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Gene regulation : the big picture
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» coding region : where the gene is

» promoter region : determines gene activation conditions
» RNA polymerase : DNA to RNA transcription enzyme

» Transcription factors complex, repressors

» Regulators, enhancers, and the dynamics
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The Central Dogma of molecular biology

DNA —>
D

» DNA : where the genetic
information lies
» RNA : an intermediate
mRNA product of gene
expression
Cytoplasm . .
» Proteins : active
molecules of life
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Microarray experiment

For a given gene, what do we
call expression level ?

» non-proportional

> noise

» reproducibility
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Goal of the study

’ Jun-B |—| | C-jun }— Jun-D |
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Apoptosis

» genetic regulation cascade occuring during T-cell activation
» what genes are activated / shut down ?

Can statistical modeling help us to better understand T-cell
activation ?
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Introduction

Properties of the experimental data

Microarray experiment description

» T-cell activation under PMA and iomicin
» time-series : 10 time points
» 58 genes being monitored

missing data (biology is complex)

The linear dynamical system model
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What does our model has to take into account ? Outline
» multivariate data (experimental design)
» time-series (experimental design)
» noisy measurements (microarrays) Methods
»
>

causal inference (goal)

LMelhods
LSSMs

LMelhuds
LSSMs

Linear State-Space models

aka: Linear Dynamical Systems, Kalman filter models
Assumptions

» hidden state variables

Variables and topology

» observed data : (yi,...,Y7),Yyi € RP
> y: generated from hidden x;, with x; € R¥
» x follows 15t-order Markov process

Therefore :
» noisy continuous measurements
. . T
» Markovian dynamics
P(X1.T,Y11) = P(X1)P(Y1(X1) HP(Xt|Xt71)p(Yt\Xt)
t=2
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Variables and topology (2)

Assuming

» linear dynamics of hidden variables p(x:|x¢—1),

» linear dynamics of output function p(y;|xt),

» model stationarity,

» and state evolution and observation have Gaussian noise
we obtain the linear-Gaussian state-space model (SSM) :

Xt = AXt_1 + Wi, wy ~ N(0,Q) (1)
Yt = CX¢ + Vi, vi ~ N(Q,R) 2

where A is the kxk state dynamics matrix (HMM: transition) and
C the pxk observation matrix (HMM: emission)

Variables and topology (3)

Straighforward extension of our model
Let u;.t be a time-serie of d-dimensional driving inputs.
Then,

Xt = AX;i—1 + But + wy, wi ~ N(0,Q)
Yt = CX¢ + Duy + vy, vi ~ N(Q,R)

where B is the dxk input-to-state matrix and D the dxp
input-to-observation matrix.
What happens if :

» we provide driving input a constant bias ?

» we want to do control ?

» we define uy :=y;_1?
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Variables and topology (4)

Letu; :=y;_1. Then,

Xt = AXt_1 + BYyt_1 + Wi,
Yt = CXt + Dyt_1 + Vi,

we ~N(0,Q) ®)
ve ~N(O,R) (6)

Consequence

Hidden states can now concentrate on modeling hidden factors
while Markovian dependencies between successive outputs are
now modeled by output-input feedbacks.

Graphical Model
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Xt = AXt—1 + Byi_1 + Wy,
Yt = CXt + Dyt-1 + Vi,

Wt ~ N(OvQ)
vi ~ N(0,R)
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Genetic network parameters

Which are the parameters of interest for the genetic regulation
network inference problem ?
We have :

Xt = AXt_1 + BYyt_1 + Wy,
Yt = CXt + Dyt_1 + Vi,

wi ~ N(0,Q) 9)
vi~N(O,R)  (10)

Plugging in the definition of x;, y; can be written

Yt = (CB +D)yr_1 + 1t

where
re = ve + Cwy + CAX;—1q
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Methods

The Bayesian Approach to SSMs
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Bayesian ?! Why ?

Bayesian methodology applied to Kalman filtering

» Assessing parameters (CB + D) significativity : a posteriori
distribution instead of bootstrap

» Model fitting : ML estimation in low sampling conditions

Model comparison

» Why ? Determine hidden state space dimension
» Cross-validation and the low-sampling issue
» Evidence framework
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The Evidence framework

Let's say we want to compare n models my, my, ..., m, given
observed data y.

p(ylmg)p(myg)  likelihood « prior
p(y) " normalizing-constant

p(mgly) =

Assuming @ is the set of all the parameters, the likelihood
p(y|m) can be written

p(y|m) = / p(y[6. m)p(6]m)do
Key idea

In the absence of a prior, evidence alone drives model
selection [Mackay, 1991].

Occam'’s razor and the evidence

Parsimony : why does computing the evidence result in
choosing simple models over complex ones ?
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(picture from [Beal, 2003])
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Outline Simplifying assumptions

Remember our model :

Xt = AXt_1 + Byi1 + Wy, wi ~N(0,Q)  (11)
Yt = CXt + Dyt_1 + Vi, vi~N(O,R)  (12)
Methods We make simplying assumptions on the noise covariance
matrices :
» Q :=Id (no loss of generality, A will adjust)
Variational-Bayes model fitting » R := diag(c) (white noise, with sigma one-dimensional o)
and define the vector of parameters
=(A,B,C,D,R)
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Simplifying assumptions Goal

To fit the model, we want to maximize the log-likelihood (or
log-evidence). But this is computationally intractable (too many

variables).
» Maximize F with respect to the free distributions ¢ (x) and
inp(y[m) =In [ p(y.x.6lm)dxds 13) 0(0)
p(y, X, 6]m) » Joint maximization of q;(x) (hidden process distribution
In/ql X)92(0) o an(d) 0:(x)92(6) xdg 14) likelihood) and g, (6) (parameter distribution likelihood)
p(y7x70|m))

> x)02(0)In (| ———— | dxdé 15

> [ai()aa(0) (ql(x)qzw) (15)

= F(a1(x), d2(0),y) (16)

where the step with the inequality follows from appealing to
Jensen’s inequality.
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The Variational-Bayes EM Algorithm Consequence
At iteration |,
VB-E step

Find q{' ™) (x) that maximzes
» Update hyperparameters and prior parameters to

E{F(aq(x),a}(6),y)} maximize the lower bound on the marginal likelihood
» By applying the VB-EM algorithm, we actually minimize the
KL divergence between the approximation g1 (x)qgz(6) and

VB-M (it%p the true posterior p(x, 6]y, m) [Beal, 2003]
Find g; "’(#) that maximzes

E{F(al"™(x),02(0).y)}

and iterate until convergence.
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Model comparison Significant interactions
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Biological consequences for the JunB - JunD pathway
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Summary

» Kalman filtering : model causal dependencies in
auto-correlated, multivariate, noisy data while allowing
hidden states

» Bayesian methodology & Kalman filtering : assessing
parameter significance, avoiding overfitting when selecting
a model (Occam’s razor)

» Model fitting with Variational Bayes EM algorithm

» Outlook
» Test new model biologicaly and investigate what the hidden
states account for.
» Allow for non-linear interactions (expression saturation
effects, multiplicative effects).



