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Discriminant Analysis

The purpose of discriminant analysis is to assign objects to one

of several (K) groups based on a set of measurements

X = (X1,X2, ...,Xp) which are obtained from each object

• each object is assumed to be a member of one (and only one)

group 1 ≤ k ≤ K

• an error is incurred if the object is attached to the wrong group

• the measurements of all objects of one class k are

characterized by a probability density fk(X)

• we want to �nd a rule to decide for every object to which class

it belongs to
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Example

A group of people consist of male and female persons

⇒ K = 2

• from each person the data of their weight and height is

collected

⇒ p = 2

• the gender is unknown in the data set

• we want to classify the gender for each person from the weight

and height

⇒ discriminant analysis

• a classi�cation rule is needed (discriminant function) to choose

the group for each person

• to construct this function a training sample is used in which

the gender is already known
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Example
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Class distribution

• the distribution of the measurements X are seldom identical in

each class

⇒ conditional distribution for each class k

• most often applied classi�cation rules are based on the

multivariate normal distribution

fk(X) = f (X | k) =
1

(2π)p/2|
∑

k |1/2
e−

1

2
(x−µk)T

P−1
k

(x−µk)

where µk and Σk are the class k (1 ≤ k ≤ K ) population
mean vector and covariance matrix

• fk(X) are seldom known
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Prior and unconditional distribution

There might be some prior knowledge about the probability of

observing a member of class k

• prior probability

πk with π1 + ... + πk = 1

• if the prior probabilities are equal for each k

⇒ leads to Maximum-Likelihood
• to estimate the class conditional densities fk(X ) and the prior

probability πk a training sample with already correctly

classi�ed classes is used

the unconditional distribution of X is given by

f (X) =
K∑

k=1

π(k)f (X | k)
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Posterior distribution

Probability for one object with given vector XT = (X1, ...,Xp) to
belong to class k is calculated by the Bayes formula

p(k | X) =

class distribution︷ ︸︸ ︷
f (X | k) ·

prior probablitiy︷︸︸︷
π(k)

f (X)︸︷︷︸
unconditional distribution

∝ f (X | k) · π(k)

posterior distribution

an object is assigned to class k̂ , if it has the biggest posterior

probability p(k̂ | X)
⇒ this is equal to minimizing the expected loss
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Log posterior distribution

For easier calculation we take the logarithm of the posterior
distribution

log p(k | X) = log f (X | k) + log π(k)

• with the multivariate normal distribution it leads to

log p(k | X) = log((2π)−
p
2 |Σk |−

1

2 e−
1

2
(x−µk)TΣ−1

k
(x−µk)) + log πk

= −1

2
(x − µk)

TΣ−1
k (x − µk)−

1

2
log |Σk |

+ log πk + constant

(1)

• the constant term −p
2
log(2π) can be omitted as it is the same

for each class k
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Quadratic discriminant analysis

multiplication with −2 leads to the discriminant function

dk(X) = (X− µk)
TΣ−1

k (X− µk)︸ ︷︷ ︸
Mahalanobis−distance

+ log |Σk | − 2 log πk)

and to the classi�cation rule

d
k̂
(X ) = min

1≤k≤K
dk(X ) ⇔ max

1≤k≤K
p(k | X )

Using this rule is called the

Quadratic Discriminant Analysis (QDA)
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Linear discriminant analysis

A special case occurs when all k class covariance matrices are

identical

Σk = Σ

The discriminant function

dk(x) = (x − µk)
TΣ−1(x − µk)− 2 log π(k)

simpli�es to

dk(x) = 2µT
k Σ−1X − µT

k Σ−1µk − 2 log π(k)

This is called the Linear Discriminant Analysis (LDA) because
the quadratic terms in the discriminant function cancel:

• xTΣ−1x is the same in every class k and can be left out

• the decision boundaries are now linear

Daniela Birkel Regularized Discriminant Analysis

Linear and Quadratic Discriminant Analysis

Linear and Quadratic Boundaries
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Estimation

In most applications of linear and quadratic discriminant analysis

the parameters µ and Σ are estimated by their sample analogs

µ̂k = X k =
1

Nk


N∑
i=1

Xn1

...
N∑
i=1

Xnp

 =

 x1
...

xp


and

Σ̂k =
Sk
Nk

=
1

Nk

∑
c(v)=k

(X − X k)(X − X k)
T

with c(v) = class of v th observation
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Small sample sizes

These estimates are straightforward to compute and represent the

corresponding maximum likelihood estimates.

Problem: they are only optimal for n→∞ and not for small n

Small sample sizes

• the (p× p) covariance matrix estimates become highly variable

• not all of the parameters are even identi�able

• Σ is singular

• the inverse Σ−1 does not exist
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Small sample sizes

• poorly-posed
⇒ the number of parameters to be estimated is comparable to

the number of observations

• ill-posed
⇒ that number exceeds the sample size

QDA LDA

poorly-posed Nk ≈ p N ≈ p

ill-posed Nk ≤ p N ≤ p

parameters to be estimated k · p2 + p p2 + p

QDA requires generally larger samples size than LDA
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Regularization

For ill- or poorly-posed situations:

• parameter estimates can be highly unstable

• high variance

The aim of regularization is to improve the estimates by biasing

them away from their sample-based values

• reduction of variance at the expense of potentially increased

bias

• the bias variance trade-o� is regulated by two parameters

• these parameters control the strength of the biasing
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Regularization for Quadratic Discriminant Analysis

Strategy 1: If QDA is ill- or poorly-posed

• Replacing the individual class sample covariance matrices by

their average (pooled covariance matrix)

Σ̂ =

K∑
k=1

Sk

K∑
k=1

Nk

• regularization by reducing the number of parameters to be

estimated
• this can result in superior performance, especially in

small-sample settings
• leads to LDA

⇒ the choice between Linear and Quadratic Discriminant Analysis

is quite restrictive
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Regularization with parameter λ

Strategy 2: A less limited approach is represented by

Σ̂k(λ) = (1− λ)Σ̂k + λΣ̂

with 0 ≤ λ ≤ 1

• λ controls the degree of shrinkage of the individual class

covariance matric estimates toward the pooled estimate

• λ = 0 gives rise to QDA

• λ = 1 gives rise to LDA

⇒ still fairly limited

⇒ cannot be used if LDA is ill- or poorly posed
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Eigenvalues

If N ≤ p then even LDA is poorly- or ill-posed

• Σ̂ is singular

• some eigenvalues are 0

decomposing Σ with the spectral decomposition leads to

Σ−1 =

p∑
i=1

vikv
T
ik

eik

eik ith eigenvalue of Σk

vik ith eigenvector of Σk

⇒ Σ̂−1 does not exist
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Further regularization

Strategy 3 If LDA is ill- or poorly-posed

Σ̂k(λ, γ) = (1− γ)Σ̂k(λ) + γ
tr [Σ̂k(λ)]

p︸ ︷︷ ︸
average eigenvalue

I

with 0 ≤ γ ≤ 1

tr A = sum of eigenvalues

• the additional regularization parameter γ controls shrinkage

toward a multiple of the identity matrix for a given value of λ

• decreasing the larger eigenvalues and increasing the smaller

ones

⇒ shrinkage toward the average eigenvalue of Σ̂k(λ)
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Eigenvalues
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The discriminant function for the Regularized Discriminant
Analysis (RDA) is

dk(X) = (X− X̄k)
T Σ̂−1

k (λ, γ)(X− X̄k)+ log |Σ̂k(λ, γ)|−2 log π(k)

• the values for λ and γ are not likely to be known in advance

⇒ we have to estimate them

• the aim is to �nd values for λ and γ that jointly minimize the

future misclassi�cation risk

Methods:

• bootstrapping

• cross-validation
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Model selection

Idea of cross-validation (leave-one-out)

• one particular observation Xv is removed from the model

• the classi�cation rule is developed on the N − 1 training

observations without Xv

• then this classi�cation rule is used to classify Xv and to

calculate the loss which occurs if classi�ed to the wrong group

• this is repeated for every observation

⇒ the future misclassi�cation risk is estimated by the average of

the resulting misclassi�cation loss

this is done for a number of combinations for λ and γ
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Conclusion

The potential for RDA to improve misclassi�cation risk over that

of QDA or LDA depend on the situation

• Nk � p
no regularization is needed and QDA can be used

⇒ model-selection procedure should tend to small values of λ
and γ

• N ≈ p
LDA has been the method of choice in the past ⇒
regularization can substantially improve the misclassi�cation
risk when

• Σk are not close to being equal
• N is even too small for LDA

Daniela Birkel Regularized Discriminant Analysis

Prediction Analysis with Microarrays

Part III

Prediction Analysis with Microarrays (PAM)
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Class prediction with gene expression data

The aim is to assign people to one of K (1 ≤ k ≤ K ) diagnostic
categories based on their gene expression pro�le

The classi�cation by DNA microarrays is challenging because:

• there is a very large number of genes (p) from which to predict

classes and only a relatively small number of samples (N)
⇒ again a restricted form of Discriminant Analysis

• identify the genes which contribute most to the classi�cation

⇒ reduction of p

Daniela Birkel Regularized Discriminant Analysis

Prediction Analysis with Microarrays
Reduction of p
Restricted Discriminant Analysis

Example

Small round blue cell tumors (SRBCT) of childhood can be

divided in four groups

• Burkitt lymphome (BL)

• Ewing sarcoma (EWS)

• neuroblastoma (NB)

• rhabdomyosarcoma (RMS)

The DNA microarrays of 88 children with SRBCT were obtained

• 63 of them were already classi�ed right and their data were

used as the training sample to estimate the classi�cation rule

• the category for the other 25 children (of which 5 were not

SRBCT) was then predicted by this rule

• the aim is to correctly classify the test samples
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Example

The data consist of expression measurements on 2,308 genes

• the mean expression value (centroid) was calculated from the

training sample for each of the four classes

• then the squared distance from the gene expression pro�le to

each class centroids was calculated for each test sample

• the predicted class for a child was the one with the closest

centroid

⇒ nearest centroid classi�cation

It would be more attractive if fewer genes were needed

⇒ modi�cation to nearest shrunken centroid classi�cation
where the genes which don't contribute for the class prediction are

eliminated
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Shrunken centroids

x̄ik =
∑
jεCk

xij
nk

mean value in class k for gene i

x̄i =
n∑

j=1

xij
n

overall centroid for gene i

dik is a t statistic for gene i , comparing the mean of class k to

the overall centroid

dik =
x̄ik − x̄i

mk · (si + s0)

mk =
√
1/nk + 1/n

si pooled standard deviation for gene i

s0 same value for every gene, positive constant
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Shrunken Centroids

The distance for gene i between the mean in class k and the overall

mean is shrunk toward zero ⇒ soft thresholding

d ′ik = sign(dik)(|dik |− M)+

with

M shrinkage parameter, also called threshold

t+ =

{
t if t ≥ 0

0 otherwise

• many of the genes are eliminated as M increases

• M is again chosen by cross-validation (M = 4.34 in the

example )
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Shrunken centroids

The centroids are shrunk towards the overall centroid

x̄ ′ik = x̄i + mk(si + s0)d
′
ik

• if d ′ik = 0 for every class k

⇒ x̄ ′i1 = ... = x̄ ′iK
the centroid for each class is the same

• if each group has the same mean for one gene, this gene does

not help to predict a class and can be left out

• in the example only 43 genes are needed for the class prediction

and 2,275 are not needed to distinguish between the groups
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Shrunken centroids
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Discriminant Function

The discriminant function uses the Mahalanobis metric in

computing distances to centroids:

δLDAk (x∗) = (x∗ − x̄k)
T︸ ︷︷ ︸

1×p

Σ−1︸︷︷︸
p×p

(x∗ − x̄k)︸ ︷︷ ︸
p×1

−2logπk

with

πk class prior probability

W pooled within-class covariance matrix

• Σ is huge as p � n and any sample estimate will be singular

• to cope with this problem a heavily restricted form of LDA
is used

⇒ Σ is assumed to be a diagonal matrix
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Classi�cation rule

The discriminant function can be rewritten as

δk(x
∗) =

p∑
i=1

(x∗i − x̄ ′ik)
2

(si + s0)2
− 2logπk

• again standardized by si + s0

• the discriminant function is for one person with p genes

x∗ = (x∗
1
, x∗

2
, ..., x∗p )

• the person is assigned to group k̂ if

δ
k̂
(x∗) = min

1≤k≤K
δk(x

∗)
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