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The marriage (Quotation from Preface of [1])

Graphical models are a marriage between probability theory
and graph theory. They provide a natural tool for dealing with
two problems that occur throughout applied mathematics and
engineering — uncertainty and complexity — and in particular
they are playing an increasingly important role in design and
analysis of machine learning. Fundamental to the idea of
graphical model is the notion of modularity — a complex
system is built by combining simpler parts.
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Graphical Models

The two parts of the marriage (Quotation from Preface of [1])
Probability theory provides the glue whereby the parts are
combined, ensuring that the systems as whole is consistent,
and providing ways to interface models to data.

The graph theoretic side of graphical models provides both an
intuitively appealing interface by which humans can model
highly-interacting sets of variables as well as a data structure
that lends itself naturally to the design of efficient
general-purpose algorithms.
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Definition 1 (graph)

A graph G is a tupel G := (V , E) with a finite set V 6= ∅ and a
subset E ⊆ V × V of two-elementic subsets of V . The
elements of V are called vertices and the elements of E edges.
The two vertex vi , vj ∈ V , vi 6= vj , of a edge e = {vi , vj} ∈ E
are called end vertex of e.

We call vi and vj with e incident and vi and vj are adjacent.
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Example 2

G = (V , E)

V = {1, 2, 3, 4, 5, 6, 7, 8}
E = {{1, 5}, {5, 4}, {5, 3},

{4, 7}, {3, 6}, {2, 4},
{2, 7}, {6, 7}}
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Definition 3 (digraph)

A directed graph or digraph G is a tupel G := (V , E) with a
finite set V 6= ∅ and a subset E ⊆ V × V of ordered paires
(vi , vj) ∈ V × V , vi 6= vj and ∃(vi , vj) ⇒ @(vj , vi). The elements
of V are also called vertices and the elements of E edges or
arcs. For an arc e = (vi , vj) ∈ E vi is called tail and vj called
head.

We call vi and vj with e incident or vi and vj are adjacent.

We call din(v) the number of arcs with head v indegree and
dout(v) the number of arcs with tail v outdegree.
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0 0 1 0 0 1 0
1 0 1 1 0 0 1
0 0 0 0 1 1 0
1 0 1 0 1 0 1
0 1 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 1 0


Adjacenty matrix: Tails in row and
heads in column.

This digraph contains the directed cycle:
C := {(2, 4), (4, 5), (5, 2)}.
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Definition 5 (dag)

A digraph G = (V , E) is called directed acyclic graph (dag), iff
there exists no sequence in each subset E ′ ⊆ E , with
E ′ = {e′1 = (v ′1T , v ′1H), ..., e′n = (v ′nT , v ′nH)}, 2 < n ≤ |E |, for
which

v ′1T = v ′nH ,
v ′iH = v ′(i+1)T , ∀ i = 2, ..., n − 1,

holds.
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Lemma 6

Let G = (E , V ) be a dag. Then there exists at least one vertex
v ∈ V for which din(v) = 0 holds.

By Lemma 6 and Definition 5 the following theorem holds.

Theorem 7
Every dag has a topological order.
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Example 8 (A dag)



0 0 1 0 0 1 0
1 0 1 1 0 0 1
0 0 0 0 1 1 0
1 0 1 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 1 0
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Lemma 9

Every partial ordered set, i.e. viT < viH ∀ i , can be embeded in
a linear ordered set.

In a lot of problems it is necessary to weight the edges. This
leads to

Definition 10 (network)

Let G = (V , E) a graph or digraph and w : E → R. Then a pair
(G, w) is called network.
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Basic Situation

Let YT = (Y1, ..., Yq), XT = (X1, ..., Xp), and ZT = (Z1, ..., Zs)
be random vectors with metric components. The random vector
(YT , XT , ZT )T possesses (if they exist) the mean

µ = E((YT , XT , ZT )T ) = (µT
Y , µT

X , µT
Z )T

and the covariance(matrix)

Σ = Cov((YT , XT , ZT )T ) =

 ΣYY ΣYX ΣYZ
ΣXY ΣXX ΣXZ
ΣZY ΣZX ΣZZ

 .
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Three Kinds of Covariance

We can distingush three kinds of covariance:
1 marginal covariance
2 conditional covariance
3 partial covariance
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Marginal Covariance

Definition 11 (marginal covariance)
The marginal covariance between two random vectors Y and X
is given by the submatrix

Cov(Y, X) = ΣYX

of Σ.

Theorem 12

Y and X are marginal uncorrelated, iff ΣYX = 0.
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Conditional Covariance

Definition 13 (conditional covariance)
If the conditional density exists then the conditional covariance
between Y and X given Z = z, Cov(Y, X|Z = z), is defined by
the covariance of the conditional density of the random vector
Y, X|Z = z.
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Partial Covariance

Definition 14 (partial covariance)

The partial covariance between Y and X given Z, Cov(Y, X|Z),
is defined by

Cov(Y, X|Z) = ΣYX −ΣYZΣ
−1
ZZ ΣT

XZ = ΣYX −ΣYZΣ
−1
ZZ ΣZX. (1)
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Something more about Covariances

Theorem 15

Let Σ−1 =

Cov

 Y
X
Z

−1

=

 CYY CYX CYZ

CXY CXX CXZ

CZY CZX CZZ

 the

inverse of Σ. Then Cov(Y, X|Z) = 0 ⇔ CYX = 0 holds. Or in
other words: Y and X given Z are partial uncorrelated, iff
CYX = 0.

Theorem 16

In the Gaussian case conditional and partial covariance are
equivalent.
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The regression view of partial covariance
Let Y be a p-dimensional random vector, i and j be two
components of Y, and C the set of the remaining components
of Y being not i or j . Then the two regressions holds

Yi|C = Yi −Σi,CΣ−1
CCYC , (2)

Yj|C = Yj −Σj,CΣ−1
CCYC ,

where Σi,CΣ−1
CC are the submatrices of Σ, because of

Cov(Yi|C , Yj|C) := Cov(Yi , Yj |YC) (see (1)) holds.
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Interpretation and Comment

1 Σi,CΣ−1
CC can be interpreted as a regression coefficient

vector for i given C.
2 Extention to the multivariate case Yi|C is possible.

Intuitively it makes sense to avoid redundancies what leads to
an orthogonal regression system.

In other words we are looking for a regression system of Yi on
Yr(i) for i = p − 1, ..., 1 with r(i) = (i + 1, ..., p). This defines a
process of successive orthogonalization.
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Heuristic Illustration I (p = 4)

ε =


ε1
ε2
ε3
ε4

 =


1 −β1|2.34 −β1|3.24 −β1|4.23
0 1 −β2|3.4 −β2|4.3
0 0 1 −β3|4
0 0 0 1




Y1
Y2
Y3
Y4


= AY

βi|k .C denotes the coefficient of Yk in the regression of Yi on all
variables after the conditioning sign. Computing the
covariances matrix Cov(ε, ε) leads because of independence
to
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Heuristic Illustration II (p = 4)

Cov(ε, ε) = E(εεT )

= diag(Var(εi))

=: ∆

∆ = E((AY)(AY)T )

= AT E(YYT )A
= AT ΣA

⇒ Σ−1 = AT ∆−1A
and Σ = A−1∆A−T
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Heuristic Illustration III (p = 4)

By identifying (2) with the residual εi it follows
Y1|C
Y2|C
Y3|C
Y4|C

 =


1 −β1|2.34 −β1|3.24 −β1|4.23
0 1 −β2|3.4 −β2|4.3
0 0 1 −β3|4
0 0 0 1




Y1
Y2
Y3
Y4


whereas the correspondending set C for each Yi|C is given by
the topological order of A.
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Heuristic Illustration IV (p = 4)

The β-elements of A of each row of A are consequently given
by

−ai, r(i) = Σi,CΣ−1
CC

and the diagonal elements of ∆ by

Σi,i −Σi,CΣ−1
CCΣT

i,C .
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Heuristic Illustration V (p = 4)

1 A = diag(1)−G: So G has the structure of a dag — or can
interpreted as a network.

2 Σ = A−1∆A−T : It is possible to induce the concentration
matrices (and by inverting it the covariance matrix) by a
network or a dag structure.

3 Under conditions you can get a dag network by knowing
the concentration and the covariance matrix.
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The following theorem holds:

Theorem 17
Let X be an Gaussian random vector with covariance matrix Σ.
The variable X, or the covariance matrix Σ, is said to factorize
in a dag, iff each component Xi of X is independent from its
nondescedant variables, given its parents.
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Definition 18 (multiple time series (MTS))

Let t ∈ Z and X(t)T = (X1(t), ..., Xm(t)), with Xi(t) ∈ R,
∀ i ∈ {1, ..., m}, be an m-dimensional random vector. Then the
on Z ordered set X := {X(t)}t∈Z is the random process and the
realisation x of X is called (multiple) time series (MTS).

Definition 19 (autocovariance function (ACF))

For a random process X the autocovariance function (ACF) is a
matrix-valued mapping Z× Z → Rm × Rm, (t , s) 7→ Γ(t , s),

Γ(t , s) = E [((X(t)− E(X(t)))(X(s)− E(X(s)))T )].
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Definition 20 (stationarity)

A random process X is called stationary, iff µ(t) ≡ µa and the
ACF only depends on h = |t − s|. So the ACF becomes a to
matrix-valued mapping Z → Rm × Rm, h 7→ Γ(h),

Γ(h) = E(((X(t + h)− µ)(X(t)− µ)T ))

= E(((X(h)− µ)(X(0)− µ)T )).

awe only consider µ(t) ≡ 0
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Example 21 (ACF, m = 3 and µ = 0)

Γ(h) = E(((X(t + h))(X(t))T ))

= E(X(h)X(0)T )

= E

 X1(h)X1(0) X1(h)X2(0) X1(h)X3(0)
X2(h)X1(0) X2(h)X2(0) X2(h)X3(0)
X3(h)X1(0) X3(h)X2(0) X3(h)X3(0)


Lemma 22
For a stationary random process the ACF, Γ(h), is symetric and
non-negativ.
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Definition 23 (Gaussian time series)

A time series is called Gaussian, iff all finite sets of marginals
are jointly Gaussian.

Example 24 (MTS)

Sebastian Petry Infering Graphical Models from Time Series

What are Graphical Models?
Graph Theory

Probability Theory
Infering Grapical Models from Time Series

Summary

Association Structures
Partial Covariance as a Graphical Model
Multivariate Time Series and Stochastic Processes
Independence of Time Series

Definition 25 (spectral density matrix (SDM))

Given an m-dimensional stationary MTS for which∑+∞
h=−∞ ||Γ(h)||2 < +∞ holds. Then the spectral density matrix

(SDM) is well defined as the matrix-valued mapping
R → Rm × Rm, ω 7→ f(ω), with

f(ω) =
1

2π

+∞∑
h=−∞

Γ(h) exp(−ihω)
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For SDM the following holds:
1 f(ω) is Hermitian for each ω ∈ R.
2 ω 7→ f(ω) is 2π-periodic.
3 for real-valued vectors f(ω) = f(−ω) holds.
4 Γ(h) =

∫ 2π
0 f(ω) exp(ihω)dω.
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Definition 26 (sample autocovariance function (SACF))
The sample autocovariance function (SACF) is defined as

Γ̂(h) =
1
T

T−h−1∑
t=0

(x(t + h)− x̄)(x(t)− x̄)T , h ∈ [0, T − 1]

with x̄ = 1
T
∑T−1

t=0 x(t) as the sample mean of data.

Lemma 27
The SACF is a consistent estimator for the ACF and under
weak assumtions normal distributed.
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Definition 28 (periodogram)

Let d(k) = 1√
T

∑T−1
t=0 x(t) exp(−ikt) the discrete Fourier

transform of data. At each frequencies ωk = 2πk
T , ω ∈ [0, 2π)

especially k ∈ {1, ..., T}, the periodogram is defined as

I(ωk ) =
1

2π
d(k)d(k)∗.

Sebastian Petry Infering Graphical Models from Time Series

What are Graphical Models?
Graph Theory

Probability Theory
Infering Grapical Models from Time Series

Summary

Association Structures
Partial Covariance as a Graphical Model
Multivariate Time Series and Stochastic Processes
Independence of Time Series

Lemma 29
The periodogram does not provide a consistent estimator of
SDM. Smoothing can solve this problem:

f̂r (ωk ) =
+∞∑

j=−∞
Wr (j)I(ωj+k ),

with the weight-matrix Wr (.) and r as smoothing parameter.

Comment
A skilled choice of the weight-matrix Wr (.) makes possible to
optimize the periodogram f̂r (ωk ) by r . For example use
Wr (j) = 1

r
√

2π
exp(−j2

2r2 ) and minimize AIC with the Whittle
approximation of the likelihood by r . (For details see [2])
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Theorem 30

A Gaussian stationary stochastic process with an absolutely
summable ACF has the spectral representation

X(t) =

∫ 2π

0
exp(itω)dZ(ω),

where Z(ω) is a random process with orthogonal increments
such that ω1 < ω2, Cov(Z(ω2)− Z(ω1)) =

∫ ω2
ω1

f(ω)dω. In other
words: X(t) is a superposition of infinite many independent
random signals at different frequencies.
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The previous theorem 30 in symbiosis with the property that for
X ∼ N(µ, σ2)

E(exp(itX )) = exp
(

iµt − 1
2
σ2t2

)
holds, makes possible to use the theory of Gaussian random
vector on Gaussian stationary MTS by replacing the covariance
matrix with the SDM or better periodogram.
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Association Structures
Partial Covariance as a Graphical Model
Multivariate Time Series and Stochastic Processes
Independence of Time Series

Now we apply the theory of Gaussian variables to Gaussian
stationary MTS and it follows

Lemma 31
Two time series xi and xj are marginally independent iff

∀ω ∈ [0, 2π), fij(ω) = 0.

The time series xi and xj are partially and therefore
conditionally independent given all other times series xk ,
k 6= i , j iff

∀ω ∈ [0, 2π), (f (ω)−1)ij = 0.
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Casting the structure learning as a model selection. The
structure is a dag.
Minimizing the AIC score (3) that is recovered by entropy
rates and KL divergence.
For details see [2].
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J(G) =
m∑

i=1

Ji(πi(G)) (3)

where the local score is

Ji(πi(G)) =
−T
4π

∫ 2π

0
log

det(̂f{i}∪πi
(ω))

det(̂fπi (ω))
dω + (2|π|+ 1)

df
2

. (4)

(4) is approximated using the samples of f̂ (ω) as

Ji(πi(G)) =
−T
2H

H−1∑
k=0

log
det((fk ){i}∪πi

)

det((fk )πi )
+ (2|π|+ 1)

df
2

. (5)
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Comments to AIC

We learn the structure of G by minimize the AIC J(G). This
problem is numerically complex. Using the greedy
algorithm and other mathematical tricks can lead to an
efficient solving procedures. The problem is NP-complete!
Often it can be convenient to restrict the number of
parents. The dag structure makes this possible.
One of the major gains from learing a spare structure for
the SDM is that we can perform and optimize the
smoothing perodogram locally on cliques of G. The AIC
score is given on the next slide.
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J(G, r) =
T

2H

H−1∑
k=0

m∑
i=0

(
det((fri

k )i∪πi )

det((fri
k )πi )

+ tr
{

(fri
k )−1
{i}∪πi

)I{i}∪πi
(ωk )

}
+tr

{
(fri

k )−1
πi

)Iπi (ωk )
})

+
m∑

i=1

(2|πi |+ 1)
dfi
2

.
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Graphical models are special cases of networks.
Applications are possible in different ways.
Graphs and Topology

A dag is a topological orderable digraphs.
Strictly triangular matrices have the structure of a dag

Multivariate Random Vectors and Times Series
The partial covariance has the structure of a dag
Using knowlegde about random vectors on MTS is in the
Gaussian case possible by replacing the covariance matrix
by SDM or periodogram
Possible to define the independence of MTS

Searching the structure of independence MTS by using the
knowledge of dags and probability theory
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