Overview

Computational Tricks

Simon Rückinger

Seminar: Modeling, Simulation and Inference of Complex **Biological Systems** (Dr. Korbinian Strimmer) SoSe 06

9. Juni 2006

Objective

Computationally efficient algorithms for quadratic regularisation

Starting point

- A set of gene expression arrays X \rightarrow large p (columns), small n (rows).
- Output value **y** we want to predict from the expression values.

Idea

Decompose X in a tricky way and reduce computational effort (Matrix Inversion)

1/31 2/31 Table of contents Data Microarray data (p genes, n arrays) *х*1р X = Motivation 2 Singular value decomposition M/G G2/M аптау_1 array_2 amay_3 3 Examples array_4 array_5 array_6 array_7 array_8 array_9 array_10 array_11 array_12 array_13 array_14 Аггау 4 Summary 3/31 4/31 Predicting y via linear regression

What can we do with gene expression data?

Output value

Usually there exists an additional measure **y** for each array (individual, time,...). This could be

- cancer class
- biological species
- survival time
- any other quantitative/qualitative measure

Making predictions

A typical goal for a statistician would be to find a model which

- shows the association between gene expression and the output value y
- is able to make further predictions for y.

Linear regression does not work for p > n

Normal equations

When p > n, the so-called normal equations

$$X^T X \beta = X^T y$$

which lead to

 $\hat{\beta} = (X^T X)^{-1} X^T y$

- do not have a unique solution for β . Instead they provide infinitely many solutions which
 - all fit the training data perfectly
 - usually are not able to make reliable predictions.

In other words: $(X^T X)$ is not invertible.

5/31

Quadratic Penalization

Ordinary least squares

predicted values $(x_i^T \beta)$.

Ridge Regression (Hoerl et al., 1970)

Solution for classic linear regression

This leads to the well-known solution

A classic attempt for the p > n situation is to add a quadratic penalty to the OLS-criteron.

$$\min_{\beta} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + \lambda \beta^T \beta$$

Linear regression could be the model of choice for predicting \mathbf{y} as a

minimize the sum of squared differences between observed (y_i) and

 $\min_{\beta} \sum_{i=1}^{n} (y_i - x_i^T \beta)^2$

 $\hat{\beta} = (X^T X)^{-1} X^T y$

continuous measure. To get the model parameters we simply

which leads to the solution

$$\hat{\beta} = (X^T X + \lambda \mathbb{I})^{-1} X^T y$$

Benefits

 $(X^T X + \lambda \mathbb{I})$ is an invertible matrix. We get a unique solution for β .

Table of contents

Matrix Inversion
 $(X^T X + \lambda \mathbb{I})$ is a $p \times p$ matrix. Thus the computational cost of
inverting this matrix is $O(p^3)$ operations.Image: Image
Image: Singular value decompositionp is large
Typical expression arrays include between 1,000 and 20,000 genes.
For 10,000 genes it means we have to invert a
 $10,000 \times 10,000$ -matrix. This involves $O(10,000^3)$ operations.Image: Image: Imag

Getting 'tricky'

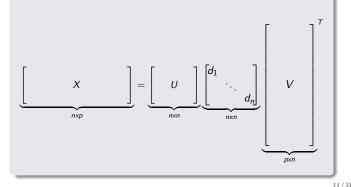
Getting 'tricky

9/31

Singular value decomposition (SVD)

Every Matrix $X \in \mathbb{R}^{p imes n}$ can be decomposited in the following way

$$X = UDV^{T} = RV^{T}$$



Applying SVD to ridge regression

Another solution for ridge regression

Plugging $X = RV^T$ into

$$\hat{\beta} = \underbrace{\left(X^{\mathsf{T}}X + \lambda\mathbb{I}\right)}_{p \times p}^{-1} X^{\mathsf{T}}$$

one gets

$$\hat{\beta} = V \underbrace{\left(R^T R + \lambda \mathbb{I}\right)}_{\text{PUP}}^{-1} R^T$$

Conclusion

We can get the parameters for ridge regression by

- applying SVD to X
- using R as a 'data-matrix'
- multiplying β by V

Applying SVD to other models I

Linear predictors

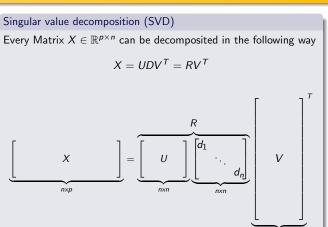
Many models 'connect' the variables with the outcome through a $\ensuremath{\textit{linear predictor}}$. E.g.

- logistic regression
- linear discriminant analysis
- support-vector machines

Loss functions

The parameters are estimated by minimizing a loss function $\sum_{i=1}^{n} L(y_i, \beta_0 + x_i^T \beta)$ which can be the

- squared error
- negative log-likelihood
- etc...



About Singular Value Decomposition

Computational costs

Getting the parameters for ridges regression via the SVD trick involves

- reducing p variables to n variables by SVD $\rightarrow O(pn^2)$
- solving *n* dimensional ridge regression $\rightarrow O(n^3)$
- transforming back to p dimensions $\rightarrow O(np)$

Thus it saves inverting a $p \times p$ matrix with $O(p^3)$ operations.

Software

 SVD is a standard linear algebra tool. It is implemented in most mathematical languages. In R

- svd()
- fast.svd() → faster for small n, large p (library(corpcor))

Applying SVD to other models II

13/31

10/31

11/31

Quadratic regularization

Like linear regression, all models using a linear predictor and some kind of loss function don't work properly when $p \gg n$. This can be fixed by adding a **quadratic penalty**

$$\min_{\beta_0,\beta} \sum_{i=1}^n L(y_i,\beta_0 + x_i^T\beta) + \lambda \beta^T\beta.$$

The good news is

- The SVD trick can be used with all models in the above mentioned form.
- All aspects of model evaluation can be performed in this reduced space.

Reduced space computations

Theorem 1

Let $X = RV^T$ be the SVD of X, and denote by r_i the *i*th row of R, a vector of *n* predictor values for the ith observation. Consider the pair of optimization problems:

$$\begin{aligned} (\hat{\beta}_{0}, \hat{\beta}) &= \operatorname*{argmin}_{\beta_{0}, \beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} L(y_{i}, \beta_{0} + x_{i}^{T}\beta) + \lambda \beta^{T}\beta \\ (\hat{\theta}_{0}, \hat{\theta}) &= \operatorname*{argmin}_{\theta_{0}, \theta \in \mathbb{R}^{n}} \sum_{i=1}^{n} L(y_{i}, \theta_{0} + r_{i}^{T}\theta) + \lambda \theta^{T}\theta \end{aligned}$$

The entire model-selection process via cross-validation can be performed using a single reduced data set \mathbf{R} . Hence, when we perform cross-validation, we simply sample from the rows of \mathbf{R} .

Cross-validation relies on predictions $x^T \beta$, which are equivariant

Then
$$\hat{\beta}_0 = \hat{\theta}_0$$
, and $\hat{\beta} = V\hat{\theta}$.

under orthogonal rotations. \Box

Proof

see Hastie et al., 2004

Cross-validation II

Corollary 1

Proof

Where to get λ from?

The regularization parameter λ is often selected by k-fold cross-validation.

How does cross-validation work?

- divide the training data into k groups of size $\frac{n}{k}$
- fit the model to $\frac{k-1}{k}$ and test it on $\frac{1}{k}$ of the data
- repeat this k seperate times
- average the results

This is done for a series of values for $\lambda,$ and a preferred value is chosen.

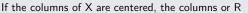
Illustration / Eigengenes

16/31

18/31

20/31

Eigengenes



- are the principal components of X
- also called eigengenes.

Derivatives I

1st/2nd derivate

If the loss function is based on a log-likelihood we can:

- perform score tests with its first derivative
- gain variances of the parameters from its second derivative (information matrix / hessian matrix)

Expensive computation

Differentation in the p-dimensional space is a waste of time.

SVD once again

SVD helps us to obtain the p-dimensional derivates from the n-dimensional versions.

Derivatives III

Proof of Corollary 2

The euqivalence

 $L(\beta) = L(\theta)$

follows immediately from the identity

 $X = RV^T$,

and the fact that x_i^T and r_i^T are the *i*th rows of **X** and **R**. The derivatives are simple applications of the chain rule to $L(\beta) = L(\theta)$. \Box Derivatives II

Corollary 2 Define

$$L(\beta) = \sum_{i=1}^{n} L(y_i, \beta_0 + x_i^T \beta), \quad L(\theta) = \sum_{i=1}^{n} L(y_i, \beta_0 + r_i^T \theta).$$

Then with $\theta = V^T \beta \implies L(\beta) = L(\theta)$. If *L* is differentiable, then

$$\frac{\partial L(\beta)}{\partial \beta} = V \frac{\partial L(\theta)}{\partial \theta};$$
$$\partial^2 L(\beta) = V \frac{\partial^2 L(\theta)}{\partial \theta} V^T$$

$$\frac{\partial}{\partial \beta \partial \beta \tau} = V \frac{\partial}{\partial \theta \partial \theta \tau} V^{+},$$

he partial derivatives in the right-hand side evaluate

with the partial derivatives in the right-hand side evaluated at $\boldsymbol{\theta} = \mathbf{V}^{T}\boldsymbol{\beta}$

Parenthesis: Woodbury matrix identity

Matrix inversion lemma

 $(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$ where • A is $p \times p$ • U is $p \times n$ • C is $n \times n$ • V is $n \times p$ Link to SVD For

• $A = \lambda \mathbb{I}$ • $UCV = X^T X = (VDU^T)(UDV^T) = VD^2V^T$

.

19/31

Table of contents	Where SVD can be applied
1 Motivation	Classes of models SVD is applicable to all models in the mentioned form, of which
2 Singular value decomposition	Examples • Generalized linear models
3 Examples	 Generalized linear models The Cox proportional hazards model Multiple logistic regression
Summary	Regularized linear discriminant analysisNeural networks
Example 1	Example 2
Ramaswamy et al., 2001	My own decent example
Multiple logistic regression in order to predict tumor class: • $n = 144$ training tumor samples • 14 tumor classes • $p = 16063$ genes for each sample Amount of time for parameter estimation • without SVD $\rightarrow 8$ days	 Simulation of a gene expression data set X: p = 2000 genes, n = 3 arrays (rnorm()). continuous output value y for each array (again rnorm()) Fitting a ridge regression model conventional → approx. 1 minute
• using SVD \rightarrow 0.4 seconds	• with SVD \rightarrow less than a second see 'svd R' on course homenage

26 / 31

see 'svd.R' on course homepage

Table of contents	Summary I
	Why?
Motivation	Estimating parameters in models for microarray data often involves inverting large $(p \times p)$ matrices. This comes along with high computational costs.
2 Singular value decomposition	
	How?
3 Examples	$X = RV^T \qquad (SVD)$
3 Summary	R can be used as a new data matrix with dimension $n \times n$. The p-dimensional parameter is then calculated in the following way
	$\hat{eta} = V\hat{ heta} \qquad eta \in \mathbb{R}^p, heta \in \mathbb{R}^n$

28 / 31		29/31
Summary II	Literature	
When? SVD works with all models involving • a linear predictior • some loss function • a quadratic penalty	 Hastie, T. and Tibshirani, R. 2004. Efficient quadratic regularization for expression arrays. <i>Biostatistics</i> 5:329-340. Alter, O., Brown, P. and Botstein, D. 2000. Singular value decomposition for genome-wide expression data processing and modelling. <i>Proceedings of the National Academy of Sciences, USA</i> 97, 10101-10106 	
And Important aspects of model evaluation, such as • cross-validation • testing parameters can be performed with the reduced data set R . Does it afford? The time saving can be enormous!	 Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J. <i>et al.</i>, (2001). Multiclass cancer diagnosis using tumor gene expression signature. <i>Proceedings of the National</i> <i>Academy of Sciences, USA</i> 98, 15149-15154 Hoerl, A. E., Kennard, R. W. 1970. Ridge Regression: Biased Estimation for Non-Orthogonal Problems, <i>Technometrics</i>, 12 55-67. 	