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Problem

find differentially expressed genes using DNA microarrays

number of genes much larger than number of independent
samples in study (p >> n)

problem of testing multiple hypotheses simultaneously

analysing microarray data requires control of type 1 errors
including balance between finding too many false-positive
results and too little significant results ⇒ FDR
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Multiple Testing

Testing m Hypothesis, for m0 of them, the null is true

H0 : gene is not differentially expressed

V is equivalent to type 1 error, false-positive results

T is equivalent to type 2 error, false-negative results

W number of not rejected hypothesis,
R number of rejected hypothesis
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FDR and pFDR (positive false discovery rate)

expected rate of false-positive results of all positive results

FDR =

{
E

(
V
R

)
falls R > 0

0 falls R = 0
= E

[
V

R
|R > 0

]
P (R > 0)

if P (R = 0) > 0 → Definition of FDR is useless → pFDR

pFDR = E

(
V

R
|R > 0

)
rate at which discoveries are false
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Controlling the FDR

Benjamini and Hochberg (1995) propose a algorithm for selecting
the hypotheses that are significant that controls the FDR:

let H1, . . . ,HG denote the null hypotheses to be tested, and
p1 ≤ p2 ≤ . . . ≤ pG denote the corresponding, ordered,
independent p-values

let α denote the rate at which it is desired to control the FDR

for selecting significant hypotheses first define level α and
find k̂ = max

{
1 ≤ k ≤ G : pk ≤ αk

G

}
reject all null hypotheses with indizes 1, . . . , k

strong control of the FDR at level α when the p-values are
independent and uniformly distributed
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Basics

Estimating the FDR by estimating π0 (which is the rate of
the true null hypothesis) and the joint distribution of the p -
values

the p - values of the true null hypothesis are uniformly
distributed on the interval [0, 1]
Theorem from Bayes:

π (θ|x) =
f (x|θ) g (θ)∫
f (x|θ) g (θ) dθ

π (θ|x) posteriori distribution
g (θ) priori distribution
f (x|θ) joint distribution

sampling from posteriori distribution by MCMC
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Assumptions

suppose

we have independent test statistics T = (T1, . . . , Tm) for
testing m hypotheses

we have corresponding indicator variables H1, . . . ,Hm where

Hi =

{
0 if the null hypotheses is true

1 if the alternative hypotheses is true

H1, . . . ,Hm are a random sample from a Bernoulli
distribution where P (Hi = 0) = π0; i = 1, . . . ,m

Ti|Hi = 0 ∼ f0 and Ti|Hi = 1 ∼ f1

for densities f0 and f1

we have the same rejection region R for each of the m
hypotheses
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Estimation of pFDR

by a Theorem from Storey (2002):

pFDR = P (H = 0|T ∈ R)

=
π0P (T ∈ R|H = 0)

P (T ∈ R)

Treating H1, . . . ,Hm as parameters, we see that the definition of
pFDR are posterior probabilities.

π0 is the priori probability for a hypothesis to be a null hypothesis
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Estimation a Gene - specific FDR

Application to a general linear model

model
E[Yi] = β0j + β1jXij

scientific focus: making inference about βig; fitting the model
using OLS ⇒ set of statistics T11, . . . , T1p,
where T1j is the least squares estimator of β1j divided by its
estimated standard error (j = 1, . . . , p)

Using normal distribution with mean 0 and variance 1 as the
null distribution for testing H0g : β1g = 0 we get G p - values
p1, . . . ; pG
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apply Algorithm of Storey (2002) to estimate the gene-specific
FDR:

fit
E[Yi] = β0j + β1jXij

for each gene g, g = 1, . . . , G

calculate a p - value using
β̂1g

ŜE(β̂1g) ,

let p1, . . . , pG denote the G p - values

Estimate π0, the proportion of differentially expressed genes
and FP (x), the cdf of the p - values by

π̂0 (λ) = W (λ)
(1−λ)G and F̂P (x) = min{R(γ),1}

G

where R (γ) = # {pi ≤ γ} and W (λ) = # {pi > λ}

all rejection regions are of the form [0, γ], γ ≥ 0
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for any rejection region of interest [0, γ], estimate pFDR as

pF̂DR (γ) =
π̂0 (λ) γ

F̂P (γ) {1− (1− γ)m}

Estimate FDR as

F̂DRγ =
π̂0 (λ) γ

F̂P (γ)
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Controlling procedure by Storey (2004)

to make sure, that the number of false-positive results does not
exceed a previously defined number, it is necessary that FDR ≤ α

define a threshold function

tα (F ) = sup {0 ≤ t ≤ 1 : F (t) ≤ α}

where F is a function

=⇒

thresholding rule

tα

(
F̂DR

)
= sup

{
0 ≤ t ≤ 1 : F̂DR (t) ≤ α

}

reject null hypotheses pi ≤ tα (FDRγ)
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when the p - values are independent, the thresholding rule
provides strong control of the false discovery rate at level α

when λ = 0 one obtains the Benjamini and Hochberg (1995)
procedure
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Joint hierarchical model for (Y,X)

An alternative to fitting G models of the form
E[Yi] = β0j + β1jXij , is to treat Xi as independent variables
and Yi as the response variable for the ith subject.
i = 1, . . . , n
⇒ hierarchical normal regression model

At the first stage of the model:

Yi
ind∼ N

(
XT

i β, σ2
)

For the second stage of the model, we introduce binary -
valued latent variables γ1, . . . , γp; conditional on them

βi|γi ∼ (1− γi) N
(
0, τ2

i

)
+ γiN

(
0, c2

i τ
2
i

)
where c2

1, . . . , c
2
p and τ2

1 , . . . , τ2
p are variance components.
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If γj = 1, then this indicates that the jth covariate should be
included in the model,
while γj = 0 implies that it should be excluded

assume an inverse gamma (IG) conjugate prior for σ2 and that
γi is distributed as Bernoulli with probability pi; i = 1, . . . , p

⇒ multilevel model:

Yi
ind∼ N

(
XT

i β, σ2
)

(1)

βi|γi ∼ (1− γi) N
(
0, τ2

i

)
+ γiN

(
0, c2

i τ
2
i

)
(2)

γi
ind∼ Be (pi) (3)

σ ∼ IG
(ν

2
,
ν

2

)
(4)
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Gibbs sampling

for calculating the posterior distribution: instead of sampling from
the joint posteriori distribution, sampling from the fully conditional
distributions

posterior distribution of β given Y, σ, γ is

N(Aγ (σ)−2
XT Xβ̂LS , Aγ)

where A =
(
σ−2XT X + D−1R−1D−1

)
variance σ2 is sampled from its posterior given γ and β,
which is

IG(n + ν
2 ,

(
Y −XT β

)T (
Y −XT β

)
+ νλ

2 )
vector γ is sampled componentwise from the posterior
distribution, the ith component (i = 1, . . . , G) being
Bernoulli with probability

P
(
γi = 1|γ(i), β, σ

)
=

P (βi|γi = 1) pi

P (βi|γi = 1) pi + P (βi|γi = 0) (1− pi)
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from the point of view of selecting variables, we wish to
consider the posterior distribution of γ1, . . . , γp

conditional distribution of
β̂l given σl, γl = 0 is N

(
0, σ2

l + τ2
l

)
, while that of

βl given σl, γl = 1 is N
(
0, σ2

l + c2
l τ

2
l

)
the relative heights of these two densities at zero is

ul =
{

σ2
l /τ2

l +c2
l

σ2
l /τ2

l +1

}1/2

⇒ ul = P
(
γl = 1|β̂l = 0

)
, which is 1− locFDR of the lth

variable at zero.

the FDR based on β̂l being in a critical region R is

FDR (R) =

∫
x∈R

{
2π

(
σ2

l + c2
l τ

2
l

)}−1/2
exp

{
−x2

σ2
l +c2

l τ2
l

}
dx∫

x∈R
{2π (σ2

l + τ2
l )}−1/2

exp
{

−x2

σ2
l +τ2

l

}
dx
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Some points to note

characterization of the FDR based on a Bayesian framework
→ Bayesian framework provides a natural method of
regularization

we have utilized a variable selection framework to derive the
FDR → procedures that select variables based on controlling
the FDR will have certain risk optimality properties in the
hierarchical model described above

we have formulated a joint model and have derived FDR as a
univariate quantity within this joint framework → no need to
extend FDR to situations that are higher-dimensional if we
use a univariate model

in the framework presented here, dependence between the
predictor variables is naturally incorporated into the definition
of FDR
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Bayesian variable selection procedure

Because we are using a Gibbs sampling algorithm in order do
derive the posterior distribution in the model, the FDR can be
derived easily:

fixing an rejection region R, we simply count the proportion
of MCMC samples in which the γ = 0 and β ∈ R

based on the posterior distribution, we can develop a
univariate variable selection procedure

we can rank P (γi = 0|Y1, . . . , Yn) , i = 1, . . . , G and select
the variables with small posterior probabilities
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Algorithm:

1 set level to be α and fix a rejection region R

2 fit model (1)-(4) using MCMC methods

3 based on the MCMC output, calculate
ppi = P (γi = 0|β̂i ∈ R)

4 let pp(1) ≤ · · · ≤ pp(G) denote the sorted values of
pp1, . . . , ppn in increasing order

5 find k̂ = max
{
1 ≤ k ≤ G : ppk ≤ αk

G

}
, select variables

1, . . . , G

if the predictor variables are orthogonal or whenever
P (γi = 0|β̂i ∈ R) is an monotonic function of the univariate p -
values the algorithm is equivalent to the Benjamini and Hochberg
(1995) procedure.
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Risk inflation

Here we consider the hierarchical regression model from section 3
and study the properties of the variable selection procedure from a
decision theoretic perspective.

Define R(β, β̂) to be the predictive risk of the estimator β̂,

R(β, β̂) = Eβ

∣∣∣Xβ̂ −Xβ
∣∣∣2

the vector γ of latent variables can take 2p possible values.
Let ζ = (ζ1, . . . , ζG) denote the true model, so
ζi = I (βi 6= 0) ; i = 1, . . . ;G

The risk inflation is given by

RI (γ) = sup
β

R(β, β̂γ)

R(β, β̂ζ)

False discovery rate
and model selection

Elisabeth Gnatowski

Definition of the FDR

Multiple Testing

FDR and pFDR

Controlling the FDR

Estimation of the FDR

Gene - specific FDR

Variable Selection

A decision theoretic
framework

Simulation studies

p < n

p > n

RI (γ) = sup
β

R(β, β̂γ)

R(β, β̂ζ)
(5)

the denominator R(β, β̂ζ) is the lowest possible risk, since it
represents the risk for the ideal model

the risk inflation reflects the worst-possible increase in risk
with using a combination selection/estimation procedure

→ we wish to find procedures that minimize (5) over a large
class of procedures
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Foster and George (1994): for the case of diagonal XT X the
optimal rule that minimizes (5) is a threshold rule that selects
the top (2 log G) variables based on the absolute magnitude
of the univariate statistics

→ equivalently, the optimal threshold rule selects the 2 log G
variables with the smallest univariate p-values

the Benjamini-Hochberg (1995) procedure is a
data-dependent threshold rule that is a special case of the
class of FDR-controlling procedures proposed by Storey et al
(2004)

→ thus, when k̂ ≈ (2 log G), then the Benjamini-Hochberg
(1995) procedure will be the optimal from a risk inflation
framework

in general case where XT X is nonorthogonal: the RI is
bounded from below by 2 log G− o(log G)
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First situation: p < n

we consider the model E[Yi] = β0j + β1jXij

n=50 and p=10

the true model is E[Y ] = X1 + 1.5X2 + 3X3

the variance of the error term in all simulation studies is one,
250 simulations

the predictors were generated with correlation
ρ = 0.1, 0.3, 0.5, 0.7, 0.9

a ROC curve was constructed based on taking the top k
variables (k=1,2,3,4,5 and 10) based on the estimated
posterior probability
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Risk behavior
False discovery rate
and model selection

Elisabeth Gnatowski

Definition of the FDR

Multiple Testing

FDR and pFDR

Controlling the FDR

Estimation of the FDR

Gene - specific FDR

Variable Selection

A decision theoretic
framework

Simulation studies

p < n

p > n

Second situation: p > n
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