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Stochastic process

Sequence of random variables Y = {Yt , t ∈ T}
Trend: µt = E(Yt)

Variance: σt = E[(Yt − µt)
2]

Autocovariance: γt,s = E {[Yt − µt ][Ys − µs ]}
Stationarity

Yt strongly stationary :⇔
∀n, t1, . . . , tn, h:
Fxt1

,...,xtn
(x1, . . . , xn) = Fxt1+h,...,xtn+h (x1, . . . , xn)

Yt weakly stationary :⇔
µt = µ = const
σ2

t = σ2 = const
γt,s = γt−s = γk with k = t − s (Lag)

Autocovariance function: γk = E {[Yt − µ][Yt−k − µ]}
Autocorrelation function (ACF): %k = γk

γ0
= γk

σ2

(by standardization with σ2 = γ0)
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Linear time series and stationarity

One finite realization of a stochastic process y = {yt , t ∈ T}
Classical decomposition model: yt = µt + st + ut

(= trend + seasonal component + stationary random noise)

Stationarity
Yt stationary ⇔ yt stationary

descriptive analysis of stationarity with graphs and
correlograms:

no trend
no systematic change of variance
no strictly periodic fluctuations

Tests on stationarity:

Unit Root Tests (Dickey-Fuller-Test, Augmented DF-Test)

approaches to obtain stationarity: differentiation, integration,
filtering
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Basics

Lag operator L (Backshift operator)

L0yt = yt L1yt = yt−1 L2yt = yt−2

. . . . . . Lkyt = yt−k

White noise εt
a series of iid random variables (”innovations”, ”shocks”)
E(εt) = µt = 0
σ2

ε (Σε)
γt,s = 0 for t 6= s

Properties ACF
%(k) = %(−k)
−1 ≤ %(k) ≤ 1
Y (t) and Y (t − k) independent ⇒ %(k) = 0

Correlogram: graph of %
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Linear time series models

univariate multivariate

AR VAR
stationary MA VMA

ARMA VARMA

non-stationary ARIMA VARIMA

Modeling a time series
1 diagnosis (stationarity, autocorrelation, etc.)
2 model identification

d : order of integration =̂ number of differentiations for
stationarity
p, q: with Box-Jenkins(ACF, PACF, etc.), AIC, Bayes-Schwarz,
etc.

3 estimation of the parameters (LS, ML, etc.)
4 model selection
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Autoregressive process of order p

AR(p)

yt =

p∑
i=1

φiyt−i + εt ⇔ Φ(L)yt = εt

Properties
E(yt) = 0
Var(yt) = const.
γk =

∑p
l=1 φlγk−l : k = 1, 2, . . .

%k =
∑p

l=1 φl%k−l : k = 1, 2, . . .

}
Yule −Walker

Stationarity
Characteristic equation: Φ(u) = 0 with u ∈ C

AR(p) stationary: |u| > 1 ↔ if all (complex) solutions of the
characteristic equation lie outside the unit circle
AR(p) nonstationary: |u| = 1 (unit root)
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Moving average process of order q

MA(q)

yt = εt +

q∑
j=1

θjεt−j ⇔ yt = Θ(L)εt

Properties

E(yt) = 0
Var(yt) = σ2

∑q
i=0 θ2

i

γk =

{
σ2

∑q−k
i=0 θi+kθi : k = 0, 1, . . . , q

0 : k > q

Stationarity
E(yt), Var(yt), γk independent of t ⇒ MA(q) weakly
stationary
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Autoregressive moving average process

ARMA(p, q)

yt =

p∑
i=1

φiyt−i + εt +

q∑
j=1

θjεt−j ⇔ Φ(L)yt = Θ(L)εt

Stationarity
ARMA(p, q) stationary ⇔ AR(p)-part stationary

ARIMA(p, d , q)
Autoregressive Integrated Moving Average Process

Φ(L)(1− L)dyt = Θ(L)εt

⇔ if xt := (1− L)dyt ARMA(p, q)→{yt} ARIMA(p, d , q)
Stationarity
ARIMA(p, d , q) stationary ⇔ d = 0 (i.e. ARMA(p, q))
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Vector autoregressive model of order p

VAR(p)

y′t = c +
L∑

i=1

y′t−iBi + ε′t for t = 1, . . . ,T

with

yt (1× p) random vector
c unknown fixed (1× p) vector of intercept terms
Bi unknown fixed (p × p) regression coefficient matrices
εt p-dimensional white noise process (εt ∼ iid(0,Σ))
L known positive integer (number of lags)
t time period variable
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Vector autoregressive model of order p

VAR(p)

Y = XΦ + ε =


x′1
:
...

x′T


︸ ︷︷ ︸
T×(1+Lp)


c
B1
...

BL


︸ ︷︷ ︸
(1+Lp)×p

+


ε′1
:
...

ε′T


︸ ︷︷ ︸

T×p

=


y′1
:
...

y′T


︸ ︷︷ ︸

T×p

with

xt =


1

y′t−1
...

y′t−L


︸ ︷︷ ︸

(1+Lp)×1

εt ∼ iid(0,Σ)
Σ := E(εtε

′
t) = Cov(εt)

: positive definite p × p matrix
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Vector autoregressive model of order p

Stability
VAR(p) stable ⇔ det(I− Bu) 6= 0 for |u| ≤ 1

Stationarity
VAR(p) stable ⇒ VAR(p) stationary

L = 1 (VARs with one lag):

VAR(p) stationary ⇔ the absolute values of the real
eigenvalues of B1 are less than unity
VAR(p) nonstationary ⇔ the absolute values of the real
eigenvalues of B1 lie on the unit circle

L > 1 (VARs with more than one lag):
⇒ rewrite as a VAR with one lag

⇒ stationarity is necessary for impulse response analysis and for
estimation
⇒ problem: differentiation sometimes  falsification
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Moving average representation of a VAR(p)

y′t = E0y
′
t +

t−1∑
j=0

ε′t−jHj

with

VAR stationary
H0 (p × p) identity matrix
Hj impulse responses to a shock occuring j periods ago

⇒ yt is expressed in terms of past and present error/innovation
vectors εt and the mean term

⇒ necessary for impulse response analysis

⇒ can be used to determine the autocovariances
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Characterization and interpretation of VARs

Characteristics

VAR models are popular tools for analyzing multivariate time
series data

VAR models represent the correlations among a set of
variables
⇒ analysis of certain aspects of the relationships between the
interesting variables

Structural analysis

Granger-Causality

impulse response analysis
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Granger-Causality

based on the principle of cause and effect

MA representation of a K− dimensional VAR

yt = µ + H(L)εt with H0 = IK

partitioned MA representation

yt =

(
zt

xt

)
=

(
µ1

µ2

)
+

(
H11(L) H12(L)
H21(L) H22(L)

) (
ε1t

ε2t

)
with
zt M-dimensional
xt (K −M)-dimensional

⇒zt is not Granger-caused by xt :⇔ H12,i = 0 for i = 1, 2, . . .

xt is Granger-causal to zt ⇔ the information in the past and
the present of x helps to predict zt+1

Katharina Schneider Inference of high-dimensional VAR models

Linear time series
Structural analysis with VAR models

Estimation of VAR models
Numerical examples

Granger-Causality
Impulse response analysis

Impulse response functions

MA representation

y′t = E0y
′
t +

t−1∑
j=0

ε′t−jHj

impulse responses of yt to a shock εt−j occuring j periods
earlier

Hj =

j∑
i=1

BiHj−i

with

Bi = 0 for i > L
εt correlated
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Problem: εt are correlated → identification problem
Solution: orthogonalization of the errors

Cholesky decomposition of the covariance matrix

Σ = Ψ′Ψ

with

Ψ uppertriangular positive definite matrix

connection between structural shocks and VAR errors

u′t = ε′tΨ
−1

with

ut structural error vector (with Σ(ut): identity matrix)

impulse responses to structural shocks occuring j periods
earlier

Zj = ΨHj
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Possibilities for estimating a VAR

Least Squares
⇒ asymptotic properties

Maximum Likelihood
⇒ assumption: known distribution of data
⇒ for some distributions MLE does not have an analytical
form or does not exist

Bayes
⇒ effectiveness for finite-sample inference
⇒ the estimated process may be used for prediction and
economic analyses

⇒ applicable to estimate the model parameters and to estimate
the distributions of the impulse response functions
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MLE for normal VARs

Y = XΦ + ε ε
iid∼ Np(0,Σ)

Likelihood function of (Φ,Σ)

lN(Φ,Σ) =
1

|Σ|T/2
exp

{
−1

2

T∑
t=1

(yt − xtΦ)′Σ−1(yt − xtΦ)

}

=
1

|Σ|T/2
etr︸︷︷︸

=exp(trace)

{
−1

2
(Y− XΦ)Σ−1(Y− XΦ)′

}

Maximum likelihood estimators (MLEs)

Φ̂MLE = (X′X)−1X′Y

Σ̂MLE =
S(Φ̂MLE )

T
with S(Φ) = (Y− XΦ)′(Y− XΦ)
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MLE for Student-t VARs

Y = XΦ + ε εt
ind .∼ tν(0,Σ)

Density of tν(0,Σ) (multivariate-t distribution)

p (s|Σ, ν) =
Γ

(
1
2(ν + p)

)
(πν)p/2 Γ(ν

2 )
× |Σ|−1/2

(
1 +

1

ν
s′ Σ−1s

)−(p+ν)
2

, s ∈ Rp

Maximum likelihood estimators (MLEs)

ν given ⇒ MLE for (Φ,Σ) is not available in closed form
ν unknown ⇒ MLE for (Φ,Σ, ν) may not even exist
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Basics

A Bayesian estimator of (Φ,Σ) depends on

the distribution model

the prior

the loss function

Bayesian procedure

1 choose a prior

2 derive/compute the posterior

3 choose a loss function

4 estimate under the loss function

5 calculate the risk function

6 evaluate the performance of the estimates
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Priors for φ,Σ

PPPPPPPPPfor φ
for Σ

Jeffreys prior RATS prior Reference prior

Constant prior πCJ(φ,Σ) πCA(φ,Σ) πCR(φ,Σ)
Shrinkage prior πSJ(φ,Σ) πSA(φ,Σ) πSR(φ,Σ)

⇒ noninformative priors

Prior for ν in the Student-t VAR

w =
ν

2
with w ∼ Gamma(a, b)

a, b known positive constants

Katharina Schneider Inference of high-dimensional VAR models

Linear time series
Structural analysis with VAR models

Estimation of VAR models
Numerical examples

Overview
Maximum likelihood estimation
Bayes estimation

Jeffreys prior

Jeffreys prior for the normal VAR model

Jeffreys prior for Σ: πJ(Σ) ∝ |Σ|−(p+1)/2

constant Jeffreys prior for (Φ,Σ): πCJ(φ,Σ) ∝ πJ(Σ)

conditional posterior of φ given (Σ,Y):

NJ(φ̂MLE , Σ⊗ (X′X)−1)

marginal posterior of Σ given Y:

Inverse Wishart(S(Φ̂MLE ), T − Lp − 1)

⇒ derived from the ”invariance principle”

Shrinkage Jeffreys prior for (Φ,Σ): πSJ(φ,Σ) = πS(φ)πJ(Σ)
⇒ motivated by Stein´s result on inadmissibility of the MLE
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Loss functions for Σ

1 pseudoentropy loss

LΣ1(Σ̂; Σ) = trace(Σ̂
−1

Σ)− log |Σ̂
−1

Σ| − p

2 quadratic loss

LΣ2(Σ̂; Σ) = trace(Σ̂Σ−1 − I)2

3 pseudoentropy function on Σ−1

LΣ3(Σ̂; Σ) = trace(Σ̂Σ−1)− log |Σ̂Σ−1| − p
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Loss functions for Φ
1 quadratic loss

LΦ1(Φ̂,Φ) = trace
{

(Φ̂−Φ)′ W (Φ̂−Φ)
}

with W constant weighting matrix

here: W = I ⇒ LΦ1 =

1+Lp∑
i=1

p∑
j=1

(φ̂ij − φij)
2

→ symmetric
2 LINEX loss

LΦ2(Φ̂,Φ) =

1+Lp∑
i=1

p∑
j=1

{
exp

[
aij(φ̂ij − φij)

]
− aij(φ̂ij − φij)− 1

}
with aij given constant
→ asymmetric
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Loss and risk function for impulse response functions

Loss function

L(Zj , Ẑj) = trace
{

(Zj − Ẑj)
′ Ω (Zj − Ẑj)

}
with Ω: weighting matrix for the estimation error of each element
of the impulse responses
→ may be determined by the economic significance of the element
(here: identity matrix)

Risk function

RImp,i =
1

N

N∑
n=1

trace

{(
Zi − Ẑ

(n)

i

)′
−

(
Zi − Ẑ

(n)

i

)}

with Ẑ
(n)

i : impulse response matrix for the ith step after the shock
for the nth dataset generated in the experiment
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Simulations and Bayesian computation
1 generate N = 1, 000 data samples from a VAR(5) model with

one lag (L = 1) and the known parameters

Σ =

0
BB@

1.0 0.5

. . .

0.5 1.0

1
CCA , Φ =

�
c

B1

�
=

�
0
I5

�
,

ν = 8
prior for ν : ν ∼ Gamma(1, 0.5)

2 compute the Bayesian estimates under competing priors and
the different losses via MCMC (M = 10, 000 cycles)

1 find the full conditional distributions of (φ,Σ) with
φ = vec(Φ)

2 simulate the posteriors of (Φ,Σ)

3 estimate the frequentist risks under a loss L of the estimates
as the average loss belonging to Σ̂ and Φ̂ across generated
data samples

4 evaluate the performance of the Bayesian estimates in terms
of the frequentist risks given the true parameters
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Estimation of impulse response functions

Zj are nonlinear functions of (Φ,Σ)⇒ Bayes-simulations

1 generate data samples from a VAR with known parameters
2 compute the Bayesian estimates under competing priors via

MCMC
1 find the full conditional distributions of (Z)
2 simulate the posteriors of (Z)

3 compute Ẑj = E(Zj |Y) (assumption: Ω const.)

3 evaluate the performance of the estimates in terms of the
frequentist average of sum of squared errors
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Frequentist average losses of impulse responses in the
Student-t VAR
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VAR of U.S. Economy

VAR(6) model with two lags (L=2)

quarterly data of the U.S. economy from 1959 Q1 to 2001 Q4

real GDP(Gross Domestic Product)
GDP deflator
world commodity price
Federal Funds rates
nonborrowed reserves
M2 money stock

M = 10, 000 MCMC cycles
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Responses of GDP to an inflation shock

constant RATS prior constant Jeffreys prior constant reference prior

shrinkage RATS prior shrinkage Jeffreys prior shrinkage reference prior
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Concluding remarks

Simulations

→ the choice of prior has stronger effects on the Bayesian
estimates than the choice of loss function

→ the asymmetric LINEX estimator for Φ does better overall
than the posterior mean

→ there is no estimator for Σ dominating in all cases

→ the shrinkage prior dominates the constant prior

→ reference prior on Σ dominates the Jeffreys prior and the
RATS prior
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Concluding remarks

VAR of U.S. Economy

→ significant improvement of the estimates by using alternative
priors in place of constant prior

→ impulse responses of GDP to an inflation shock are distinctly
different under the competing priors

→ the posterior losses under the shrinkage reference prior are
smaller

→ VAR model estimates allow some degree of collinearity and
have no restrictions on the matrix Φ

→ MLEs are often very sensitive to model specification and
sample period
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