

14 July 2006 3 / 34

¹Causality - Wikipedia, the free encyclopedia ²Preface to *Pearl (2000)*

Conditional Independence

Ewan Donnachie ()

Yule-Simpson Paradox

Ewan Donnachie ()

Definition (Conditional Independence)	
The random variables X and Y are said to be conditionally independent given the value of a third random variable Z, if $f(X Y,Z) = f(X Z)$.	

[●] Write: X ⊥ Y | Z

- Intuitively, *if Z* is known, Y adds no information about the value of X.
- The difference between independence and conditional independence is demonstrated by the Yule-Simpson Paradox.

Let n_{ij} , N_{ij} , $i \in \{1, 2\}$ and $j \in \{A, B\}$, be integers. Then it is possible that:

	$\frac{n_{1A}}{N_{1A}} < \frac{n_{1B}}{N_{1B}}$
and	$\frac{n_{2A}}{N_{2A}} < \frac{n_{2B}}{N_{2B}}$
but	$\frac{n_{1A} + n_{2A}}{N_{1A} + N_{2A}} > \frac{n_{1B} + n_{2B}}{N_{1B}N_{2B}}$

Applying this to the calculation of conditional probabilities leads to the Yule-Simpson paradox, credited to George Udny Yule (1903) and popularised by E.H. Simpson (1951).

Example: The Berkeley sex-bias case

The University of California, Berkeley, were sued for bias against women applying to grad school:

- In the university as a whole, men were more likely to be admitted to a course than women
- Examining individual departments (conditioning on the departments), there was no significant bias against women—in fact, most departments showed a slight bias against men Explanation:
 - women tended to apply for courses with low admission rates
 - men tended to apply for courses with high admission rates

Outline

5/34

14 July 2006

7/34

1 Introduction

- Conditional IndependenceGraphical Models
- Directed Acyclic Graphs

2 Estimating DAG Structures

- General Approach
- The PC AlgorithmExample

14 July 2006

6/34

14 July 2006 4 / 34

Graphical Models

Why Graphical Models?

assumptions;

functions; and

4 July 2006

11/34

Nodes: The vertices $(i \in V)$ of the graph (Nodes and vertices used interchangeably)

Edges: Connections $((i, j) \in E)$ between vertices

Path: A route along (directed) edges from one node to another (e.g. $i \rightarrow j \rightarrow k \rightarrow l$)

Definition (Graphical Model)

A graphical model G is a system of nodes and connecting edges: G = (V, E)

Conditional Independence Graph

Definition (Conditional Independence Graph)

The conditional independence graph of *X* is the **undirected** graph G = (V, E) where $V = \{1, 2, ..., v\}$ and (i, j) is not in the edge set *E* iff $X_i \perp X_j \mid X_{V \setminus \{i, j\}}$.

More informally:

- Start with the complete graph, where each node is connected to all other nodes
- Remove the edge between X_i and X_j if

 $X_i \perp X_j \mid rest$

N.B.: The conditional dependencies do not represent causal or directed relationships between variables.

The Local Markov Property

A graph has the local Markov property if, for every vertix *i*, with boundary a = bd(i) and *b* the set of remaining verties,

$$X_i \perp X_b \mid X_a$$

More informally, if:

X_i ⊥ rest | boundary

• Closely related to prediction—conditioned only on adjacent variables

The Pairwise Markov Property

A graph has the pairwise Markov property if, for all non-adjacent (not directly connected) vertices i and j,

14 July 2006 10 / 34

14 July 2006 12 / 34

14 July 2006

16/34

The role of graphs in probabilistic and statistical modeling is threefold:

to provide convenient means of expressing substantive

Ito facilitate efficient inferences from observations.

to facilitate economical representation of joint probability

 $X_i \perp\!\!\!\perp X_j \mid X_{V\smallsetminus\{i,i\}}$

• Undirected conditional independence graphs are formed using this definition

Therefore, if X_i and X_j are non-adjacent vertices:

- they are independent conditional on the remaining nodes
- X_j is irrelevant for the prediction of X_i, and vice-versa
- Separation Theorem: X_i ⊥⊥ X_j | rest ⇒ X_i ⊥⊥ X_j | X_a, where X_a are the vertices separating X_i and X_j.

The Global Markov Property

Let a, b and c be disjoint subsets of V. Then, a graph has the global Markov property if, whenever b and c are separated by a in the graph, then:

$$X_b \perp \!\!\!\perp X_c \mid X_a$$

• Global in the sense that the subsets are potentially arbitrary

Ewan Donnachie ()	Graphical Models and the PC Algorithm	□ › < @ › < 클 › < 클 › 클 14 July 2006	୬ ୯.୦~ 13 / 34	Ewan Donnachie ()	Graphical Models and the PC Algorithm	 < □ > < @ > < ≥ > < ≥ > < ≥ > < Ξ 14 July 2006 	তি থ 14/34
Equivalence of Ma	arkov Properties			Outline			
The three Markov properties: pairwise Markov, local Markov ar global Markov, are equivalent.		ocal Markov and	 Introduction Conditional Independen Graphical Models 				
 As the boundary s global Markov ⇒ 	et is always a separating local Markov	set,	Directed Acyclic Graphs				
• Local Markov \Longrightarrow	pairwise Markov			2 Estimating DAG S	Structures		
 By separation theo 	orem, pairwise Markov ==	⇒ global Markov		 General Appro The PC Algori Example 			

14 July 2006

15/34

Directed Acyclic Graphs

Definition (Directed Acyclic Graph)

A graph G = (V, E) is called a directed acyclic graph if all edges are directed and there are no cycles (i.e. it is impossible to return to any point).

- $X \to Y \implies X$ "causes" Y
- Various theorems—and background information—can be used to identify which conditional dependencies are causal in nature.
- Independent variables (i.e. no directed edge) may be dependent conditional on the remaining variables (Berkson's Paradox)

Types of Connection and *d*-separation

- **Serial Connection** A series of nodes: $i \rightarrow j \rightarrow k$
- Diverging Connection
- One node leads to several: $j \leftarrow i \rightarrow k$ One converging Connection
 - Several nodes lead to one path: $j \rightarrow i \leftarrow k$

Definition (d-separation)

A set Z is said to d-separate (directionally separate) X from Y iff Y blocks every path from a node in X to a node in Y

Ewan Donnachie ()	Graphical Models and the PC Algorithm	14 July 2006	17 / 34	Ewan Donnachie ()	Graphical Models and the PC Algorithm	14 July 2006	18 / 34
Properties of a D/	AG			Outline			
Definition (Faithfulne	ss)						
A distribution P is faithful to a DAG D if the all conditional independence relations for P can be derived from d -separation.				Introduction Conditional Independence			
 Faithful graphs can relations 	n be estimated using condition	onal independer	nce	 Graphical Models Directed Acyclic 			
 Direction means the nodes 	nat the graph is conditioned o	only on previous	S	2 Estimating DAG Str	uctures		
 Directed independ and not pairwise M 	ence graphs are therefore ba Iarkov property	ased on the loc	al	 General Approact The PC Algorithm Example 	s h n		
Definition (Skeleton of	of a DAG)						
The graph generated b undirected edges is ca	y replacing all directed edge lled a skeleton.	s of a DAG with	ı				
	• • • •	<##>> < ≥> < ≥> = ≥	. ૧૧૯			 □ > < @ > < ≥ > < ≥ > < ≡ 	. ૧૧૯
Ewan Donnachie ()	Graphical Models and the PC Algorithm	14 July 2006	19 / 34	Ewan Donnachie ()	Graphical Models and the PC Algorithm	14 July 2006	20 / 34

10 × 40 × 40 × 40 × 40 × 40 × 40 ×

Estimating DAG Structures

Suppose we have a multivariate data sample and assume:

- p variables and sample size n
- $X \sim N_p(\mu, \Sigma)$
- This multivariate normal distribution is faithful
- The underlying graph is sparse (i.e. not too many edges)

Then, the structure of a DAG can be recovered using conditional independence relations.

Pairwise vs. Local Markov Property

Estimate the skeleton using the pairwise Markov, not the local Markov property:

- For any given vertex, there are 2^{*p*-1} ways of partitioning the remaining vertices into "boundary" and "rest" groups
- If *p* is large (or *p* > *n*), this is both computationally and statistically infeasible
- In contrast, the pairwise property has only (k − 1) ways of partitioning the remaining vertices

Conditional Independence

Definition (Partial Correlation)

For $i \neq j \in 1, ..., p$, $k \in rest$, let $\rho_{i,j|k}$ be the partial correlation between X_i and X_j given X_r ; $r \in k$.

- As the distribution is multivariate normal,
 - $X_i \perp\!\!\!\perp X_j \mid X_r \quad \Leftrightarrow \quad \rho_{i,j|k}$
- A test for conditional independence is therefore a test for partial correlation between the variables
- The partial correlations can be estimated, for example, via regression

Test for Conditional Independence

Definition (Fisher's Z-Transform)

Let:

14 July 2006

14 July 2006

23/34

21/34

Then:

 Test for independence using classical test at significance level α Kalisch and Bühlmann show that the choice of α is not too important

 $\sqrt{n-|k|-3}|Z(i,j|k)| \sim N(0,1)$

 $Z(i,j|\mathbf{k}) = \frac{1}{2} \left(\frac{1+\hat{\rho}_{i,j|\mathbf{k}}}{1-\hat{\rho}_{i,j|\mathbf{k}}} \right)$

 Various other tests are available, using different approaches and for different distributions

> □ ▶ ◀ đ♥ ▶ ◀ 볼 ▶ ◀ 볼 ▶ 월 ∽) (* 14 July 2006 24 / 34

14 July 2006

Outline

Conditional Independence

• Directed Acyclic Graphs

Estimating DAG Structures

• Graphical Models

General Approach

• The PC Algorithm

• Example

Stopping level m

The PC Algorithm

Start with the complete undirected graph, \tilde{C} with vertices $V = X_1, ..., X_p$. Then:

- Set $\ell = -1$ and $C = \tilde{C}$
- 2 Increase ℓ by one. For all pairs of adjacent nodes:
 - Check for conditional independence
 - Remove edge (X_i, X_j) if $X_i \perp X_j | rest$
- Solution Repeat step 2 until $\ell = m$ or until each node has fewer than $\ell 1$ neighbours

14 July 2006 26 / 34

14 July 2006

14 July 2006

32/34

30 / 34

Let $m_r each \in \max \ell$, *m* denote the stopping level of the algorithm and *q* be the maximum number of neighbours. It can be shown that:

- The PC Algorithm constructs the true skeleton of the DAG
- 2 The stopping level is $m_r each \in q-1, 1$

Consistency of the PC Algorithm I

Let G be a DAG with probability distribution P. The following assumptions are made:

- The distribution is multivariate normal and is faithful w.r.t. G
- 2 The dimension is $p_n = O(n^a)$, $a \ge \infty$ → high dimensionality
- 3 The maximum number of neighbours, $q_n = O(n^{1-b})$, $0 < b \le 1$ → the graph is sparse
- The partial correlations (absolute values) are bounded from above and below:
 - → a regularity condition

14 July 2006 27 / 34 14 July 2006 28 / 34 Ewan Do Consistency of the PC Algorithm II Outline Denote by G_{skel} the true skeleton of a DAG G, and let the estimate Conditional Independence from the PC Algorithm be \hat{G}_{skel} . • Graphical Models Then, under the above assumptions, it can be shown that, for some • Directed Acyclic Graphs $C \ge 0$: $P(\hat{G}_{skel} = G_{skel}) = 1 - O(\exp(-Cn^{1-2d})) \rightarrow 1, n \rightarrow \infty$ Estimating DAG Structures

14 July 2006

14 July 2006

31/34

29/34

14 July 2006

25/34

Additionally, the stopping level is data dependent,

- General Approach
- The PC Algorithm
- Example

Example using Simulated Data

Ewan Donnachie ()

Construct an adjacency matrix describing the conditional independence relations contained in a randomly generated graph of dimension p.

Graphical Models and the PC Al

- Begin with a matrix of zeroes (i.e. no edges)
- Independent realisations of a Bernoulli random variable with parameter s determine which edges are connected. Call s the sparseness of the model
- For the edges in the graph (ones in the adjacency matrix), independent realisations of a Uniform[0.1, 1] distribution are used to model the partial correlations

Then, $X_1 = \epsilon_1 \sim N(0, 1)$, and the remaining nodes are calculated recursively as follows:

$$X_i = \sum_{k=1}^{i-1} A_{ik}X_k + \epsilon_i$$
 $i = 2, \dots, p$

Summary Statistics

The PC algorithm is to be compared with two alternative methods:

- Greedy Equivalent Search (GES)
- Maximum Weight Spanning Trees (MWST)
- The following statistics allow their characteristics to be compared:
- TDR True discovery rate, the proportion of edges in the estimated model that are edges in the true model
- FPR False positive rate, the proportion of edges in the estimated model that have been falsely identified
- TPR True positive rate, the proportion of true edges that have been identified by the model

Results

Method	ave[TPR]	ave[FPR]	ave[TDR]
PC	0.57(0.06)	0.02(0.01)	$0.91 \ (0.05)$
GES	0.85(0.05)	0.13(0.04)	$0.71 \ (0.07)$
MWST	0.66(0.07)	0.06(0.01)	0.78(0.06)

The PC algorithm:

Ewan Donnachie (

- achieves much higher TDR than GES or MWST
- identifies a lower proportion of the true nodes, but also has fewer false positives

Bibliography

Ewan Donnachie ()

14 July 2006 33 / 34

- Kalisch, M and Bühlmann, B (2006). Estimating high-dimensional directed acyclic graphs with the PC-Algorithm.
- Pearl, J (2000). *Causality: Models, Reasoning, and Inference.* Cambridge University Press
- Whittaker, J. (1990). *Graphical Models in Applied Multivariate Statistics*. Wiley, Chicester.
- Lauritzen, S (2005). *Graphical Models and Inference*. Lecture notes from a course given at Oxford University.

14 July 2006 34 / 34