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Stochastic process

Sequence of random variables Y = {Y;,t € T}
@ Trend: iy = E(Y})
o Variance: ; = E[(Y; — pt)?]
o Autocovariance: ;s = E{[Y; — pe][Ys — ps]}

@ Stationarity
o Y; strongly stationary &
e Vn tr,... tn, h:
Fx,1 -~-,>‘r,,(X1,~ cee 7X") = Fxtl-he<>-vxr">h(xl7 cee ﬁxn)
o Y; weakly stationary :&
@ [it = j1 = const
° Uf = 0° = const
® s = Ye—s = Yk with k =t — s (Lag)
e Autocovariance function: v, = E {[Y;: — p][Ye—k — 1]}
o Autocorrelation function (ACF): g4 = 26 = %
(by standardization with o2 = 7q)
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Basics
o Lag operator L (Backshift operator)

LOYt =Yt Ll}’t =Yt—1 LQ}’t = Yt-2
Lk)/t = Yt—k

o White noise ¢;
o a series of iid random variables ("innovations”, "shocks")
o E(er)=p: =0
o 02 (X.)
o Vrs=0fort#s

@ Properties ACF
o o(k) = o(—k)
o —1<p(k)<1
e Y(t) and Y(t — k) independent = o(k) =0
Correlogram: graph of o
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Autoregressive process of order p

° AR(p)

p
Ye = Z¢i}’t—i +ee & O(L)yr=e¢
i=1

o Properties
o E(y:) =0
o Var(y:) = const.
Ve =D k- k=1,2,...
ok = biok— k=12,
o Stationarity
Characteristic equation: ®(u) =0 with u € C

} Yule — Walker

)

o AR(p) stationary: |u| > 1 « if all (complex) solutions of the

characteristic equation lie outside the unit circle
o AR(p) nonstationary: |u] =1 (unit root)
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Linear time series and stationarity

One finite realization of a stochastic process y = {y:,t € T}
Classical decomposition model: y; = ps + s¢ + ue
(= trend + seasonal component + stationary random noise)
@ Stationarity
Y; stationary < y; stationary
@ descriptive analysis of stationarity with graphs and
correlograms:
e no trend
@ no systematic change of variance
e no strictly periodic fluctuations
@ Tests on stationarity:
o Unit Root Tests (Dickey-Fuller-Test, Augmented DF-Test)
@ approaches to obtain stationarity: differentiation, integration,
filtering

Katharina Schneider Inference of high-dimensional VAR models

Linear time series

Basics
Univariate time series
Multivariate time series

Linear time series models

univariate multivariate

AR VAR
stationary MA VMA

ARMA VARMA
non-stationary | ARIMA VARIMA

Modeling a time series
Q diagnosis (stationarity, autocorrelation, etc.)
@ model identification
e d: order of integration = number of differentiations for
stationarity
o p, q: with Box-Jenkins(ACF, PACF, etc.), AIC, Bayes-Schwarz,
etc.
© estimation of the parameters (LS, ML, etc.)
©Q model selection
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Moving average process of order g

° MA(q)

q
Ve =€+ Zejft—j < ye=0(L)e:
j=1

@ Properties
o E(y;)=0
o Var(y:) =02 Y7, 6?
o Yk = 0227:_0k0i+k0f tk=0,1,....q
0 ck>gq
@ Stationarity
E(y:), Var(yt), 7« independent of t = MA(q) weakly
stationary
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Autoregressive moving average process

o ARMA(p, q)

P q
Ye = Z Oiye—i+ €+ Zejt?t—j & O(L)y: = O(L)e;
i—1 =

o Stationarity

ARMA(p, q) stationary < AR(p)-part stationary

e ARIMA(p,d,q)
Autoregressive Integrated Moving Average Process

O(L)(1 — L)%y = O(L)ee

& if X, := (1 — L)% ARMA(p, q)—{y:} ARIMA(p, d, q)
o Stationarity
ARIMA(p, d, q) stationary < d = 0 (i.e. ARMA(p, q))
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Vector autoregressive model of order p

VAR(p)
X c € y1
: B; : :
Y=Xb+e= ) ) + . = )
X7 B, €7 yr
N——
Tx(14+Lp) (1+Lp)xp Txp Txp
with
1
Yo 1 €~ iid(0,X)

Xy = : Y = E(ere;) = Cov(er)
; . positive definite p x p matrix
Yi-1
—_——
(14+Lp)x1
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Moving average representation of a VAR(p)

t—1
y: = Eoy; + > _€,_jH;
j=0
with
VAR stationary
Ho (p x p) identity matrix
H; impulse responses to a shock occuring j periods ago

=y, is expressed in terms of past and present error/innovation
vectors €; and the mean term

= necessary for impulse response analysis

= can be used to determine the autocovariances
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Structural analysis with VAR models

Granger-Causality
Impulse response analysis

Granger-Causality

@ based on the principle of cause and effect
@ MA representation of a K— dimensional VAR
Y: =M+ H(L)Et with  Hp =l

@ partitioned MA representation

= ()= () (ot ) (2)
with

z; M-dimensional
x¢ (K — M)-dimensional

=2, is not Granger-caused by x; 1< Hyppj=0for i=1,2,...

@ x; is Granger-causal to z; < the information in the past and
the present of x helps to predict z¢41
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Vector autoregressive model of order p

VAR(p)

L
Yi=c+Y vt Bi+e fort=1..T
i=1

y; (1 x p) random vector

¢ unknown fixed (1 x p) vector of intercept terms

B; unknown fixed (p x p) regression coefficient matrices
€: p-dimensional white noise process (e; ~ iid(0, X))

L known positive integer (number of lags)

t  time period variable
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Vector autoregressive model of order p

Stability
VAR(p) stable < det(l — Bu) # 0 for |u| <1

Stationarity
VAR(p) stable = VAR(p) stationary
e L =1 (VARs with one lag):
o VAR(p) stationary < the absolute values of the real
eigenvalues of By are less than unity
o VAR(p) nonstationary < the absolute values of the real
eigenvalues of By lie on the unit circle
e L > 1 (VARs with more than one lag):
= rewrite as a VAR with one lag
=> stationarity is necessary for impulse response analysis and for
estimation
= problem: differentiation sometimes ~~ falsification
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Structural analysis with VAR models

Granger-Causality
Impulse response analysis

Characterization and interpretation of VARs

Characteristics

@ VAR models are popular tools for analyzing multivariate time
series data

@ VAR models represent the correlations among a set of
variables
= analysis of certain aspects of the relationships between the
interesting variables

Structural analysis
o Granger-Causality

@ impulse response analysis
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Structural analysis with VAR models

Granger-Causality
Impulse response analysis

Impulse response functions

@ MA representation

t—1
Y: = Eoy; + Y _ €t jH;
j=0

@ impulse responses of y, to a shock €;_; occuring j periods

earlier ;
Hj=> BH,;
i=1
with
B;=0 fori>L
€t correlated
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Structural analysis with VAR models

Problem: €; are correlated — identification problem
Solution: orthogonalization of the errors
o Cholesky decomposition of the covariance matrix

T =vvw
with

W uppertriangular positive definite matrix
@ connection between structural shocks and VAR errors

u, =Wt
with
u; structural error vector (with X (u;): identity matrix)
@ impulse responses to structural shocks occuring j periods
earlier
Z; = WH;
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Maximum likelihood estimation

Bayes estimation

Estimation of VAR models

MLE for normal VARs
id
oY =Xb+e €~ Ny(0,X)
o Likelihood function of (®, X)

-
1 1 -
In(®,X) = W exp {—2 Z(Yt —x:®)E Yy, - Xtd’)}
t=1

1 1 _
= 57 etr —5(Y = X®)x 1(Y7X¢)/}
=exp(trace)

e Maximum likelihood estimators (MLEs)

Oy = (X'X)IXY
Sme = S(L;”LE) with  S(®) = (Y — Xb)(Y — Xb)

Katharina Schneider Inference of high-dimensional VAR models
Overview

Maximum likelihood estimation

Bayes estimation

Estimation of VAR models

Basics

A Bayesian estimator of (®, X) depends on
o the distribution model
@ the prior
@ the loss function
Bayesian procedure
@ choose a prior
derive/compute the posterior
choose a loss function

o
o
@ estimate under the loss function
© calculate the risk function

o

evaluate the performance of the estimates
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Maximum likelihood estimation

Bayes estimation

Estimation of VAR models

Jeffreys prior

Jeffreys prior for the normal VAR model
o Jeffreys prior for X: m(X) o< |X|~(PT1)/2
o constant Jeffreys prior for (®,X): mc (¢, X) o 74(X)
o conditional posterior of ¢ given (X,Y):
Ny(uie: T @ (X'X)7)
e marginal posterior of X given Y:
Inverse Wishart(S(®wmie), T — Lp — 1)

= derived from the "invariance principle”

@ Shrinkage Jeffreys prior for (®,X): ms;(¢p, X) = ms(¢p)m(X)
= motivated by Stein’s result on inadmissibility of the MLE
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Estimation of VAR models

Possibilities for estimating a VAR

o Least Squares
= asymptotic properties
@ Maximum Likelihood
= assumption: known distribution of data
= for some distributions MLE does not have an analytical
form or does not exist

o Bayes
= effectiveness for finite-sample inference
= the estimated process may be used for prediction and
economic analyses

= applicable to estimate the model parameters and to estimate
the distributions of the impulse response functions

Katharina Schneider Inference of high-dimensional VAR models
Overview

Maximum likelihood estimation
Bayes estimation

Estimation of VAR models

MLE for Student-t VARs

ind

o Y=Xb+e € ~ t,(0,X)

@ Density of t,(0,X) (multivariate-t distribution)

=(ptv)

ri 1
p(s|Z,v) = FG+p) |x)~1/2 (1 + 75/):*15) SERP
14

(rv)P2T(3)

@ Maximum likelihood estimators (MLEs)

o v given = MLE for (®, X) is not available in closed form
o v unknown = MLE for (®, X, ) may not even exist
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Overview
Maximum likelihood estimation

Estimation of VAR models . .
Bayes estimation

Priors for ¢, X

for X . . .
for & Jeffreys prior  RATS prior Reference prior
Constant prior 7c)(d,E)  wca(o, X) mcr(@, L)
Shrinkage prior | 75 (¢, X) msa(¢, X) msr(¢p, X)

= noninformative priors

Prior for v in the Student-t VAR

v
W = —

2
a, b known positive constants

with  w ~ Gamma(a, b)

Katharina Schneider Inference of high-dimensional VAR models
Overview

Maximum likelihood estimation

Bayes estimation

Estimation of VAR models

Loss functions for X

@ pseudoentropy loss
Lzl(f; Y)= trace()A:il):) - Iog|)A:712| -p
@ quadratic loss
Ly>(Z; X) = trace(ZX ! —1)2
© pseudoentropy function on !

Lz3(f; )= trace()A:Z’l) — Iog|)A:):’1| -p
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Overview Overview
Estimation of VAR models Maxlmum_ I|kej|hood estimation Estimation of VAR models Maxlmum_ ||ke_||hood estimation
Bayes estimation Bayes estimation

Loss functions for ® Loss and risk function for impulse response functions
@ quadratic loss Loss function
~ _ ~ , ~ ~ - =
L¢1(¢a¢) = trace {(¢ - ¢) W(d) - d))} L(Zj7 Zj) = trace {(Zj — j),Q(Zj — Zj)}
with W constant weighting matrix with €: weighting matrix for the estimation error of each element
+lp p of the impulse responses
here: W=1 = Loy = Z Z(gzﬁu - (f),-j)Z — may be determined by the economic significance of the element
i=1 j=1 (here: identity matrix)
— symmetric Risk function
@ LINEX loss N
1+Lp p 1 NN =(n)
~ ~ ~ Rimp.i = St (z,--z)-(z,--z)
Loo(®, @)= > > {EXP [aij(f/)fj - (/)ij)] — (b — dyj) — 1} el N ; race { ’ ’
i=1 j=1 N
with aj;  given constant with 25’7): impulse response matrix for the ith step after the shock
— asymmetric for the nth dataset generated in the experiment
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Numerical examples

Simulations and Bayesian computation Frequentist average losses of competing Bayes estimates of
Q generate N = 1,000 data samples from a VAR(5) model with 2 in the normal VAR
one lag (L = 1) and the known parameters
1.0 0.5
0 v =8
= ( " ) o = ( 8 ) = ( Is ) > prior foru : v ~ Gamma(1,0.5) Ly Lyz Lza
0.5 1.0 b3 861 (.403) 681 (.189) 516 (.178)
.608 (.308) 646 (.222) 415 (.153)
@ compute the Bayesian estimates under competing priors and 1.187 (501) 803 (192) 660 (205)
. . .861 (.403) 681 (.189) 516 (.178)
the different losses via MCMC (M = 10,000 cycles) 450 (222) 800 (.344) .389 (.142)
. o . . . - .862 (.403) .681 (.189] 516 (.178)
@ find the full conditional distributions of (¢, X) with s 1_309) ‘645 g_zzzg _4151_,53)
¢ = vec(®) 281 (172) 434 (219) 234 (113)
. . 546 (.314) .489 (.184) .353 (.161)
@ simulate the posteriors of (®, X) 386 (.238) 419 (.178) 273 (.133)
. . . . .609 (.308) 646 (.222] 415 (.153]
© estimate the frequentist risks undAer a IosAs L of the estimates 1187 1_501} _sosﬁ_mgi 861 ﬁ.zos}
as the average loss belonging to X and ® across generated oo 142213} o ﬁ;ig ;Si}jﬁ}
862 (.403) .682 (.189) 516 (.178)
data SamP|eS .609 (.308) 646 (.222) 415 (.153)
H H : 261 (.163) 418 (.208) 221 (,107)
Q evaluate the pe.rforrnanct_a of the Bayesian estimates in terms et Vot e
of the frequentist risks given the true parameters 356 (.226) 399 (.169) 256 (.126)
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Numerical examples Numerical examples

Frequentist average losses of competing Bayes estimates of =~ Frequentist average losses of competing Bayes estimates of

2 in the normal VAR ® in the normal VAR
Lyq Lyp Lyg [ Lps
e .861 (.403) 681 (.189) 516 (.178) I"MLE 11.183 (14.070) 11.614 (6.898)
%1:}\ 1::;3 i;g:a; ;égﬁ;;% ggg((;g;; ®ica 11.184 (14.068) 11.611 (6.893)
Zaca 187 (. -803 (- -660 (.
Taoa 861 (.403) 681 (.189) 516 (.178) Laca 11.135 (14.055) 9.416 (5.154)
e 450 ( 222) 800 (344) 280 (142) Py 11.184 (14.094) 11.613 (6.905)
Toc .862 (.403) .681 (.189) 516 (.178) Pacy 11.134 (14.079) 9.156 (4.947)
%xm -gg? t?gg; -g‘s‘j giggg Z;z H?g; PicR 11.185 (14.070) 11.615 (6.894)
IicR B 8 K g B . T
sl e () ee (o) e ien Bych 11.135 (14.057) 9.319 (5.066)
Tach 386 (238) 419 (.178) 273(.133) P13 1.552 (.597) 7.254 (3.349)
Tisa .609 (.308) 646 (222) 415 (.153) Doga 1.523 (.596) 6.313 (2.786)
Tosa 1.187 (.501% 803 E.192§ 661 3.2053 Bygy 1.419 (.501) 7.174 (3.250)
Tasa 862 (.403] 682 (189 516 (178 =
$iss 449 (.221) 801 (.345) .389 (,143) L5y 1',387 ('499.] 6'15§ (.2'653)
Tosy 862 (.403) 682 (.189) 516 (.178) *1sR 1.261 (.358) 7.176 (3.332)
Tasy .609 (.308) 646 (.222) 415 (.153) L) 1.231 (.355) 6.198 (2.739)
£1sm .261 (.168) 418 (.208) 221 (.107) .
Zosn .505 (.300) 464 (177) .332 (.154)
Tasr .356 (.226) 399 (.168) 256 (.126 )
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Numerical examples

Numerical examples

Frequentist average losses of competing Bayes estimates of  Estimation of impulse response functions
® in the normal VAR

Z; are nonlinear functions of (®, X)= Bayes-simulations

Ly Loz )
11183 (14.070) 11.614 (6.898) @ generate data samples from a VAR with known parameters
11.184 (14.068) 11.611 (6.893) @ compute the Bayesian estimates under competing priors via
11.135 (14.055) 9.416 (5.154) MCMC
11.184 (14.094) 11.613 (6.905) ) - o
11.134 (14.079) 9.156 (4.947) @ find the full conditional distributions of (Z)
11.185 (14.070) 11.615 (6.894) @ simulate the posteriors of (Z)
11.135 (14.057) 9.319 (5.066) 5 L
1,552 (.597) 7.254 (3.349) © compute Z; = E(Z;]Y) (assumption: £ const.)
:'ifg ﬁ'gg?; g?;i g;gg; © evaluate the performance of the estimates in terms of the
1.387 (.499) 6.155 (2.653) frequentist average of sum of squared errors
1.261(.359) 7.176 (3.332)
1.231 (.355) 6.198 (2.739)
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VAR of U.S. Economy
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Numerical examples

Frequentist average losses of impulse responses in the
normal VAR

Horizon  MLE CA cJ CR SA SJ SR

1 963 911 .848 .854 734 662 .640
2 1.745 1.657 1.603 1.640 1.331 1.249 1.250
3 2389 2276 2238 2290 1.851 1772 1.781
4 2.898 2767 2747 2804 2282 2208 2220
5 3302 3,158 3.152 3.210 2.638 2568 2580
3]
7
8
9

3625 3470 3.476 3.5833 2931 2867 2.877
3.886 3723 3.738 3.793 3176 3.116 3.125
4101 3929 3.953 4.005 3.382 3325 3.332
4.278 4101 4.131 4180 3556 3502 3.508

10 4.427 4246 4.283 4330 3706 3653 3.659
11 4554 4371 4.417 4460 3.835 3785 3.789
12 4662 4.483 4.540 4579 3.947 (3900 3.903
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VAR of U.S. Economy

@ VAR(6) model with two lags (L=2)
@ quarterly data of the U.S. economy from 1959 Q1 to 2001 Q4
o real GDP(Gross Domestic Product)
o GDP deflator
o world commodity price
o Federal Funds rates
e nonborrowed reserves
o M2 money stock

e M =10,000 MCMC cycles
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Concluding remarks

Simulations

— the choice of prior has stronger effects on the Bayesian
estimates than the choice of loss function

— the asymmetric LINEX estimator for ® does better overall
than the posterior mean

— there is no estimator for £ dominating in all cases

1

the shrinkage prior dominates the constant prior

|

reference prior on X dominates the Jeffreys prior and the
RATS prior
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Frequentist average losses of impulse responses in the
Student-t VAR

Horizon CA cJ CR SA SJ SR

1 .930 .B67 .875 747 .673 .654
2 1.684 1.630 1.670 1.334 1.252 1.255
3 2.307 2.272 2.327 1.843 1.764 1.776
4 2.798 2.782 2.842 2.264 2.190 2.206
5 3.186 3.184 3.246 2.610 2.541 2.558
6
7
8
9

3.492 3.502 3.564 2.895 2.831 2.849
3.737 3.756 3.816 3.133 3.073 3.090
3.934 3.960 4.019 3.333 3.276 3.293
4.095 4.127 4.184 3.502 3.448 3.465

10 4.229 4.266 4.321 3.646 3.5605 3.612
1 4.342 4.386 4.438 3.77 3.721 3.738
12 4.441 4.493 4.542 3.879 3.832 3.848
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Responses of GDP to an inflation shock

constant Jeffreys prior constant reference prior
oo1s{ 1

o010

0005

hrinkage reference prior
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Numerical examples

Concluding remarks

VAR of U.S. Economy

— significant improvement of the estimates by using alternative
priors in place of constant prior

— impulse responses of GDP to an inflation shock are distinctly
different under the competing priors

— the posterior losses under the shrinkage reference prior are
smaller

— VAR model estimates allow some degree of collinearity and
have no restrictions on the matrix ®

— MLEs are often very sensitive to model specification and
sample period
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