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Biological Background

The Central Dogma of molecular biology

I DNA : where the genetic
information lies

I RNA : an intermediate
product of gene
expression

I Proteins : active
molecules of life
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Biological Background

Gene regulation : the big picture

I coding region : where the gene is
I promoter region : determines gene activation conditions
I RNA polymerase : DNA to RNA transcription enzyme
I Transcription factors complex, repressors
I Regulators, enhancers, and the dynamics
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Biological Background

Microarray experiment

For a given gene, what do we
call expression level ?

I non-proportional
I noise
I reproducibility
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Introduction

Experiment

Goal of the study

I genetic regulation cascade occuring during T-cell activation
I what genes are activated / shut down ?

Can statistical modeling help us to better understand T-cell
activation ?



Introduction

Data properties

Outline

Introduction
Biological Background
Experiment
Properties of the experimental data

Methods
The linear dynamical system model
The Bayesian Approach to SSMs
Variational-Bayes model fitting

Results

Introduction

Data properties

Microarray experiment description

I T-cell activation under PMA and iomicin
I time-series : 10 time points
I 58 genes being monitored

Introduction

Data properties

What does our model has to take into account ?

I multivariate data (experimental design)
I time-series (experimental design)
I noisy measurements (microarrays)
I missing data (biology is complex)
I causal inference (goal)
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SSMs

Linear State-Space models

aka: Linear Dynamical Systems, Kalman filter models

Assumptions

I hidden state variables
I noisy continuous measurements
I Markovian dynamics

Methods

SSMs

Variables and topology

I observed data : (y1, . . . , yT ), y i ∈ Rp

I yt generated from hidden xt , with xt ∈ Rk

I x follows 1st -order Markov process

Therefore :

p(x1:T , y1:T ) = p(x1)p(y1|x1)
T∏

t=2

p(xt |xt−1)p(yt |xt)
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SSMs

Variables and topology (2)

Assuming
I linear dynamics of hidden variables p(xt |xt−1),
I linear dynamics of output function p(yt |xt),
I model stationarity,
I and state evolution and observation have Gaussian noise

we obtain the linear-Gaussian state-space model (SSM) :

xt = Axt−1 + wt , wt ∼ N(0, Q) (1)

yt = Cxt + vt , vt ∼ N(0, R) (2)

where A is the kxk state dynamics matrix (HMM: transition) and
C the pxk observation matrix (HMM: emission)
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Variables and topology (3)

Straighforward extension of our model
Let u1:T be a time-serie of d-dimensional driving inputs.

Then,

xt = Axt−1 + But + wt , wt ∼ N(0, Q) (3)

yt = Cxt + Dut + vt , vt ∼ N(0, R) (4)

where B is the dxk input-to-state matrix and D the dxp
input-to-observation matrix.
What happens if :

I we provide driving input a constant bias ?
I we want to do control ?
I we define ut := yt−1?
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Variables and topology (4)

Let ut := yt−1. Then,

xt = Axt−1 + Byt−1 + wt , wt ∼ N(0, Q) (5)

yt = Cxt + Dyt−1 + vt , vt ∼ N(0, R) (6)

Consequence
Hidden states can now concentrate on modeling hidden factors
while Markovian dependencies between successive outputs are
now modeled by output-input feedbacks.
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Graphical Model

xt = Axt−1 + Byt−1 + wt , wt ∼ N(0, Q) (7)

yt = Cxt + Dyt−1 + vt , vt ∼ N(0, R) (8)
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Genetic network parameters

Which are the parameters of interest for the genetic regulation
network inference problem ?
We have :

xt = Axt−1 + Byt−1 + wt , wt ∼ N(0, Q) (9)

yt = Cxt + Dyt−1 + vt , vt ∼ N(0, R) (10)

Plugging in the definition of xt , yt can be written

yt = (CB + D)yt−1 + rt

where
rt = vt + Cwt + CAxt−1
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Bayesian SSMs

Bayesian ?! Why ?

Bayesian methodology applied to Kalman filtering
I Assessing parameters (CB + D) significativity : a posteriori

distribution instead of bootstrap
I Model fitting : ML estimation in low sampling conditions
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Model comparison

I Why ? Determine hidden state space dimension
I Cross-validation and the low-sampling issue
I Evidence framework
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The Evidence framework

Let’s say we want to compare n models m1, m2, . . . , mn given
observed data y.

p(mk |y) =
p(y|mk )p(mk )

p(y)
=

likelihood ∗ prior
normalizing-constant

Assuming θ is the set of all the parameters, the likelihood
p(y|m) can be written

p(y|m) =

∫
p(y|θ, m)p(θ|m)dθ

Key idea
In the absence of a prior, evidence alone drives model
selection [Mackay, 1991].
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Bayesian SSMs

Occam’s razor and the evidence

Parsimony : why does computing the evidence result in
choosing simple models over complex ones ?

(picture from [Beal, 2003])
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Variational-Bayes model fitting

Simplifying assumptions

Remember our model :

xt = Axt−1 + Byt−1 + wt , wt ∼ N(0, Q) (11)

yt = Cxt + Dyt−1 + vt , vt ∼ N(0, R) (12)

We make simplying assumptions on the noise covariance
matrices :

I Q := Id (no loss of generality, A will adjust)
I R := diag(σ) (white noise, with sigma one-dimensional σ)

and define the vector of parameters

θ := (A, B, C, D, R)
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Variational-Bayes model fitting

Simplifying assumptions
To fit the model, we want to maximize the log-likelihood (or
log-evidence). But this is computationally intractable (too many
variables).

lnp(y|m) = ln
∫

p(y, x, θ|m)dxdθ (13)

= ln
∫

q1(x)q2(θ)
p(y, x, θ|m)

q1(x)q2(θ)
dxdθ (14)

≥
∫

q1(x)q2(θ)ln
(

p(y, x, θ|m)

q1(x)q2(θ)

)
dxdθ (15)

= F(q1(x), q2(θ), y) (16)

where the step with the inequality follows from appealing to
Jensen’s inequality.
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Variational-Bayes model fitting

Goal

I Maximize F with respect to the free distributions q1(x) and
q2(θ)

I Joint maximization of q1(x) (hidden process distribution
likelihood) and q2(θ) (parameter distribution likelihood)
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Variational-Bayes model fitting

The Variational-Bayes EM Algorithm

At iteration l ,

VB-E step
Find q(l+1)

1 (x) that maximzes

E{F(q1(x), q(l)
2 (θ), y)}

VB-M step
Find q(l+1)

2 (θ) that maximzes

E{F(q(l+1)
1 (x), q2(θ), y)}

and iterate until convergence.
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Variational-Bayes model fitting

Consequence

I Update hyperparameters and prior parameters to
maximize the lower bound on the marginal likelihood

I By applying the VB-EM algorithm, we actually minimize the
KL divergence between the approximation q1(x)q2(θ) and
the true posterior p(x, θ|y, m) [Beal, 2003]
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Model comparison

Results

Significant interactions



Results

Biological consequences for the JunB - JunD pathway

Summary

Summary

I Kalman filtering : model causal dependencies in
auto-correlated, multivariate, noisy data while allowing
hidden states

I Bayesian methodology & Kalman filtering : assessing
parameter significance, avoiding overfitting when selecting
a model (Occam’s razor)

I Model fitting with Variational Bayes EM algorithm

I Outlook
I Test new model biologicaly and investigate what the hidden

states account for.
I Allow for non-linear interactions (expression saturation

effects, multiplicative effects).
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