Inference of high-dimensional VAR models

Seminar:

"Modeling, Simulation and Inference of Complex Biological Systems"

Katharina Schneider

07.07.2006

Table of contents Linear time series

- Basics
 - Univariate time series
 - Multivariate time series
- 2 Structural analysis with VAR models
 - Granger-Causality
 - Impulse response analysis
- 3 Estimation of VAR models Overview
 - Maximum likelihood estimation
 - Bayes estimation
- 4 Numerical examples
 - Simulations

Stationarity

correlograms:

no trend

• Tests on stationarity:

- VAR of U.S. Economy
- Concluding remarks

		Katharina Schneider	Inference of high-dimensional VAR models
Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Basics Univariate time series Multivariate time series	Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Basics Univariate time series Multivariate time series
Stochastic process		Linear time series and stationa	arity

Sequence of random variables $Y = \{Y_t, t \in T\}$

- Trend: $\mu_t = \mathbb{E}(Y_t)$
- Variance: $\sigma_t = \mathbb{E}[(Y_t \mu_t)^2]$
- Autocovariance: $\gamma_{t,s} = \mathbb{E} \{ [Y_t \mu_t] [Y_s \mu_s] \}$
- Stationarity
 - Y_t strongly stationary : \Leftrightarrow
 - $\forall n, t_1, \ldots, t_n, h$:
 - $F_{x_{t_1},...,x_{t_n}}(x_1,...,x_n) = F_{x_{t_1+h},...,x_{t_n+h}}(x_1,...,x_n)$ • Y_t weakly stationary : \Leftrightarrow

 - $\mu_t = \mu = const$ $\sigma_t^2 = \sigma^2 = const$
 - $\gamma_{t,s} = \gamma_{t-s} = \gamma_k$ with k = t s (Lag)
- Autocovariance function: $\gamma_k = \mathbb{E} \{ [Y_t \mu] [Y_{t-k} \mu] \}$
- Autocorrelation function (ACF): $\varrho_k = \frac{\gamma_k}{\gamma_0} = \frac{\gamma_k}{\sigma^2}$ (by standardization with $\sigma^2 = \gamma_0$)

Katharina Schneider	Inference of high-dimensional VAR models	Katharina Schneider	Inference of high-dimensional VAR models
Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Basics Univariate time series Multivariate time series	Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Basics Univariate time series Multivariate time series

Basics

- Lag operator L (Backshift operator)
 - $L^0 y_t = y_t$ $L^1 y_t = y_{t-1}$ $L^2 y_t = y_{t-2}$ $L^k y_t = y_{t-k}$
- White noise ϵ_t
 - a series of iid random variables ("innovations", "shocks")
 - $\mathbb{E}(\epsilon_t) = \mu_t = 0$
 - $\sigma_{\epsilon}^2 (\mathbf{\Sigma}_{\epsilon})$
 - $\gamma_{t,s} = 0$ for $t \neq s$
- Properties ACF
 - $\varrho(k) = \varrho(-k)$
 - $-1 \leq \varrho(k) \leq 1$
 - Y(t) and Y(t-k) independent $\Rightarrow \varrho(k) = 0$ Correlogram: graph of ρ

Autoregressive process of order p

• AR(p)

$$y_t = \sum_{i=1}^p \phi_i y_{t-i} + \epsilon_t \quad \Leftrightarrow \quad \mathbf{\Phi}(L) y_t = \epsilon_t$$

- Properties
 - $\mathbb{E}(y_t) = 0$
 - $\mathbb{V}ar(y_t) = const.$
 - $\gamma_k = \sum_{l=1}^{p} \phi_l \gamma_{k-l}$: $k = 1, 2, \dots$ $\varrho_k = \sum_{l=1}^{p} \phi_l \varrho_{k-l}$: $k = 1, 2, \dots$ } Yule Walker
- Stationarity
 - Characteristic equation: $\mathbf{\Phi}(u) = 0$ with $u \in \mathbb{C}$
 - AR(p) stationary: $|u| > 1 \leftrightarrow$ if all (complex) solutions of the characteristic equation lie outside the unit circle

Inference of high-dir

- AR(p) nonstationary: |u| = 1 (unit root)

Linear time series models

filtering

	univariate	multivariate
	AR	VAR
stationary	MA	VMA
	ARMA	VARMA
non-stationary	ARIMA	VARIMA

• Unit Root Tests (Dickey-Fuller-Test, Augmented DF-Test)

• approaches to obtain stationarity: differentiation, integration,

One finite realization of a stochastic process $y = \{y_t, t \in T\}$

(= trend + seasonal component + stationary random noise)

• descriptive analysis of stationarity with graphs and

Classical decomposition model: $y_t = \mu_t + s_t + u_t$

• no systematic change of variance

no strictly periodic fluctuations

 Y_t stationary $\Leftrightarrow y_t$ stationary

Modeling a time series

- diagnosis (stationarity, autocorrelation, etc.)
- e model identification
 - d: order of integration $\widehat{=}$ number of differentiations for stationarity
 - p, q: with Box-Jenkins(ACF, PACF, etc.), AIC, Bayes-Schwarz, etc.

Inference of high-dimensional VAR models

Univariate time series

estimation of the parameters (LS, ML, etc.)

Linear time s

model selection

Moving average process of order q

• **MA**(*q*)

$$y_t = \epsilon_t + \sum_{j=1}^q \theta_j \epsilon_{t-j} \quad \Leftrightarrow \quad y_t = \Theta(L) \epsilon_t$$

Properties

•
$$\mathbb{E}(y_t) = 0$$

• $\mathbb{V}ar(y_t) = \sigma^2 \sum_{i=0}^{q}$

$$\begin{aligned} \mathbb{V}ar(y_t) &= \sigma^2 \sum_{i=0}^q \theta_i^2 \\ \gamma_k &= \begin{cases} \sigma^2 \sum_{i=0}^{q-k} \theta_{i+k} \theta_i &: k = 0, 1, \dots, q \\ 0 &: k > q \end{cases} \end{aligned}$$

- Stationarity $\mathbb{E}(y_t), \mathbb{V}ar(y_t), \gamma_k$ independent of $t \Rightarrow \mathsf{MA}(q)$ weakly stationary
 - Infere ce of high-dim al VAR models

Inference of high-dimensional VAR models Univariate time series

Autoregressive moving average process

• **ARMA**(*p*, *q*)

$$y_t = \sum_{i=1}^{p} \phi_i y_{t-i} + \epsilon_t + \sum_{j=1}^{q} \theta_j \epsilon_{t-j} \quad \Leftrightarrow \quad \Phi(L) y_t = \Theta(L) \epsilon_t$$

 Stationarity $\mathsf{ARMA}(p,q)$ stationary $\Leftrightarrow \mathsf{AR}(p)$ -part stationary

• **ARIMA**(*p*, *d*, *q*)

Autoregressive Integrated Moving Average Process

$$\mathbf{\Phi}(L)(1-L)^d y_t = \mathbf{\Theta}(L)\epsilon_t$$

if
$$x_t := (1 - L)^d y_t \text{ ARMA}(p, q) \rightarrow \{y_t\} \text{ ARIMA}(p, d, q)$$

• Stationarity

ARIMA(p, d, q) stationary $\Leftrightarrow d = 0$ (i.e. ARMA(p, q))

Vector autoregressive model of order p

VAR(p)

$$\mathbf{y}_t' = \mathbf{c} + \sum_{i=1}^{L} \mathbf{y}_{t-i}' \mathbf{B}_i + \epsilon_t'$$
 for $t = 1, \dots, T$

Multivariate time series

with

Stability

Stationarity

estimation

- $(1 \times p)$ random vector **y**_t
- unknown fixed $(1 \times p)$ vector of intercept terms С
- Bi unknown fixed $(p \times p)$ regression coefficient matrices

• VAR(p) stationary \Leftrightarrow the absolute values of the real

 \Rightarrow stationarity is necessary for impulse response analysis and for

Inference of high-dimensional VAR models

Granger-Causality

• $V\!AR(p)$ nonstationary \Leftrightarrow the absolute values of the real

- *p*-dimensional white noise process ($\epsilon_t \sim iid(\mathbf{0}, \mathbf{\Sigma})$) ϵ_t
- L known positive integer (number of lags)

Vector autoregressive model of order *p*

VAR(p) stable \Rightarrow VAR(p) stationary • L = 1 (VARs with one lag):

VAR(p) stable $\Leftrightarrow det(\mathbf{I} - \mathbf{B}u) \neq 0$ for $|u| \leq 1$

eigenvalues of \mathbf{B}_1 are less than unity

eigenvalues of B_1 lie on the unit circle • L > 1 (VARs with more than one lag): \Rightarrow rewrite as a VAR with one lag

 \Rightarrow problem: differentiation sometimes \rightsquigarrow falsification

Katharina Schneider

t time period variable

Katharina Schneider	Inference of high-dimensional VAR models	Katharina Schneider	Inference of high-dimensional VAR models
Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Basics Univariate time series Multivariate time series	Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Basics Univariate time series Multivariate time series

Vector autoregressive model of order p

VAR(p)

 \Leftrightarrow

$$\mathbf{Y} = \mathbf{X}\mathbf{\Phi} + \boldsymbol{\epsilon} = \underbrace{\begin{pmatrix} \mathbf{x}_1' \\ \vdots \\ \vdots \\ \mathbf{x}_T' \end{pmatrix}}_{T \times (1 + Lp)} \underbrace{\begin{pmatrix} \mathbf{c} \\ \mathbf{B}_1 \\ \vdots \\ \mathbf{B}_L \end{pmatrix}}_{(1 + Lp) \times p} + \underbrace{\begin{pmatrix} \boldsymbol{\epsilon}_1' \\ \vdots \\ \vdots \\ \boldsymbol{\epsilon}_T' \end{pmatrix}}_{T \times p} = \underbrace{\begin{pmatrix} \mathbf{y}_1' \\ \vdots \\ \vdots \\ \mathbf{y}_T' \end{pmatrix}}_{T \times p}$$

with

$$\mathbf{x}_{t} = \underbrace{\begin{pmatrix} 1 \\ \mathbf{y}_{t-1}' \\ \vdots \\ \mathbf{y}_{t-L}' \end{pmatrix}}_{(1+Lp) \times 1} \qquad \begin{aligned} \boldsymbol{\epsilon}_{t} \sim & \textit{iid}(\mathbf{0}, \mathbf{\Sigma}) \\ \boldsymbol{\Sigma} := \mathbb{E}(\boldsymbol{\epsilon}_{t} \boldsymbol{\epsilon}_{t}') = \textit{Cov}(\boldsymbol{\epsilon}_{t}) \\ \vdots & \text{positive definite } p \times p \text{ matrix} \end{aligned}$$

Univariate time series Multivariate time series

Moving average representation of a VAR(p)

$$\mathbf{y}_t' = E_0 \mathbf{y}_t' + \sum_{j=0}^{t-1} \epsilon_{t-j}' \mathbf{H}_j$$

with

VAR stationary

- H_0 $(p \times p)$ identity matrix
- impulse responses to a shock occuring j periods ago Hi
- \Rightarrow **y**_t is expressed in terms of past and present error/innovation vectors ϵ_t and the mean term
- \Rightarrow necessary for impulse response analysis
- \Rightarrow can be used to determine the autocovariances

Characterization and interpretation of VARs

Structural analysis with VAR m

Characteristics

- VAR models are popular tools for analyzing multivariate time series data
- VAR models represent the correlations among a set of variables

 \Rightarrow analysis of certain aspects of the relationships between the interesting variables

Structural analysis

Granger-Causality

Impulse response functions

• MA representation

• impulse response analysis

Granger-Causality

- based on the principle of cause and effect
- MA representation of a K- dimensional VAR

$$\mathbf{y}_t = \boldsymbol{\mu} + \mathbf{H}(L)\boldsymbol{\epsilon}_t$$
 with $\mathbf{H}_0 = \mathbf{I}_K$

partitioned MA representation

$$\mathbf{y}_{t} = \begin{pmatrix} \mathbf{z}_{t} \\ \mathbf{x}_{t} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\mu}_{1} \\ \boldsymbol{\mu}_{2} \end{pmatrix} + \begin{pmatrix} \mathbf{H}_{11}(L) & \mathbf{H}_{12}(L) \\ \mathbf{H}_{21}(L) & \mathbf{H}_{22}(L) \end{pmatrix} \begin{pmatrix} \boldsymbol{\epsilon}_{1t} \\ \boldsymbol{\epsilon}_{2t} \end{pmatrix}$$

M-dimensional Zt

- \mathbf{x}_t (K M)-dimensional
- \Rightarrow **z**_t is not Granger-caused by **x**_t : \Leftrightarrow **H**_{12,i} = 0 for i = 1, 2, ...

al VAR models

• \mathbf{x}_t is Granger-causal to $\mathbf{z}_t \Leftrightarrow$ the information in the past and the present of \mathbf{x} helps to predict \mathbf{z}_{t+1}

$\mathbf{H}_j = \sum_{i=1}^J \mathbf{B}_i \mathbf{H}_{j-i}$

 $\mathbf{y}_t' = \mathit{E}_0\mathbf{y}_t' + \sum_{j=0}^{t-1} \epsilon_{t-j}'\mathbf{H}_j$

ullet impulse responses of \mathbf{y}_t to a shock ϵ_{t-j} occuring j periods

with $\mathbf{B}_i = 0$ for i > Lcorrelated ϵ_t

earlier

Inference of high-dimensional VAR models

Problem: ϵ_t are correlated \rightarrow identification problem Solution: orthogonalization of the errors

Structural analysis with VAR

• Cholesky decomposition of the covariance matrix

$$\mathbf{\Sigma} = \mathbf{\Psi}' \mathbf{\Psi}$$

with Ψ

- uppertriangular positive definite matrix
- connection between structural shocks and VAR errors

 $\mathbf{u}_t' = \epsilon_t' \mathbf{\Psi}^{-1}$

with

- \mathbf{u}_t structural error vector (with $\mathbf{\Sigma}(\mathbf{u}_t)$: identity matrix) • impulse responses to structural shocks occuring j periods
- earlier

 $\mathbf{Z}_i = \mathbf{\Psi} \mathbf{H}_i$

Inference of high-dimensional VAR models Inference of high-dimensional VAR models Maximum likelihood estimation Maximum likelihood estim

MLE for normal VARs

- $\epsilon \stackrel{iid}{\sim} N_p(\mathbf{0}, \mathbf{\Sigma})$ • $\mathbf{Y} = \mathbf{X}\mathbf{\Phi} + \boldsymbol{\epsilon}$
- Likelihood function of (Φ, Σ)

$$l_{N}(\boldsymbol{\Phi}, \boldsymbol{\Sigma}) = \frac{1}{|\boldsymbol{\Sigma}|^{T/2}} \exp\left\{-\frac{1}{2}\sum_{t=1}^{T} (\mathbf{y}_{t} - \mathbf{x}_{t}\boldsymbol{\Phi})'\boldsymbol{\Sigma}^{-1}(\mathbf{y}_{t} - \mathbf{x}_{t}\boldsymbol{\Phi})\right\}$$
$$= \frac{1}{|\boldsymbol{\Sigma}|^{T/2}} \underbrace{\operatorname{etr}}_{=\exp(trace)} \left\{-\frac{1}{2} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\Phi})\boldsymbol{\Sigma}^{-1}(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\Phi})'\right\}$$

Maximum likelihood estimators (MLEs)

$$\begin{split} \widehat{\boldsymbol{\Phi}}_{MLE} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \\ \widehat{\boldsymbol{\Sigma}}_{MLE} &= \frac{\mathbf{S}(\widehat{\boldsymbol{\Phi}}_{MLE})}{T} \quad \text{with} \quad \mathbf{S}(\boldsymbol{\Phi}) = (\mathbf{Y} - \mathbf{X}\boldsymbol{\Phi})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\Phi}) \end{split}$$

Possibilities for estimating a VAR

- Least Squares
 - \Rightarrow asymptotic properties
- Maximum Likelihood
 - \Rightarrow assumption: known distribution of data
 - \Rightarrow for some distributions MLE does not have an analytical form or does not exist
- Bayes
 - \Rightarrow effectiveness for finite-sample inference
 - \Rightarrow the estimated process may be used for prediction and economic analyses

 \Rightarrow applicable to estimate the model parameters and to estimate the distributions of the impulse response functions

MLE	for	Student- <i>t</i>	VARs
		oradone r	

•
$$\mathbf{Y} = \mathbf{X} \mathbf{\Phi} + \epsilon$$
 $\epsilon_t \stackrel{ind.}{\sim} t_{\nu}(\mathbf{0}, \mathbf{\Sigma})$

• Density of $t_{\nu}(\mathbf{0}, \mathbf{\Sigma})$ (multivariate-*t* distribution)

$$p(\mathbf{s}|\mathbf{\Sigma},\nu) = \frac{\Gamma\left(\frac{1}{2}(\nu+p)\right)}{(\pi\nu)^{p/2}\Gamma(\frac{\nu}{2})} \times |\mathbf{\Sigma}|^{-1/2} \left(1 + \frac{1}{\nu}\mathbf{s}'\,\mathbf{\Sigma}^{-1}\mathbf{s}\right)^{\frac{-(p+\nu)}{2}}, \mathbf{s} \in \mathbb{R}^{p}$$

- Maximum likelihood estimators (MLEs)
 - u given \Rightarrow MLE for $(\mathbf{\Phi}, \mathbf{\Sigma})$ is not available in closed form
 - ν unknown \Rightarrow MLE for $(\mathbf{\Phi}, \mathbf{\Sigma}, \nu)$ may not even exist

Katharina Schneider	Inference of high-dimensional VAR models	Katharina Schneider	Inference of high-dimensional VAR models
Linear time series Structural analysis with VAR models Estimation of VAR models	Overview Maximum likelihood estimation	Linear time series Structural analysis with VAR models Estimation of VAR models	Overview Maximum likelihood estimation
Numerical examples	Bayes estimation	Numerical examples	Bayes estimation

Basics

- A Bayesian estimator of (Φ, Σ) depends on
 - the distribution model
 - the prior
 - the loss function

Bayesian procedure

Choose a prior

- erive/compute the posterior
- Choose a loss function
- estimate under the loss function
- 6 calculate the risk function
- evaluate the performance of the estimates

for ϕ	Jeffreys prior	RATS prior	Reference prior
Constant prior	$\pi_{CJ}(\boldsymbol{\phi}, \boldsymbol{\Sigma})$	$\pi_{\mathit{CA}}(oldsymbol{\phi},oldsymbol{\Sigma})$	$\pi_{\mathit{CR}}(oldsymbol{\phi}, oldsymbol{\Sigma})$
Shrinkage prior	$\pi_{SJ}(oldsymbol{\phi}, oldsymbol{\Sigma})$	$\pi_{SA}(oldsymbol{\phi},oldsymbol{\Sigma})$	$\pi_{SR}(oldsymbol{\phi},oldsymbol{\Sigma})$

 \Rightarrow noninformative priors

Prior for
$$\nu$$
 in the Student-*t* VAR

w

$$r=rac{
u}{2}$$
 with $w\sim Gamma(a,b)$

a, b known positive constants

Katharina Schneider	Inference of high-dimensional VAR models	Katharina Schneider	Inference of high-dimensional VAR models
Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Overview Maximum likelihood estimation Bayes estimation	Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Overview Maximum likelihood estimation Bayes estimation

Jeffreys prior

Jeffreys prior for the normal VAR model

- Jeffreys prior for $\mathbf{\Sigma}$: $\pi_J(\mathbf{\Sigma}) \propto |\mathbf{\Sigma}|^{-(p+1)/2}$
- constant Jeffreys prior for $(\mathbf{\Phi}, \mathbf{\Sigma})$: $\pi_{CJ}(\phi, \mathbf{\Sigma}) \propto \pi_J(\mathbf{\Sigma})$
 - conditional posterior of ϕ given (Σ, Y):

$$N_J(\widehat{\phi}_{MLE},\, \mathbf{\Sigma}\otimes (\mathbf{X}'\mathbf{X})^{-1})$$

• marginal posterior of $\boldsymbol{\Sigma}$ given $\boldsymbol{Y}:$

Inverse Wishart(
$$\mathbf{S}(\widehat{\mathbf{\Phi}}_{MLE}), T - Lp - 1$$
)

- \Rightarrow derived from the "invariance principle"
- Shrinkage Jeffreys prior for $(\mathbf{\Phi}, \mathbf{\Sigma})$: $\pi_{SJ}(\phi, \mathbf{\Sigma}) = \pi_S(\phi)\pi_J(\mathbf{\Sigma})$ \Rightarrow motivated by Stein's result on inadmissibility of the MLE

$$L_{\Sigma 1}(\widehat{\Sigma}; \Sigma) = trace(\widehat{\Sigma}^{-1}\Sigma) - log|\widehat{\Sigma}^{-1}\Sigma| - p$$

Quadratic loss

$$L_{\Sigma 2}(\widehat{\Sigma}; \Sigma) = trace(\widehat{\Sigma}\Sigma^{-1} - I)^2$$

- ${}^{\textcircled{O}}$ pseudoentropy function on ${oldsymbol{\Sigma}}^{-1}$
 - $L_{\Sigma 3}(\widehat{\Sigma}; \Sigma) = trace(\widehat{\Sigma}\Sigma^{-1}) log|\widehat{\Sigma}\Sigma^{-1}| p$

Infer

ance of high-dime

onal VAR m

Loss functions for Σ

pseudoentropy loss

Loss functions for Φ

quadratic loss

$$L_{\Phi 1}(\widehat{\Phi}, \Phi) = trace \left\{ (\widehat{\Phi} - \Phi)' \, \mathsf{W} \, (\widehat{\Phi} - \Phi) \right\}$$

with $\,W\,\,$ constant weighting matrix

here:
$$\mathbf{W} = \mathbf{I} \implies L_{\mathbf{\Phi}1} = \sum_{i=1}^{1+L_p} \sum_{i=1}^{p} (\widehat{\phi}_{ij} - \phi_{ij})^2$$

→ symmetric 2 LINEX loss

$$L_{\Phi 2}(\widehat{\Phi}, \Phi) = \sum_{i=1}^{1+Lp} \sum_{j=1}^{p} \left\{ exp \left[a_{ij}(\widehat{\phi}_{ij} - \phi_{ij}) \right] - a_{ij}(\widehat{\phi}_{ij} - \phi_{ij}) - 1 \right\}$$

with aii given constant

 \rightarrow asymmetric

Loss and risk function for impulse response functions Loss function

$$L(\mathbf{Z}_{j}, \widehat{\mathbf{Z}}_{j}) = trace\left\{ (\mathbf{Z}_{j} - \widehat{\mathbf{Z}}_{j})' \, \mathbf{\Omega} \, (\mathbf{Z}_{j} - \widehat{\mathbf{Z}}_{j})
ight\}$$

with Ω : weighting matrix for the estimation error of each element of the impulse responses

 \rightarrow may be determined by the economic significance of the element (here: identity matrix)

Risk function

F

 Σ in the normal VAR

 $\widehat{\Sigma}_{MLE}$ $\widehat{\Sigma}_{1CA}$

204 Σ_{3CA} Σ̂1CJ

 $\hat{\Sigma}_{2CJ}$ $\hat{\Sigma}_{3CJ}$ $\hat{\Sigma}_{1CF}$ $\hat{\Sigma}_{2CF}$ $\hat{\Sigma}_{3CF}$

 $\hat{\Sigma}_{1SA}$ $\hat{\Sigma}_{2SA}$ $\hat{\Sigma}_{3SA}$ $\hat{\Sigma}_{1SJ}$ $\hat{\Sigma}_{2SJ}$ $\hat{\Sigma}_{3SJ}$ $\hat{\Sigma}_{1SR}$

â

$$R_{Imp,i} = rac{1}{N}\sum_{n=1}^{N} trace\left\{ \left(\mathbf{Z}_{i} - \widehat{\mathbf{Z}}_{i}^{(n)}
ight)' - \left(\mathbf{Z}_{i} - \widehat{\mathbf{Z}}_{i}^{(n)}
ight)
ight\}$$

with $\widehat{\mathbf{Z}}_{i}^{(n)}$: impulse response matrix for the *i*th step after the shock for the nth dataset generated in the experiment

Frequentist average losses of competing Bayes estimates of

 $L_{\Sigma 2}$

-222 .681 (.189) .646 (.222) .803 (.192) .681 (.189) .800 (.344) .681 (.189) .645 (.222)

.434 (.219 .489 (.184

.419 (.178) .646 (.222) .803 (.192) .682 (.189)

.801 (.345) .682 (.189)

646 (.222)

L_{Σ3}

-2.3 .516 (.178) .415 (.153) .660 (.205) .516 (.178) .389 (.142) .516 (.178) .415 (.153) .234 (.113)

.415 (.153

.661 (.205) .516 (.178)

389 (.143)

.516 (.178)

.415 (.153)

L₂₁

.861 (.403) .608 (.308) 1.187 (.501) .861 (.403) .450 (.222) .862 (.403) .609 (.309) .281 (.172) .546 (.314)

.609 (.308) 1.187 (.501) .862 (.403)

.449 (.221)

.862 (.403)

609 (.308

Katharina Schneider	Inference of high-dimensional VAR models	Katharina Schneider	Inference of high-dimensional VAR models
Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Simulations VAR of U.S. Economy Concluding remarks	Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Simulations VAR of U.S. Economy Concluding remarks

Simulations and Bayesian computation

• generate N = 1,000 data samples from a VAR(5) model with one lag (L=1) and the known parameters

$$\boldsymbol{\Sigma} = \left(\begin{array}{cc} 1.0 & \boldsymbol{0.5} \\ & \ddots \\ \boldsymbol{0.5} & 1.0 \end{array} \right) \quad , \quad \boldsymbol{\Phi} = \left(\begin{array}{c} \boldsymbol{c} \\ \boldsymbol{B}_1 \end{array} \right) = \left(\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{I}_5 \end{array} \right) \quad , \quad \begin{array}{c} \boldsymbol{\nu} = \boldsymbol{8} \\ \text{prior for } \boldsymbol{\nu} : \boldsymbol{\nu} \sim \textit{Gamma}(1, 0.5) \end{array} \right)$$

- Output the Bayesian estimates under competing priors and the different losses via MCMC (M = 10,000 cycles)
 - **()** find the full conditional distributions of $(\phi, \mathbf{\Sigma})$ with
 - $\phi = vec(\mathbf{\Phi})$
 - **2** simulate the posteriors of (Φ, Σ)
- sestimate the frequentist risks under a loss *L* of the estimates as the average loss belonging to $\widehat{\Sigma}$ and $\widehat{\Phi}$ across generated data samples
- evaluate the performance of the Bayesian estimates in terms of the frequentist risks given the true parameters

Katharina Schneider	Inference of high-dimensional VAR models	Katharina Schneider	Inference of high-dimensional VAR models
Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Simulations VAR of U.S. Economy Concluding remarks	Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Simulations VAR of U.S. Economy Concluding remarks

Frequentist average losses of competing Bayes estimates of **Σ** in the normal VAR

	L _{Z1}	$L_{\Sigma 2}$	L _{Z3}
Σ _{MLE}	.861 (.403)	.681 (.189)	.516 (.178)
Ê1CA	.608 (.308)	.646 (.222)	.415 (.153)
Σ _{2CA}	1.187 (.501)	.803 (.192)	.660 (.205)
2 _{3CA}	.861 (.403)	.681 (.189)	.516 (.178)
Ē _{1CJ}	.450 (.222)	.800 (.344)	.389 (.142)
Σ _{2CJ}	.862 (.403)	.681 (.189)	.516 (.178)
Σ _{3CJ}	.609 (.309)	.645 (.222)	.415 (.153)
Ê _{1CB}	.281 (.172)	.434 (.219)	.234 (.113)
2 _{2CR}	.546 (.314)	.489 (.184)	.353 (.161)
Σ _{3CR}	.386 (.238)	.419 (.178)	.273 (.133)
Ê _{1SA}	.609 (.308)	.646 (.222)	.415 (.153)
2 _{2SA}	1.187 (.501)	.803 (.192)	.661 (.205)
Σ _{3SA}	.862 (.403)	.682 (.189)	.516 (.178)
2 _{1SJ}	.449 (.221)	.801 (.345)	.389 (.143)
E _{2SJ}	.862 (.403)	.682 (.189)	.516 (.178)
Ê _{3SJ}	.609 (.308)	.646 (.222)	.415 (.153)
2 _{1SR}	.261 (.163)	.418 (.208)	.221 (.107)
Σ _{2SR}	.505 (.300)	.464 (.177)	.332 (.154)
E _{3SR}	.356 (.226)	.399 (.169)	.256 (.126)

Frequentist average losses of competing Bayes estimates of Φ in the normal VAR

	L _{Ø1}	$L_{\Phi 2}$
MLE	11.183 (14.070)	11.614 (6.898)
1CA	11.184 (14.068)	11.611 (6.893)
204	11.135 (14.055)	9.416 (5.154)
101	11.184 (14.094)	11.613 (6.905)
201	11.134 (14.079)	9.156 (4.947)
1CB	11.185 (14.070)	11.615 (6.894)
2CB	11.135 (14.057)	9.319 (5.066)
154	1.552 (.597)	7.254 (3.349)
254	1.523 (.596)	6.313 (2.786)
15.1	1.419 (.501)	7.174 (3.250)
281	1.387 (.499)	6.155 (2.653)
1SR	1.261 (.359)	7.176 (3.332)
2SR	1.231 (.355)	6.198 (2.739)

Katharina Schneider	Inference of high-dimensional VAR models	Katharina Schneider	Inference of high-dimensional VAR models
Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Simulations VAR of U.S. Economy Concluding remarks	Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Simulations VAR of U.S. Economy Concluding remarks

Frequentist average losses of competing Bayes estimates of Estimation of impulse response functions **Φ** in the normal VAR

	$L_{\Phi 1}$	$L_{\Phi 2}$
$\widehat{\Phi}_{MLE}$	11.183 (14.070)	11.614 (6.898)
€1CA	11.184 (14.068)	11.611 (6.893)
$\widehat{\Phi}_{2CA}$	11.135 (14.055)	9.416 (5.154)
$\widehat{\Phi}_{1CJ}$	11.184 (14.094)	11.613 (6.905)
$\widehat{\Phi}_{2CJ}$	11.134 (14.079)	9.156 (4.947)
Φ1CB	11.185 (14.070)	11.615 (6.894)
$\widehat{\Phi}_{2CR}$	11.135 (14.057)	9.319 (5.066)
$\widehat{\Phi}_{1SA}$	1.552 (.597)	7.254 (3.349)
$\widehat{\Phi}_{2SA}$	1.523 (.596)	6.313 (2.786)
$\widehat{\Phi}_{1SJ}$	1.419 (.501)	7.174 (3.250)
$\widehat{\Phi}_{2SJ}$	1.387 (.499)	6.155 (2.653)
<pre> ¶ 1SR </pre>	1.261 (.359)	7.176 (3.332)
€ acp	1.231 (.355)	6.198 (2.739)

 Z_i are nonlinear functions of $(\Phi, \Sigma) \Rightarrow$ Bayes-simulations

- generate data samples from a VAR with known parameters
- e compute the Bayesian estimates under competing priors via MCMC
 - find the full conditional distributions of (Z)
 - simulate the posteriors of (Z)
 - **3** compute $\widehat{\mathsf{Z}}_j = \mathbb{E}(\mathsf{Z}_j | \mathsf{Y})$ (assumption: Ω const.)
- evaluate the performance of the estimates in terms of the frequentist average of sum of squared errors

Frequentist average losses of impulse responses in the normal VAR

Horizon	MLE	CA	CJ	CR SA		SJ	SR
1	.963	.911	.848	.854	.734	.662	.640
2	1.745	1.657	1.603	1.640	1.331	1.249	1.250
3	2.389	2.276	2.238	2.290	1.851	1.772	1.781
4	2.898	2.767	2.747	2.804	2.282	2.208	2.220
5	3.302	3.158	3.152	3.210	2.638	2.568	2.580
6	3.625	3.470	3.476	3.533	2.931	2.867	2.877
7	3.886	3.723	3.738	3.793	3.176	3.116	3.125
8	4.101	3.929	3.953	4.005	3.382	3.325	3.332
9	4.278	4.101	4.131	4.180	3.556	3.502	3.508
10	4.427	4.246	4.283	4.330	3.706	3.653	3.659
11	4.554	4.371	4.417	4.460	3.835	3.785	3.789
10	4 660	4 400	4 5 4 0	4 570	2 0 4 7	2 000	2 002

Frequentist average losses of impulse responses in the Student-t VAR

Horizon	CA	CJ	CR	SA	SJ	SR
1	.930	.867	.875	.747	.673	.654
2	1.684	1.630	1.670	1.334	1.252	1.255
3	2.307	2.272	2.327	1.843	1.764	1.776
4	2.798	2.782	2.842	2.264	2.190	2.206
5	3.186	3.184	3.246	2.610	2.541	2.558
6	3.492	3.502	3.564	2.895	2.831	2.849
7	3.737	3.756	3.816	3.133	3.073	3.090
8	3.934	3.960	4.019	3.333	3.276	3.293
9	4.095	4.127	4.184	3.502	3.448	3.465
10	4.229	4.266	4.321	3.646	3.595	3.612
11	4.342	4.386	4.438	3.771	3.721	3.738
12	4.441	4.493	4.542	3.879	3.832	3.848

Katharina Schneider	Inference of high-dimensional VAR models	Katharina Schneider	Inference of high-dimensional VAR models
Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Simulations VAR of U.S. Economy Concluding remarks	Linear time series Structural analysis with VAR models Estimation of VAR models Numerical examples	Simulations VAR of U.S. Economy Concluding remarks

VAR of U.S. Economy

Responses of GDP to an inflation shock

- VAR(6) model with two lags (L=2)
- quarterly data of the U.S. economy from 1959 Q1 to 2001 Q4
 - real GDP(Gross Domestic Product)
 - GDP deflator
 - world commodity price
 - Federal Funds ratesnonborrowed reserves
 - nonborrowed reserved
 - M2 money stock
- *M* = 10,000 MCMC cycles

	con	stant RATS	prior				cons	stant Jeffre	ys prior				const	ant refer	ence pris	or	
0.015						0.015						0.015					
0.010						0.010	Ň	1 1 1				0.010	1				
0.005	1.3	8				0.005	1	<u>(</u>				0.005	1				
0.0		C				0.0	3	L				0.0		Ĺ			
-0.005						-0.005		· · · · · · ·				-0.005		· · · · · ·			
-0.010	١				_	-0.010	l,				_	-0.010	I				
	ò	5	10	15	20		ò	5	10	15	20		ò	5	10	15	20
	shri	nkage RAT	S prior				shrir	nkage Jeffr	eys prior				shrink	cage refe	rence pr	ior	
0.015	1					0.015						0.015					
0.010						0.010						0.010					
0.005						0.005						0.005					
0.0						0.0						0.0	1				
-0.005	1					-0.005	1					-0.005					
-0.010	١					-0.010					_	-0.010					
	0	5	10	15	20		0	5	10	15	20		0	5	10	15	20

Katharina Schneider	Informers of high dimensional VAP models	Katharina Schneider	Informers of high dimensional VAP models
Kathanna Schlieder	merence of high-unnensional VAN models	Katilarilla Schlieder	interence of high-unitensional VAN models
Linear time series	Simulations	Linear time series	Simulations
Structural analysis with VAR models	VAR of U.S. Economy	Structural analysis with VAR models	VAR of U.S. Economy
Estimation of VAR models	Concluding remarks	Estimation of VAR models	Conclusing remarks
Numerical examples	Concluding remarks	Numerical examples	Concluding remarks

Concluding remarks

Simulations

- $\rightarrow\,$ the choice of prior has stronger effects on the Bayesian estimates than the choice of loss function
- $\rightarrow\,$ the asymmetric LINEX estimator for Φ does better overall than the posterior mean
- ightarrow there is no estimator for ${f \Sigma}$ dominating in all cases
- $\rightarrow\,$ the shrinkage prior dominates the constant prior
- $\rightarrow\,$ reference prior on $\pmb{\Sigma}$ dominates the Jeffreys prior and the RATS prior

Concluding remarks

VAR of U.S. Economy

- $\rightarrow\,$ significant improvement of the estimates by using alternative priors in place of constant prior
- \rightarrow impulse responses of GDP to an inflation shock are distinctly different under the competing priors
- $\rightarrow\,$ the posterior losses under the shrinkage reference prior are smaller
- $\rightarrow\,$ VAR model estimates allow some degree of collinearity and have no restrictions on the matrix Φ
- $\rightarrow\,$ MLEs are often very sensitive to model specification and sample period

arina Schneider Inference of high-dimensional VAR models

Inference of high-dimensional Simulations VAR of U.S. Economy Concluding remarks

e of high-din

onal VAR models

Literature

- NI, S. & SUN, D. (2005): Bayesian Estimates for Vector Autoregressive Models. *Journal of Business & Economic Statistics*, 23: 105–117.
- LÜTKEPOHL, H. (1993): Introduction to Multiple Time Series Analysis. Springer Verlag, Berlin, Heidelberg.
- BROCKWELL, P.J. & DAVIS, R.A. (1996): Introduction to Time Series and Forecasting. Springer Verlag, New York.
- MANSMANN, U. (2006): Skript zur Vorlesung Zeitreihenanalyse.