A Bayesian approach to reconstructing genetic regulatory networks with hidden factors [Beal et al., 2004]

Jean A. Hausser¹

¹Institut für Statistik Ludwig Maximilian Universität München

Friday, July 7th 2006 Modeling, Simulation and Inference of Complex Biological Systems

Outline

Introduction

Biological Background Experiment Properties of the experimental data

Methods

The linear dynamical system model The Bayesian Approach to SSMs Variational-Bayes model fitting

Results

	<ロ> <合> <き> <き> <き> <き> <き> <のへの	<ロト (長) (注) (注) (注) (注) (注)
Lintroduction	L Introduction	Background
Outline	The Ce	entral Dogma of molecular biology
Introduction Biological Background Experiment	T	Gene Gene Transcription NA NNA NNA

DNA : where the genetic information lies

- RNA : an intermediate • product of gene expression
- Proteins : active molecules of life

	· Bor Billade Pasociaces Mon
- Biological Background	- Biological Background
Biological Background	Biological Baolgicalia

(日)(個)(目)(目)(目)(目)(の)(0)

A

Gene regulation : the big picture

- coding region : where the gene is
- > promoter region : determines gene activation conditions
- RNA polymerase : DNA to RNA transcription enzyme
- Transcription factors complex, repressors
- Regulators, enhancers, and the dynamics

Properties of the experimental data

Microarray experiment

10 M	 	

For a given gene, what do we call expression level ?

(**1**) (**1**) (**1**)

- non-proportional
- noise
- reproducibility

Experiment

Outline

Introduction

Experiment

Goal of the study

- genetic regulation cascade occuring during T-cell activation
- what genes are activated / shut down ?

Can statistical modeling help us to better understand T-cell activation ?

L Introduction	L Introduction
Outline	Microarray experiment description

Introduction

Properties of the experimental data

- 日本人間本人間本人間本 L_Methods L Introduction L Data properties LSSMs What does our model has to take into account ? Outline **Biological Background** multivariate data (experimental design) time-series (experimental design) noisy measurements (microarrays) Methods missing data (biology is complex) The linear dynamical system model causal inference (goal) ・ロト・日本・モート 中国・シスタ

L_Methods	L Methods
L_SSMs	L SSMs

Linear State-Space models

aka: Linear Dynamical Systems, Kalman filter models Assumptions

- hidden state variables
- noisy continuous measurements
- Markovian dynamics

Variables and topology

• observed data : $(\mathbf{y}_1, \dots, \mathbf{y}_T), \mathbf{y}_i \in \mathbb{R}^p$

T-cell activation under PMA and iomicin

time-series : 10 time points 58 genes being monitored

- ▶ \mathbf{y}_t generated from hidden \mathbf{x}_t , with $\mathbf{x}_t \in \mathbb{R}^k$
- x follows 1st-order Markov process

Therefore :

$$p(\mathbf{x}_{1:T}, \mathbf{y}_{1:T}) = p(\mathbf{x}_1)p(\mathbf{y}_1|\mathbf{x}_1)\prod_{t=2}^{T}p(\mathbf{x}_t|\mathbf{x}_{t-1})p(\mathbf{y}_t|\mathbf{x}_t)$$

	〈日〉〈聞〉〈叫〉〈叫〉、「」、今々で	≣ ୬୯୯
└_Methods └_SSMs	L_Methods L_SSMs	

Variables and topology (2)

Assuming

- linear dynamics of hidden variables $p(\mathbf{x}_t | \mathbf{x}_{t-1})$,
- linear dynamics of output function $p(\mathbf{y}_t | \mathbf{x}_t)$,
- model stationarity,
- and state evolution and observation have Gaussian noise we obtain the linear-Gaussian state-space model (SSM) :

$\mathbf{x}_t = A\mathbf{x}_{t-1} + \mathbf{w}_t,$	$\mathbf{w}_t \sim N(0, \mathbf{Q})$	(1)
$\mathbf{y}_t = C\mathbf{x}_t + \mathbf{v}_t,$	$\mathbf{v}_t \sim N(0, R)$	(2)

where A is the kxk state dynamics matrix (HMM: transition) and C the *pxk* observation matrix (HMM: emission)

Variables and topology (3)

Straighforward extension of our model

Let $\mathbf{u}_{1:T}$ be a time-serie of *d*-dimensional driving inputs. Then,

$$\mathbf{x}_t = A\mathbf{x}_{t-1} + B\mathbf{u}_t + \mathbf{w}_t, \qquad \mathbf{w}_t \sim N(\mathbf{0}, \mathbf{Q})$$
 (3)

$$\mathbf{y}_t = C\mathbf{x}_t + D\mathbf{u}_t + \mathbf{v}_t, \qquad \mathbf{v}_t \sim N(\mathbf{0}, R) \qquad (4)$$

where B is the dxk input-to-state matrix and D the dxp input-to-observation matrix. What happens if :

- we provide driving input a constant bias ?
- we want to do control ?
- we define $\mathbf{u}_t := \mathbf{y}_{t-1}$?

Variables and topology (4)

Let $\mathbf{u}_t := \mathbf{y}_{t-1}$. Then,

$$\begin{aligned} \mathbf{x}_t &= A\mathbf{x}_{t-1} + B\mathbf{y}_{t-1} + \mathbf{w}_t, & \mathbf{w}_t \sim N(\mathbf{0}, \mathbf{Q}) & (5) \\ \mathbf{y}_t &= C\mathbf{x}_t + D\mathbf{y}_{t-1} + \mathbf{v}_t, & \mathbf{v}_t \sim N(\mathbf{0}, R) & (6) \end{aligned}$$

Consequence

Hidden states can now concentrate on modeling hidden factors while Markovian dependencies between successive outputs are now modeled by output-input feedbacks.

Graphical Model

L_{Methods}

$\mathbf{x}_t = A\mathbf{x}_{t-1} + B\mathbf{y}_{t-1} + \mathbf{w}_t,$	$\mathbf{w}_t \sim N(0, \mathbf{Q})$	(7)
$\mathbf{y}_t = C\mathbf{x}_t + D\mathbf{y}_{t-1} + \mathbf{v}_t,$	$\mathbf{v}_t \sim N(0, R)$	(8)

	・ロト・(型ト・(三ト・(三)・(ロト)		・ロ・・(通・・ミ・・ミ・・モ・・クへや・
L_Methods L_SSMs		└_Methods └─Bayesian SSMs	
Genetic network parameters		Outline	
Which are the parameters of interest for the network inference problem ? We have : $\mathbf{x}_t = A\mathbf{x}_{t-1} + B\mathbf{y}_{t-1} + \mathbf{w}_t,$ $\mathbf{y}_t = C\mathbf{x}_t + D\mathbf{y}_{t-1} + \mathbf{v}_t,$ Plugging in the definition of \mathbf{x}_t , \mathbf{y}_t can be we $\mathbf{y}_t = (CB + D)\mathbf{y}_{t-1} + \mathbf{w}_t$ where $\mathbf{r}_t = \mathbf{v}_t + C\mathbf{w}_t + CA\mathbf{x}_t.$	The genetic regulation $\mathbf{w}_t \sim N(0, \mathbf{Q})$ (9) $\mathbf{v}_t \sim N(0, \mathbf{R})$ (10) written \mathbf{r}_t -1	Introduction Biological Background Experiment Properties of the experimental data Methods The linear dynamical system model The Bayesian Approach to SSMs Variational-Bayes model fitting Results	 ロ> (雪> (言) (言) (言) 差 の文化
└─ Methods └─ Bayesian SSMs		└─Methods └─Bayesian SSMs	

Bayesian ?! Why ?

Bayesian methodology applied to Kalman filtering

- Assessing parameters (CB + D) significativity : a posteriori distribution instead of bootstrap
- Model fitting : ML estimation in low sampling conditions

Model comparison

- Why ? Determine hidden state space dimension
- Cross-validation and the low-sampling issue
- Evidence framework

	▲日▼▲国▼★加▼★加▼ 耐 もののの	ヘロマス 中学 人間マス 明子 人間マ
└─ Methods └─ Bayesian SSMs	└─Methods └─Bayesian SSMs	

The Evidence framework

Let's say we want to compare *n* models m_1, m_2, \ldots, m_n given observed data **y**.

$$p(m_k | \mathbf{y}) = \frac{p(\mathbf{y} | m_k) p(m_k)}{p(\mathbf{y})} = \frac{\text{likelihood * prior}}{\text{normalizing-constant}}$$

Assuming θ is the set of all the parameters, the likelihood $p(\mathbf{y}|m)$ can be written

$$p(\mathbf{y}|m) = \int p(\mathbf{y}|\theta, m) p(\theta|m) d\theta$$

Key idea

In the absence of a prior, evidence alone drives model selection [Mackay, 1991].

Occam's razor and the evidence

Parsimony : why does computing the evidence result in choosing simple models over complex ones ?

space of all data sets (picture from [Beal, 2003])

Lemethods		L Methods
Outline		Simplifying assumptions
		Remember our model :
Introduction Biological Background Experiment Properties of the experimental data		$ \begin{aligned} \mathbf{x}_t &= A \mathbf{x}_{t-1} + B \mathbf{y}_{t-1} + \mathbf{w}_t, & \mathbf{w}_t \sim N(0, \mathbf{Q}) & (11) \\ \mathbf{y}_t &= C \mathbf{x}_t + D \mathbf{y}_{t-1} + \mathbf{v}_t, & \mathbf{v}_t \sim N(0, R) & (12) \end{aligned} $
Methods The linear dynamical system model The Bayesian Approach to SSMs Variational-Bayes model fitting Results		 We make simplying assumptions on the noise covariance matrices : Q := Id (no loss of generality, A will adjust) R := diag(σ) (white noise, with sigma one-dimensional σ) and define the vector of parameters
		heta:=(A,B,C,D,R)
(ロ)(())(2)(⊙ p € 4 €	(ロ)(間)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)(注)
└─ Methods └─ Variational-Bayes model fitting		└─ Methods └─ Variational-Bayes model fitting
Simplifying assumptions		Goal
To fit the model, we want to maximize the log-likelihood (or log-evidence). But this is computationally intractable (too variables).	or many	
$ln p(\mathbf{y} m) = ln \int p(\mathbf{y}, \mathbf{x}, heta m) d\mathbf{x} d heta$	(13)	 Maximize <i>F</i> with respect to the free distributions q₁(x) and q₂(θ)
$= \ln \int q_1(\mathbf{x}) q_2(heta) rac{p(\mathbf{y},\mathbf{x}, heta m)}{q_1(\mathbf{x})q_2(heta)} d\mathbf{x} d heta$	(14)	 Joint maximization of q₁(x) (hidden process distribution likelihood) and q₂(θ) (parameter distribution likelihood)
$\geq \int q_1(\mathbf{x}) q_2(heta) { m ln} \left(rac{p(\mathbf{y}, \mathbf{x}, heta m)}{q_1(\mathbf{x}) q_2(heta)} ight) d\mathbf{x} d heta$	(15)	
$=\mathcal{F}(q_1(\mathbf{x}),q_2(heta),\mathbf{y})$	(16)	
where the step with the inequality follows from appealing Jensen's inequality.	to হ হ ৩৭৫	(ロ)(費)(注)(注)(注)
Lemethods		└─Methods └─Variational-Bayes model fitting
The Variational-Bayes EM Algorithm		Consequence
At iteration <i>I</i> , VB-E step Find $q_1^{(l+1)}(\mathbf{x})$ that maximzes		 Update hyperparameters and prior parameters to
$E\{\mathcal{F}(\boldsymbol{q}_1(\mathbf{x}),\boldsymbol{q}_2^{(l)}(\theta),\mathbf{y})\}$		maximize the lower bound on the marginal likelihood

By applying the VB-EM algorithm, we actually minimize the KL divergence between the approximation q₁(**x**)q₂(θ) and the true posterior p(**x**, θ|**y**, m) [Beal, 2003]

 $E\{\mathcal{F}(q_1^{(l+1)}(\mathbf{x}), q_2(\theta), \mathbf{y})\}$ and iterate until convergence.

L_{Results}

VB-M step Find $q_2^{(l+1)}(\theta)$ that maximzes

Model comparison

Results

Significant interactions

Biological consequences for the JunB - JunD pathway S

うせん 神子 ふゆう ふゆう ふりく

L_{References}

References

Matthew J. Beal. Variational Algorithms For Approximate Bayesian Inference.

PhD thesis, University of London, 2003.

- Matthew J. Beal, Francesco Falciani, Zoubin Ghahramani, Claudia Rangel, and David L. Wild. A bayesian approach to reconstructing genetic regulation networks with hidden factors. *Bioinformatics*, 2004.
- David J. C. Mackay. Bayesian interpolation. Neural Computation, 1991.

Summary

LSummary

- Kalman filtering : model causal dependencies in auto-correlated, multivariate, noisy data while allowing hidden states
- Bayesian methodology & Kalman filtering : assessing parameter significance, avoiding overfitting when selecting a model (Occam's razor)
- Model fitting with Variational Bayes EM algorithm
- Outlook
 - Test new model biologicaly and investigate what the hidden states account for.
 - Allow for non-linear interactions (expression saturation effects, multiplicative effects).

・ロト・西ト・ミト・ミト 油 のくの