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The Problem with Causality Outline

“Causality is the centerpiece of the universe”’

@ ntroduction
@ Conditional Independence

“The central aim of many studies ... is the elucidation of
cause-effect relationships between variables or events”?

@ Criticism of statistical science: focus on probabilistic and statistical

inference at the expense of causational enquiry

Causality - Wikipedia, the free encyclopedia
2Preface to Pearl (2000)
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Conditional Independence

Definition (Conditional Independence)

Yule-Simpson Paradox

Let nj, Nj, i € {1,2} and j € {A, B}, be integers. Then it is possible that:

The random variables X and Y are said to be conditionally ,T;—A < ,T;—B
independent given the value of a third random variable Z, if 1A 1B
f(XIY, Z) = f(X|Z). and Mea s
Noa  Nog
@ Write: X LY |Z but
@ Intuitively, if Z is known, Y adds no information about the value of Ma +M2a  NMiB + Nop

X.
@ The difference between independence and conditional

Nia+Noa = NigNog
Applying this to the calculation of conditional probabilities leads to the

independence is demonstrated by the Yule-Simpson Paradox. Yule-Simpson paradox, credited to George Udny Yule (1903) and

popularised by E.H. Simpson (1951).

Example: The Berkeley sex-bias case Outline
The University of California, Berkeley, were sued for bias against o Introduction
women applying to grad school:
@ In the university as a whole, men were more likely to be admitted @ Graphical Models

to a course than women
@ Examining individual departments (conditioning on the

departments), there was no significant bias against women—in

fact, most departments showed a slight bias against m
Explanation:

» women tended to apply for courses with low admission

en

rates

> men tended to apply for courses with high admission rates
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Graphical Models

Nodes: The vertices (i € V) of the graph
(Nodes and vertices used interchangeably)
Edges: Connections ((i,j) € E) between vertices
Path: A route along (directed) edges from one node to another

(eg. i—>j—o k-l

Definition (Graphical Model)

A graphical model G is a system of nodes and connecting edges:
G=(V,E)

Why Graphical Models?

The role of graphs in probabilistic and statistical modeling is threefold:

@ to provide convenient means of expressing substantive
assumptions;

@ to facilitate economical representation of joint probability
functions; and

@ to facilitate efficient inferences from observations.

Conditional Independence Graph
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Definition (Conditional Independence Graph)

The conditional independence graph of X is the undirected graph
G=(V,E)where V={1,2,...v} and (i,j) is not in the edge set E iff
Xi 1L X; | Xvyijy-

o/4
The Pairwise Markov Property
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A graph has the pairwise Markov property if, for all non-adjacent (not
directly connected) vertices i and j,

Xi 1L X; | Xvyijy

More informally:

@ Start with the complete graph, where each node is connected to
all other nodes

@ Remove the edge between X; and X; if
Xi 1L X; | rest
N.B.: The conditional dependencies do not represent causal or

directed relationships between variables.

Ewan Donnachie () 14 July 2006

The Local Markov Property

A graph has the local Markov property if, for every vertix i, with
boundary a = bd(i) and b the set of remaining verties,

Xi 1L Xp | Xz

More informally, if:
X; L rest | boundary

@ Closely related to prediction—conditioned only on adjacent
variables

Equivalence of Markov Properties
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The three Markov properties: pairwise Markov, local Markov and
global Markov, are equivalent.

@ As the boundary set is always a separating set,
global Markov = local Markov
@ Local Markov = pairwise Markov
@ By separation theorem, pairwise Markov = global Markov
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@ Undirected conditional independence graphs are formed using
this definition
Therefore, if X; and X; are non-adjacent vertices:
@ they are independent conditional on the remaining nodes
@ X is irrelevant for the prediction of X;, and vice-versa

@ Separation Theorem: X; 1L X; | rest = X; 1L X; | X5, where X, are
the vertices separating X; and X;.

Ewan Donnachie ()
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The Global Markov Property
Let a, b and c be disjoint subsets of V. Then, a graph has the global
Markov property if, whenever b and c are separated by a in the graph,
then:
Xp L X | Xa
@ Global in the sense that the subsets are potentially arbitrary
Ewan Donnachie () 14 July 2006 14/34
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@ Introduction

@ Directed Acyclic Graphs
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Directed Acyclic Graphs

Definition (Directed Acyclic Graph)

A graph G = (V, E) is called a directed acyclic graph if all edges are
directed and there are no cycles (i.e. it is impossible to return to any
point).

e X—>Y = Xc‘causes"Y

@ Various theorems—and background information—can be used to
identify which conditional dependencies are causal in nature.

@ Independent variables (i.e. no directed edge) may be dependent
conditional on the remaining variables (Berkson’s Paradox)

Properties of a DAG
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Definition (Faithfulness)

A distribution P is faithful to a DAG D if the all conditional
independence relations for P can be derived from d—separation.

17/34 Ewan Donnachie ()

@ Faithful graphs can be estimated using conditional independence
relations

@ Direction means that the graph is conditioned only on previous
nodes

@ Directed independence graphs are therefore based on the local
and not pairwise Markov property

Definition (Skeleton of a DAG)

The graph generated by replacing all directed edges of a DAG with
undirected edges is called a skeleton.

Ewan Donnachie ()

Estimating DAG Structures

Suppose we have a multivariate data sample and assume:
@ p variables and sample size n
® X~ Ny(p, )
@ This multivariate normal distribution is faithful
@ The underlying graph is sparse (i.e. not too many edges)

Then, the structure of a DAG can be recovered using conditional
independence relations.

Conditional Independence

Definition (Partial Correlation)

Fori#je1,...,p, k € rest, let p;x be the partial correlation between
Xj and X; given X;;r € k.
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@ As the distribution is multivariate normal,
XiL Xi| Xr e  pijk

@ A test for conditional independence is therefore a test for partial
correlation between the variables

@ The partial correlations can be estimated, for example, via
regression

Ewan Donnachie ()
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Types of Connection and d—separation

@ Serial Connection
A series of nodes: i — j — k

@ Diverging Connection
One node leads to several: j « i — k

© Converging Connection
Several nodes lead to one path: j — i « k

Definition (d—separation)
A set Z is said to d—separate (directionally separate) X from Y iff Y
blocks every path from a node in X to a node in Y

14 July 2006 18/34

Outline

@ Estimating DAG Structures

@ General Approach
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Pairwise vs. Local Markov Property

Estimate the skeleton using the pairwise Markov, not the local Markov
property:
@ For any given vertex, there are 2P~" ways of partitioning the
remaining vertices into “boundary” and “rest” groups
@ If pislarge (or p > n), this is both computationally and statistically
infeasible
@ In contrast, the pairwise property has only (k — 1) ways of
partitioning the remaining vertices

Ewan Donnachie () 14 July 2006 22/34

Test for Conditional Independence

Definition (Fisher’s Z-Transform)

Let:
1

1 e A
20,1k = 5 (15 2%)

1 - Pijik
Then:

vn — |kl =312(i,jlk)| ~ N(O,1)

@ Test for independence using classical test at significance level a
Kalisch and Bihimann show that the choice of a is not too
important

@ Various other tests are available, using different approaches and
for different distributions
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Outline

@ Estimating DAG Structures

@ The PC Algorithm

Stopping level m
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Let mreach € max ¢, m denote the stopping level of the algorithm and q
be the maximum number of neighbours. It can be shown that:

@ The PC Algorithm constructs the true skeleton of the DAG
@ The stopping level is mreach € g — 1,1
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Consistency of the PC Algorithm Il

Denote by Gge the true skeleton of a DAG G, and let the estimate
from the PC Algorithm be Ggke-

Then, under the above assumptions, it can be shown that, for some
C=>0:

P(Gskel = Gsker) = 1 — O(exp(-Cn'29)) —1, n> o0
Additionally, the stopping level is data dependent,
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Example using Simulated Data

Construct an adjacency matrix describing the conditional
independence relations contained in a randomly generated graph of
dimension p.
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@ Begin with a matrix of zeroes (i.e. no edges)

@ Independent realisations of a Bernoulli random variable with
parameter s determine which edges are connected. Call s the
sparseness of the model

@ For the edges in the graph (ones in the adjacency matrix),

independent realisations of a Uniform[0.1, 1] distribution are used
to model the partial correlations

Then, X; =e1 ~ N(0,1), and the remaining nodes are calculated
recursively as follows:

i1
Xi= ) AkXcte i=2...p
k-1
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The PC Algorithm

Start with the complete undirected graph, C with vertices
V=2X,...,Xp. Then:

Q@ Sett=-1andC=2C
@ Increase ¢ by one. For all pairs of adjacent nodes:

» Check for conditional independence
» Remove edge (X;, X;) if Xi 1L X;|rest

© Repeat step 2 until £ = m or until each node has fewer than £ — 1

neighbours
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Consistency of the PC Algorithm |

Let G be a DAG with probability distribution P. The following
assumptions are made:
@ The distribution is multivariate normal and is faithful w.r.t. G
@ The dimension is p, = O(n?), a > «
— high dimensionality

© The maximum number of neighbours, g, = O(n'?), 0 < b < 1

— the graph is sparse
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© The partial correlations (absolute values) are bounded from above

and below:
— aregularity condition
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9 Estimating DAG Structures

@ Example
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Summary Statistics

The PC algorithm is to be compared with two alternative methods:

@ Greedy Equivalent Search (GES)
@ Maximum Weight Spanning Trees (MWST)
The following statistics allow their characteristics to be compared:

TDR True discovery rate, the proportion of edges in the esti-

mated model that are edges in the true model

FPR False positive rate, the proportion of edges in the esti-
mated model that have been falsely identified
TPR True positive rate, the proportion of true edges that have

been identified by the model
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Results Bibliography

Method | ave[TPR] | ave[FPR]| ave[TDR)]
PC | 0.57 (0.06) | 0.02 (0.01) (0.05)

GES | 0.85 (0.05) | 0.13 (0.04) | 0.71 (0.07) @ Pearl, J (2000). Causality: Models, Reasoning, and Inference.
(0.07) (0.01) (0.06)

@ Kalisch, M and Buhlmann, B (2006). Estimating high-dimensional
directed acyclic graphs with the PC-Algorithm.

J— i Cambridge University Press
MWST | 0.66 (0.07) | 0.06 (0.01 o Whittaker, J. (1990). Graphical Models in Applied Multivariate

Statistics. Wiley, Chicester.
The PC algorithm: @ Lauritzen, S (2005). Graphical Models and Inference. Lecture
e achieves much higher TDR than GES or MWST notes from a course given at Oxford University.

@ identifies a lower proportion of the true nodes, but also has fewer
false positives




