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The Problem with Causality

“Causality is the centerpiece of the universe” 1

“The central aim of many studies . . . is the elucidation of
cause-effect relationships between variables or events” 2

Criticism of statistical science: focus on probabilistic and statistical
inference at the expense of causational enquiry

1Causality - Wikipedia, the free encyclopedia
2Preface to Pearl (2000)
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Conditional Independence

Definition (Conditional Independence)
The random variables X and Y are said to be conditionally
independent given the value of a third random variable Z , if
f(X |Y ,Z) = f(X |Z).

Write: X y Y | Z
Intuitively, if Z is known, Y adds no information about the value of
X .
The difference between independence and conditional
independence is demonstrated by the Yule-Simpson Paradox.
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Yule-Simpson Paradox

Let nij ,Nij , i ∈ {1,2} and j ∈ {A ,B}, be integers. Then it is possible that:

n1A

N1A
<

n1B

N1B

and n2A

N2A
<

n2B

N2B

but
n1A + n2A

N1A + N2A
>

n1B + n2B

N1BN2B

Applying this to the calculation of conditional probabilities leads to the
Yule-Simpson paradox, credited to George Udny Yule (1903) and
popularised by E.H. Simpson (1951).
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Example: The Berkeley sex-bias case

The University of California, Berkeley, were sued for bias against
women applying to grad school:

In the university as a whole, men were more likely to be admitted
to a course than women
Examining individual departments (conditioning on the
departments), there was no significant bias against women—in
fact, most departments showed a slight bias against men
Explanation:

I women tended to apply for courses with low admission rates
I men tended to apply for courses with high admission rates
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Graphical Models

Nodes: The vertices (i ∈ V ) of the graph
(Nodes and vertices used interchangeably)

Edges: Connections ((i, j) ∈ E) between vertices
Path: A route along (directed) edges from one node to another

(e.g. i → j → k → l)

Definition (Graphical Model)
A graphical model G is a system of nodes and connecting edges:
G = (V ,E)
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Why Graphical Models?

The role of graphs in probabilistic and statistical modeling is threefold:
1 to provide convenient means of expressing substantive

assumptions;
2 to facilitate economical representation of joint probability

functions; and
3 to facilitate efficient inferences from observations.

Ewan Donnachie () Graphical Models and the PC Algorithm 14 July 2006 10 / 34

Conditional Independence Graph

Definition (Conditional Independence Graph)
The conditional independence graph of X is the undirected graph
G = (V ,E) where V = {1,2, . . . v} and (i, j) is not in the edge set E iff
Xi y Xj | XVr{i,j}.

More informally:
Start with the complete graph, where each node is connected to
all other nodes
Remove the edge between Xi and Xj if

Xi y Xj | rest

N.B.: The conditional dependencies do not represent causal or
directed relationships between variables.
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The Pairwise Markov Property

A graph has the pairwise Markov property if, for all non-adjacent (not
directly connected) vertices i and j,

Xi y Xj | XVr{i,j}

Undirected conditional independence graphs are formed using
this definition

Therefore, if Xi and Xj are non-adjacent vertices:
they are independent conditional on the remaining nodes
Xj is irrelevant for the prediction of Xi , and vice-versa
Separation Theorem: Xi y Xj | rest ⇒ Xi y Xj | Xa , where Xa are
the vertices separating Xi and Xj .
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The Local Markov Property

A graph has the local Markov property if, for every vertix i, with
boundary a = bd(i) and b the set of remaining verties,

Xi y Xb | Xa

More informally, if:
Xi y rest | boundary

Closely related to prediction—conditioned only on adjacent
variables
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The Global Markov Property

Let a, b and c be disjoint subsets of V . Then, a graph has the global
Markov property if, whenever b and c are separated by a in the graph,
then:

Xb y Xc | Xa

Global in the sense that the subsets are potentially arbitrary
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Equivalence of Markov Properties

The three Markov properties: pairwise Markov, local Markov and
global Markov, are equivalent.

As the boundary set is always a separating set,
global Markov =⇒ local Markov
Local Markov =⇒ pairwise Markov
By separation theorem, pairwise Markov =⇒ global Markov
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Directed Acyclic Graphs

Definition (Directed Acyclic Graph)
A graph G = (V ,E) is called a directed acyclic graph if all edges are
directed and there are no cycles (i.e. it is impossible to return to any
point).

X → Y =⇒ X “causes” Y
Various theorems—and background information—can be used to
identify which conditional dependencies are causal in nature.
Independent variables (i.e. no directed edge) may be dependent
conditional on the remaining variables (Berkson’s Paradox)
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Types of Connection and d−separation

1 Serial Connection
A series of nodes: i → j → k

2 Diverging Connection
One node leads to several: j ← i → k

3 Converging Connection
Several nodes lead to one path: j → i ← k

Definition (d−separation)
A set Z is said to d−separate (directionally separate) X from Y iff Y
blocks every path from a node in X to a node in Y
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Properties of a DAG

Definition (Faithfulness)
A distribution P is faithful to a DAG D if the all conditional
independence relations for P can be derived from d−separation.

Faithful graphs can be estimated using conditional independence
relations
Direction means that the graph is conditioned only on previous
nodes
Directed independence graphs are therefore based on the local
and not pairwise Markov property

Definition (Skeleton of a DAG)
The graph generated by replacing all directed edges of a DAG with
undirected edges is called a skeleton.
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Estimating DAG Structures

Suppose we have a multivariate data sample and assume:
p variables and sample size n
X ∼ Np(µ,Σ)

This multivariate normal distribution is faithful
The underlying graph is sparse (i.e. not too many edges)

Then, the structure of a DAG can be recovered using conditional
independence relations.
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Pairwise vs. Local Markov Property

Estimate the skeleton using the pairwise Markov, not the local Markov
property:

For any given vertex, there are 2p−1 ways of partitioning the
remaining vertices into “boundary” and “rest” groups
If p is large (or p > n), this is both computationally and statistically
infeasible
In contrast, the pairwise property has only (k − 1) ways of
partitioning the remaining vertices
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Conditional Independence

Definition (Partial Correlation)
For i , j ∈ 1, . . . ,p, k ∈ rest , let ρi,j|k be the partial correlation between
Xi and Xj given Xr ; r ∈ k .

As the distribution is multivariate normal,
Xi y Xj | Xr ⇔ ρi,j|k

A test for conditional independence is therefore a test for partial
correlation between the variables
The partial correlations can be estimated, for example, via
regression
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Test for Conditional Independence

Definition (Fisher’s Z-Transform)
Let:

Z(i, j|k ) =
1
2

(
1 + ρ̂i,j|k

1 − ρ̂i,j|k

)
Then: √

n − |k | − 3 |Z(i, j|k )| ∼ N(0,1)

Test for independence using classical test at significance level α
Kalisch and Bühlmann show that the choice of α is not too
important
Various other tests are available, using different approaches and
for different distributions
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The PC Algorithm

Start with the complete undirected graph, C̃ with vertices
V = X1, . . . ,Xp. Then:

1 Set ` = −1 and C = C̃
2 Increase ` by one. For all pairs of adjacent nodes:

I Check for conditional independence
I Remove edge (Xi ,Xj) if Xi y Xj | rest

3 Repeat step 2 until ` = m or until each node has fewer than ` − 1
neighbours
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Stopping level m

Let mreach ∈ max `,m denote the stopping level of the algorithm and q
be the maximum number of neighbours. It can be shown that:

1 The PC Algorithm constructs the true skeleton of the DAG
2 The stopping level is mreach ∈ q − 1,1
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Consistency of the PC Algorithm I

Let G be a DAG with probability distribution P. The following
assumptions are made:

1 The distribution is multivariate normal and is faithful w.r.t. G
2 The dimension is pn = O(na), a ≥ ∞
→ high dimensionality

3 The maximum number of neighbours, qn = O(n1−b), 0 < b ≤ 1
→ the graph is sparse

4 The partial correlations (absolute values) are bounded from above
and below:
→ a regularity condition
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Consistency of the PC Algorithm II

Denote by Gskel the true skeleton of a DAG G, and let the estimate
from the PC Algorithm be Ĝskel .
Then, under the above assumptions, it can be shown that, for some
C ≥ 0:

P(Ĝskel = Gskel) = 1 −O(exp
(
−Cn1−2d

)
) → 1, n→∞

Additionally, the stopping level is data dependent,
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Example using Simulated Data
Construct an adjacency matrix describing the conditional
independence relations contained in a randomly generated graph of
dimension p.

Begin with a matrix of zeroes (i.e. no edges)
Independent realisations of a Bernoulli random variable with
parameter s determine which edges are connected. Call s the
sparseness of the model
For the edges in the graph (ones in the adjacency matrix),
independent realisations of a Uniform[0.1,1] distribution are used
to model the partial correlations

Then, X1 = ε1 ∼ N(0,1), and the remaining nodes are calculated
recursively as follows:

Xi =

i−1∑
k−1

Aik Xk + εi i = 2, . . . ,p
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Summary Statistics

The PC algorithm is to be compared with two alternative methods:
Greedy Equivalent Search (GES)
Maximum Weight Spanning Trees (MWST)

The following statistics allow their characteristics to be compared:

TDR True discovery rate, the proportion of edges in the esti-
mated model that are edges in the true model

FPR False positive rate, the proportion of edges in the esti-
mated model that have been falsely identified

TPR True positive rate, the proportion of true edges that have
been identified by the model
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Results

The PC algorithm:
achieves much higher TDR than GES or MWST
identifies a lower proportion of the true nodes, but also has fewer
false positives
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