

# Example



• the distribution of the measurements X are seldom identical in each class

 $\Rightarrow$  conditional distribution for each class k

Daniela Birkel

• most often applied classification rules are based on the multivariate normal distribution

$$f_k(\mathbf{X}) = f(\mathbf{X} \mid k) = \frac{1}{(2\pi)^{p/2} |\sum_k |^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \sum_k^{-1} (x-\mu_k)}$$

Regularized Discriminant Analysis

where  $\mu_k$  and  $\Sigma_k$  are the class k  $(1 \leq k \leq \mathcal{K})$  population mean vector and covariance matrix

 $f_k(\mathbf{X})$  are seldom known

Linear and Quadratic Discriminant Analysis

# Prior and unconditional distribution

There might be some prior knowledge about the probability of observing a member of class k

prior probability

with 
$$\pi_1+...+\pi_k=1$$

- if the prior probabilities are equal for each k
- $\Rightarrow$  leads to Maximum-Likelihood

 $\pi_k$ 

• to estimate the class conditional densities  $f_k(X)$  and the prior probability  $\pi_k$  a training sample with already correctly classified classes is used

# the unconditional distribution of X is given by

$$f(\mathbf{X}) = \sum_{k=1}^{K} \pi(k) f(\mathbf{X} \mid k)$$

Linear and Quadratic Discriminant Analysis

# Posterior distribution

Probability for one object with given vector  $X^{T} = (X_1, ..., X_p)$  to belong to class k is calculated by the Bayes formula

$$p(k \mid \mathbf{X}) = \frac{\overbrace{f(\mathbf{X} \mid k)}^{\text{class distribution prior probability}}}{\underbrace{f(\mathbf{X})}_{\text{unconditional distribution}} \propto f(\mathbf{X} \mid k) \cdot \pi(k)$$

### posterior distribution

an object is assigned to class  $\hat{k}$ , if it has the biggest posterior probability  $p(\hat{k} \mid \mathbf{X})$ 

 $\Rightarrow$  this is equal to minimizing the expected loss

Daniela Birkel

Linear and Quadratic Discriminant Analysis

### Log posterior distribution

For easier calculation we take the  ${\bf logarithm}$  of the posterior distribution

$$\log p(k \mid \mathbf{X}) = \log f(\mathbf{X} \mid k) + \log \pi(k)$$

• with the multivariate normal distribution it leads to

$$\log p(k \mid \mathbf{X}) = \log((2\pi)^{-\frac{\mu}{2}} |\Sigma_k|^{-\frac{1}{2}} e^{-\frac{1}{2}(x-\mu_k)^T \sum_{k}^{-1}(x-\mu_k)}) + \log \pi_k$$
$$= -\frac{1}{2} (x-\mu_k)^T \sum_{k}^{-1} (x-\mu_k) - \frac{1}{2} \log |\Sigma_k|$$
$$+ \log \pi_k + \text{constant}$$
(1)

• the constant term  $-\frac{p}{2}\log(2\pi)$  can be omitted as it is the same for each class k

Linear and Quadratic Discriminant Analysis

# Quadratic discriminant analysis

multiplication with -2 leads to the discriminant function

$$d_k(\mathbf{X}) = \underbrace{(\mathbf{X} - \mu_k)^T \Sigma_k^{-1} (\mathbf{X} - \mu_k)}_{Mahalanobis-distance} + \log |\Sigma_k| - 2 \log \pi_k)$$

and to the classification rule

$$d_{\hat{k}}(X) = \min_{1 \le k \le K} d_k(X) \quad \Leftrightarrow \quad \max_{1 \le k \le K} p(k \mid X)$$

Using this rule is called the **Quadratic Discriminant Analysis (QDA)** 

| TOT EACH CLASS K                           | ・日本・西本・小田・小田・ 田・ ものくの             | <.                                         | 미 에 이 에 에 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 | ୬୯୯ |
|--------------------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------------|-----|
| Daniela Birkel                             | Regularized Discriminant Analysis | Daniela Birkel Regularized Disc            | riminant Analysis                       |     |
| Linear and Quadratic Discriminant Analysis |                                   | Linear and Quadratic Discriminant Analysis |                                         |     |
| inear discriminant analysis                |                                   | Linear and Quadratic Boundaries            |                                         |     |

A special case occurs when all  ${\sf k}$  class covariance matrices are identical

$$\Sigma_k = \Sigma$$

The discriminant function

$$d_k(x) = (x - \mu_k)^T \Sigma^{-1} (x - \mu_k) - 2 \log \pi(k)$$

simplifies to

$$d_k(x) = 2\mu_k^T \Sigma^{-1} X - \mu_k^T \Sigma^{-1} \mu_k - 2 \log \pi(k)$$

This is called the **Linear Discriminant Analysis (LDA)** because the quadratic terms in the discriminant function cancel:

- $x^T \Sigma^{-1} x$  is the same in every class k and can be left out
- the decision boundaries are now linear

Daniela Birkel Regularized Discriminant Analysis

Linear and Quadratic Discriminant Analysis

### Estimation

In most applications of linear and quadratic discriminant analysis the parameters  $\mu$  and  $\Sigma$  are estimated by their sample analogs

$$\hat{\mu}_{k} = \overline{X}_{k} = \frac{1}{N_{k}} \begin{bmatrix} \sum_{i=1}^{N} X_{n1} \\ \vdots \\ \sum_{i=1}^{N} X_{np} \end{bmatrix} = \begin{bmatrix} \overline{x}_{1} \\ \vdots \\ \overline{x}_{p} \end{bmatrix}$$

and

$$\hat{\Sigma}_k = \frac{S_k}{N_k} = \frac{1}{N_k} \sum_{c(v)=k} (X - \overline{X}_k) (X - \overline{X}_k)^T$$

Regularized Discriminant Analysis

with c(v) = class of vth observation

Regularized Discriminant Analysis

Daniela Birkel

## Small sample sizes

These estimates are straightforward to compute and represent the corresponding maximum likelihood estimates.

**Problem:** they are only optimal for  $n \to \infty$  and not for small n

## Small sample sizes

- the  $(p \times p)$  covariance matrix estimates become highly variable
- not all of the parameters are even identifiable
- Σ is singular
- the inverse  $\Sigma^{-1}$  does not exist



Regularized Discriminant Analysis

Regularized Discriminant Analysis



Daniela Birkel

Regularized Discriminant Analysis

Regularized Discriminant Analysis

### poorly-posed

Small sample sizes

 $\Rightarrow$  the number of parameters to be estimated is comparable to the number of observations

- ill-posed
  - $\Rightarrow$  that number exceeds the sample size

Daniela Birkel

Regularized Discriminant Analysis

|                            | QDA               | LDA           |
|----------------------------|-------------------|---------------|
| poorly-posed               | $N_k \approx p$   | $N \approx p$ |
| ill-posed                  | $N_k \leq p$      | $N \leq p$    |
| parameters to be estimated | $k \cdot p^2 + p$ | $p^{2} + p$   |

QDA requires generally larger samples size than LDA

・ロト・ペポト・モティヨト ヨークへで Daniela Birkel Regularized Discriminant Analysis

| Regularized Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Regularized Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Regularization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Regularization for Quadratic Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <ul> <li>For ill- or poorly-posed situations:</li> <li>parameter estimates can be highly unstable</li> <li>high variance</li> <li>The aim of regularization is to improve the estimates by biasing them away from their sample-based values</li> <li>reduction of variance at the expense of potentially increased bias</li> <li>the bias variance trade-off is regulated by two parameters</li> <li>these parameters control the strength of the biasing</li> </ul>                                                                                                                                                   | <b>Strategy 1:</b> If QDA is ill- or poorly-posed<br>• Replacing the individual class sample covariance matrices by<br>their average (pooled covariance matrix)<br>$\hat{\Sigma} = \frac{\sum_{k=1}^{K} S_k}{\sum_{k=1}^{K} N_k}$ • regularization by reducing the number of parameters to be<br>estimated<br>• this can result in superior performance, especially in<br>small-sample settings<br>• leads to LDA<br>$\Rightarrow$ the choice between Linear and Quadratic Discriminant Analysis<br>is quite restrictive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Daniela Birkel Regularized Discriminant Analysis Regularized Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Daniela Birkel Regularized Discriminant Analysis<br>Regularized Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Regularization with parameter $\lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Eigenvalues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| <b>Strategy 2:</b> A less limited approach is represented by<br>$\hat{\Sigma}_k(\lambda) = (1 - \lambda)\hat{\Sigma}_k + \lambda\hat{\Sigma}$<br>with $0 \le \lambda \le 1$<br>• $\lambda$ controls the degree of shrinkage of the individual class<br>covariance matric estimates toward the pooled estimate<br>• $\lambda = 0$ gives rise to QDA<br>• $\lambda = 1$ gives rise to LDA<br>$\Rightarrow$ still fairly limited<br>$\Rightarrow$ cannot be used if LDA is ill- or poorly posed                                                                                                                           | If $N \le p$ then even LDA is poorly- or ill-posed<br>$\hat{\Sigma}$ is singular<br>$\hat{\Sigma}$ some eigenvalues are 0<br>decomposing $\Sigma$ with the <b>spectral decomposition</b> leads to<br>$\Sigma^{-1} = \sum_{i=1}^{p} \frac{v_{ik} v_{ik}^{T}}{e_{ik}}$<br>$e_{ik}$ ith eigenvalue of $\Sigma_{k}$<br>$v_{ik}$ ith eigenvector of $\Sigma_{k}$<br>$\Rightarrow \hat{\Sigma}^{-1}$ does not exist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Regularized Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Regularized Discriminant Analysis<br>Eigenvalues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Strategy 3 If LDA is ill- or poorly-posed<br>$\hat{\Sigma}_{k}(\lambda, \gamma) = (1 - \gamma)\hat{\Sigma}_{k}(\lambda) + \gamma \underbrace{\operatorname{tr} \left[\hat{\Sigma}_{k}(\lambda)\right]}_{p} \mathbb{I}$ with $0 \leq \gamma \leq 1$<br>tr $A = \operatorname{sum}$ of eigenvalues<br>• the additional regularization parameter $\gamma$ controls shrinkage<br>toward a multiple of the identity matrix for a given value of $\lambda$<br>• decreasing the larger eigenvalues and increasing the smaller<br>ones<br>$\Rightarrow$ shrinkage toward the average eigenvalue of $\hat{\Sigma}_{k}(\lambda)$ | p/n = 0.1 $p/n = 0.1$ $p/n = 0.5$ |  |
| Baneta Birkei Kegulanzed Discriminant Analysis<br>Regularized Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Regularized Discriminant Analysis Regularized Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Regularized Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Model selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

The discriminant function for the **Regularized Discriminant Analysis (RDA)** is

$$d_k(\mathbf{X}) = (\mathbf{X} - \bar{\mathbf{X}}_k)^T \hat{\boldsymbol{\Sigma}}_k^{-1}(\lambda, \gamma) (\mathbf{X} - \bar{\mathbf{X}}_k) + \log |\hat{\boldsymbol{\Sigma}}_k(\lambda, \gamma)| - 2 \log \pi(k)$$

- the values for  $\lambda$  and  $\gamma$  are not likely to be known in advance  $\Rightarrow$  we have to estimate them
- the aim is to find values for  $\lambda$  and  $\gamma$  that jointly minimize the future misclassification risk

# Methods:

- bootstrapping
- cross-validation

Idea of cross-validation (leave-one-out)

• this is repeated for every observation

this is done for a number of combinations for  $\lambda$  and  $\gamma$ 

observations without  $X_v$ 

the resulting misclassification loss

• one particular observation  $X_v$  is removed from the model • the classification rule is developed on the N-1 training

• then this classification rule is used to classify  $X_{
u}$  and to

 $\Rightarrow$  the future misclassification risk is estimated by the average of

calculate the loss which occurs if classified to the wrong group

| Regularized Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Prediction Analysis with Microarrays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| The potential for <b>RDA</b> to improve misclassification risk over that<br>of <b>QDA</b> or <b>LDA</b> depend on the situation<br>• $N_k \gg p$<br>no regularization is needed and QDA can be used<br>$\Rightarrow$ model-selection procedure should tend to small values of $\lambda$<br>and $\gamma$<br>• $N \approx p$<br>LDA has been the method of choice in the past $\Rightarrow$<br>regularization can substantially improve the misclassification<br>risk when<br>• $\Sigma_k$ are not close to being equal<br>• <i>N</i> is even too small for LDA | Part III<br>Prediction Analysis with Microarrays (PAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| (마)·(관)·(관)·(관)·(관)· (관)·(관)· (관)· (관)·(관)·<br>Daniela Birket Regularized Discriminant Analysis<br>Prediction Analysis with Microarrays Restricted Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                      | ・ イロト・イラト・イミト・ミー その<br>Daniela Birkel Regularized Discriminant Analysis<br>Prediction Analysis with Microarrays<br>Reduction of p<br>Prediction Analysis with Microarrays<br>Reduction of p                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| lass prediction with gene expression data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| The aim is to assign people to one of $K(1 \le k \le K)$ diagnostic<br>categories based on their gene expression profile<br>The classification by DNA microarrays is challenging because:<br>• there is a very large number of genes $(p)$ from which to predict<br>classes and only a relatively small number of samples $(N)$<br>$\Rightarrow$ again a restricted form of Discriminant Analysis<br>• identify the genes which contribute most to the classification<br>$\Rightarrow$ reduction of $p$                                                       | <ul> <li>Small round blue cell tumors (SRBCT) of childhood can be divided in four groups</li> <li>Burkitt lymphome (BL)</li> <li>Ewing sarcoma (EWS)</li> <li>neuroblastoma (NB)</li> <li>rhabdomyosarcoma (RMS)</li> </ul> The DNA microarrays of 88 children with SRBCT were obtained <ul> <li>63 of them were already classified right and their data were used as the training sample to estimate the classification rule</li> <li>the category for the other 25 children (of which 5 were not SRBCT) was then predicted by this rule</li> <li>the aim is to correctly classify the test samples</li> </ul> |  |
| イロトイクトイミトイミト そう そうのへ<br>Daniela Birkel Regularized Discriminant Analysis<br>Prediction Analysis with Microarrays Reduction of p                                                                                                                                                                                                                                                                                                                                                                                                                               | × イロン・イラ・イミン・マミン・マーン・イーン・イラン・イミン・マラン・イーン・イーン・イラン・イミン・マラン・イーン・マーン・マーン・マーン・マーン・マーン・マーン・マーン・マーン・マーン・マ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| xample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Shrunken centroids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <ul> <li>The data consist of expression measurements on 2,308 genes</li> <li>the mean expression value (centroid) was calculated from the training sample for each of the four classes</li> <li>then the squared distance from the gene expression profile to each class centroids was calculated for each test sample</li> <li>the predicted class for a child was the one with the closest centroid</li> <li>⇒ nearest centroid classification</li> </ul>                                                                                                   | $\begin{split} \bar{x}_{ik} &= \sum_{j \in C_k} \frac{x_{ij}}{n_k} & \text{mean value in class } k \text{ for gene } i \\ \bar{x}_i &= \sum_{j=1}^n \frac{x_{ij}}{n} & \text{overall centroid for gene } i \\ d_{ik} \text{ is a } t \text{ statistic for gene } i, \text{ comparing the mean of class } k \text{ to the overall centroid} \\ d_{ik} &= \frac{\bar{x}_{ik} - \bar{x}_i}{m_k \cdot (s_i + s_0)} \end{split}$                                                                                                                                                                                     |  |
| It would be more attractive if fewer genes were needed<br>⇒ modification to <b>nearest shrunken centroid classification</b><br>where the genes which don't contribute for the class prediction are<br>eliminated                                                                                                                                                                                                                                                                                                                                              | $m_k = \sqrt{1/n_k + 1/n}$<br>$s_i$ pooled standard deviation for gene $i$<br>$s_0$ same value for every gene, positive constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Daniela Birkel         Regularized Discriminant Analysis           Prediction Analysis with Microarrays         Reduction of p<br>Restricted Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                            | Daniela Birkel Regularized Discriminant Analysis<br>Prediction Analysis with Microarrays<br>Restricted Discriminant Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| hrunken Centroids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Shrunken centroids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| The distance for gene <i>i</i> between the mean in class <i>k</i> and the overall<br>mean is shrunk toward zero $\Rightarrow$ <b>soft thresholding</b><br>$d'_{ik} = sign(d_{ik})( d_{ik}  - \Delta)_+$<br>with<br>$\triangle$ shrinkage parameter, also called threshold<br>(t + if t > 0)                                                                                                                                                                                                                                                                   | The centroids are shrunk towards the overall centroid<br>$\bar{x}'_{ik} = \bar{x}_i + m_k(s_i + s_0)d'_{ik}$<br>• if $d'_{ik} = 0$ for every class $k$<br>$\Rightarrow \bar{x}'_{i1} = = \bar{x}'_{iK}$                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| $t_{+} = \begin{cases} t & \text{if } t \geq 0\\ 0 & \text{otherwise} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>the centroid for each class is the same</li> <li>if each group has the same mean for one gene, this gene does not help to predict a class and can be left out</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

many of the genes are eliminated as △ increases
△ is again chosen by cross-validation (△ = 4.34 in the example )

Daniela Birkel

• in the example only 43 genes are needed for the class prediction

and 2,275 are not needed to distinguish between the groups



(日) (日) (日) (日) (日) (日)

✓ □ ➤ ✓ ♂ ➤ ✓ ≥
Regularized Discriminant Analysis

The discriminant function can be rewritten as

$$\delta_k(x^*) = \sum_{i=1}^p \frac{(x_i^* - \bar{x}_{ik}')^2}{(s_i + s_0)^2} - 2\log \pi_k$$

- again standardized by  $s_i + s_0$
- the discriminant function is for one person with p genes  $x^* = (x_1^*, x_2^*, ..., x_\rho^*)$

• the person is assigned to group 
$$\hat{k}$$
 if

$$\delta_{\hat{k}}(x^*) = \min_{1 \le k \le K} \delta_k(x^*)$$

Daniela Birkel

• Friedmann, J. H. (1989), "Regularized Discriminant Analysis," Journal of the American Statistical Association

 Tibshirani R., Hastie T., Nasasimhan B., Chu G. (2002), "Diagnosis of multiple cancer types by shrunken centroids of gene expression," *PNAS*

 Image: Constraint of the second se