Proceedings of the National
. Academy of Sciences, USA 98, 15149-15154
can be performed with the reduced data set R. . . .
@ Hoerl, A. E., Kennard, R. W. 1970. Ridge Regression: Biased
Does it afford? E;tg;atlon for Non-Orthogonal Problems, Technometrics, 12,
The time saving can be enormous! :
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