

In the coming 45 minutes you will learn more about

- Stein's estimator
- Stein's paradoxon
- How to apply Stein's estimator to 'real' data
- The concept of shrinkage for regularized estimation

The unknown vector of means $\boldsymbol{\theta} \equiv (\theta_1, ..., \theta_k)$ is to be estimated with loss being the sum of squared component errors

$$L(\boldsymbol{ heta}, \hat{\boldsymbol{ heta}}) \equiv \sum_{i=1}^{k} (\hat{ heta}_i - heta_i)^2$$

where $\hat{\boldsymbol{\theta}} \equiv (\hat{\theta}_1, ..., \hat{\theta}_k)$ is the estimate of $\boldsymbol{\theta}$.

	 < বি> < ই> < ই> < ই < २ 		<ロ> <舂> <き> <き> <き> き ののの
Christoph Knappik	Shrinkage estimation	Christoph Knappik	Shrinkage estimation
Introduction Stein's estimator - derivation Stein's estimator - examples Some things to take home	Stein's estimator in the simplest setting: $Var_{\theta_2}(X_i) = 1$ Stein's estimator in an empirical Bayes context	Introduction Stein's estimator - derivation Stein's estimator - examples Some things to take home	Stein's estimator in the simplest setting: $Var_{\theta_{T}}(X_{i}) = 1$ Stein's estimator in an empirical Bayes context
The MLE's risk		Stein's estimator	

The MLE which is also the sample mean,

 $\delta^{\mathbf{0}}(\mathbf{X}) \equiv \mathbf{X} \equiv (X_1, ..., X_k)$ has constant risk k (=MSE).

$$R(\boldsymbol{\theta}, \boldsymbol{\delta^0}) \equiv E_{\theta} \sum_{i=1}^k (X_i - \theta_i)^2 = k$$

James and Stein introduced the estimator

$$\boldsymbol{\delta^1}(\boldsymbol{X}) = (\delta_1^1(\boldsymbol{X}), ..., \delta_k^1(\boldsymbol{X})) \quad \text{for} \quad k \geq 3$$

$$\delta_i^1(\pmb{X}) \equiv \mu_i + (1 - (k - 2)/S)(X_i - \mu_i), \quad i = 1, ..., k$$

with

• $\boldsymbol{\mu} \equiv (\mu_1, ..., \mu_k)'$ any initial guess at heta

• $S \equiv \sum (X_j - \mu_j)^2$

◆□> ◆豆> ◆豆> ◆豆> ◆豆>		シタク ヨー・ヨー・モー・モー・	
Christoph Knappik	Shrinkage estimation	Christoph Knappik	Shrinkage estimation
Introduction Stein's estimator - derivation Stein's estimator - examples Some things to take home	Stein's estimator in the simplest setting: $Var_{\theta_i}(X_i) = 1$ Stein's estimator in an empirical Bayes context	Introduction Stein's estimator - derivation Stein's estimator - examples Some things to take home	Stein's estimator in the simplest setting: $Var_{\theta_j}(X_i) = 1$ Stein's estimator in an empirical Bayes context
Stein's estimator dominates the ML estimator		Stein's estimator - Remembe	r

A simple calculation shows that $\delta_i(\mathbf{X})$ is a weighted sum of X_i and μ_i :

$$\delta_i^1(\boldsymbol{X}) = \lambda \mu_i + (1-\lambda)X_i, \quad (\lambda = \frac{k-2}{S}).$$

 $\delta^1(X)$ has risk

$$R(\boldsymbol{\theta}, \boldsymbol{\delta^1}) \equiv E_{\theta} \sum_{i=0}^k (\delta_i^1(\boldsymbol{X}) - \theta_i)^2 \leq k - \frac{(k-2)^2}{k-2 + \sum (\theta_i - \mu_i)^2} \leq k$$

Remember

Using the MLE to estimate the mean of a multivariate normal distribution is a not an optimal choice! For $k \ge 3$ the ML estimator is inadmissible.

As you will see later, empirical Bayes estimators like Stein's reduce the total risk by a large margin compared to the sample mean's risk.

Stein's estimator in an empirical Bayes context

The empirical Bayes context - a priori and a posteriori distribution of θ_i

the simplest setting: Var_{θ}

Rev. T. BAYES

 $\delta_i^1(\mathbf{X}) \equiv \mu_i + (1 - (k - 2)/S)(X_i - \mu_i), \quad i = 1, ..., k \text{ arises quite naturally in an empirical Bayes context. If the <math>\{\theta_i\}$ themselves are a sample from a prior distribution,

$$\theta_i \stackrel{ind}{\sim} N(\mu_i, \tau^2), \quad i = 1, ..., k$$

then the Bayes estimate of θ_i is the a posteriori mean of θ_i given the data

$$\delta_i^*(X_i) = E\theta_i \mid X_i = \mu_i + (1 - \underbrace{(1 + \tau^2)^{-1}}_{\lambda})(X_i - \mu_i)$$

Christoph Knappik	Shrinkage estimation	Christoph Knappik	Shrinkage estimation
Introduction Stein's estimator - derivation Stein's estimator - examples Some things to take home	Stein's estimator in the simplest setting: $Var_{\theta_i}(X_i) = 1$ Stein's estimator in an empirical Bayes context	Introduction Stein's estimator - derivation Stein's estimator - examples Some things to take home	Stein's estimator in the simplest setting: $Var_{\partial_i}(X_i) = 1$ Stein's estimator in an empirical Bayes context
The empirical Bayes context - estimation of $ au^2$		The empirical Bayes context - derivation of Stein's	
		estimator	

In the empirical Bayes situation τ^2 is unknown but it can be estimated because marginally the $\{X_i\}$ are independently normal with means $\{\mu_i\}$ and

$$S = \sum (X_j - \mu_j)^2 \sim (1 + \tau^2) \chi_k^2$$

Since $k \ge 3$, the unbiased estimate

$$E(k-2)/S = 1/(1+\tau^2)$$

is available.

Substitution of
$$(k-2)/S$$
 for the unknown $1/(1+ au^2)$ in

$$\delta_i^*(X_i) = E\theta_i \mid X_i = \mu_i + (1 - (1 + \tau^2)^{-1})(X_i - \mu_i)$$

results in

$$\mu_i + (1 - (k - 2)/S)(X_i - \mu_i) \equiv \delta_i^1(\boldsymbol{X})$$

 $\delta_i^1(\boldsymbol{X})$ has risk

$$E_{\tau}E_{\theta}(\delta_{i}^{1}(\boldsymbol{X})-\theta_{i})^{2}=1-(k-2)/k(1+\tau^{2})$$

Christoph Knappik	Shrinkage estimation	Christoph Knappik	Shrinkage estimation
Introduction Stein's estimator - derivation Stein's estimator - examples Some things to take home	Stein's estimator in the simplest setting: $V_{dP_{d,i}}(X_i) = 1$ Stein's estimator in an empirical Bayes context	Introduction Stein's estimator - derivation Stein's estimator - examples Some things to take home	Stein's estimator in the simplest setting: ${\rm Var}_{\theta_i}(X_i)=1$ Stein's estimator in an empirical Bayes context
The empirical Bayes context	- Stein's estimator's risk	The empirical Bayes context	- positive part Stein

$$E_{\tau}E_{\theta}(\delta_{i}^{1}(\boldsymbol{X})-\theta_{i})^{2}=1-(k-2)/k(1+\tau^{2})$$

is to be compared to the corresponding risks of

- ${\scriptstyle \bullet}$ 1 for the MLE and
- $1-1/(1+ au^2)$ for the Bayes estimator

Thus if k is moderate or large δ_i^1 is nearly as good as the Bayes estimator, but it avoids the possible gross errors of the Bayes estimator if τ^2 is misspecified.

A simple way to improve δ_i^1 is to use $min\{1, (k-2)/S\}$ as an estimate of $1/(1 + \tau^2)$ instead of E(k-2)/S. This results in

$$\delta_i^{1+}(\mathbf{X}) = \mu_i + (1 - (k - 2)/S)^+ (X_i - \mu_i)$$

with $a^+ \equiv max(0, a)$.

It can be proofed that $R(\theta, \delta^{1+}) < R(\theta, \delta^{1}) \quad \forall \theta$.

 Christoph Knappik
 Shrinkage estimation
 Christoph Knappik
 Shrinkage estimation
 Shrinkage estimation
 Shrinkage estimation
 Shrinkage estimation
 Shrinkage estimation
 Shrinkage estimator
 Shrinkage estimator

 The empirical Bayes context
 - Remember
 Using Stein's estimator to predict batting averages

- Stein's estimator dominates the MLE for $k \ge 3$
- Stein's estimator can be interpreted as an empirical Bayes estimator

Спизсори кнаррк	Shrinkage estimation	Сплясори Кларрік	Similage estimation
Introduction Stein's estimator - derivation Stein's estimator - examples Some things to take home	Baseball data - Stein's estimator as shrinkage estimator	Introduction Stein's estimator - derivation Stein's estimator - examples Some things to take home	Baseball data - Stein's estimator as shrinkage estimator
The concept of shrinking - Regression towards the mean		The estimation in detail - the	e data

Let Y_i be the batting average of Player i, i = 1, ..., 18(k = 18)after n = 45 at bats. Further asume that

$$nY_i \stackrel{ind}{\sim} Bin(n, p_i), \quad i = 1, ..., 18$$

with p_i the true season batting average, so $EY_i = p_i$. To stabilize the variance of Y_i at nearly unit variance the arc-sin transformation is used: $X_i \equiv f_{45}(Y_i)$ with

$$f_n(y) \equiv (n)^{\frac{1}{2}} \arcsin(2y-1).$$

From the central limit theorem for the binomial distribution and the continuity of f_n we have approximately

$$X_i \mid \theta_i \stackrel{ind}{\sim} N(\theta_i, 1), \quad i = 1, ..., k$$

with mean θ_i of X_i given approximately by $\theta_i = f_n(p_i)$.

We can now use Stein's estimator, but we also want to estimate the common unknown value $\mu = \sum \mu_i / k$ by $\overline{X} = \sum X_i / k$, shrinking all X_i toward \overline{X} .

Estimation of θ using the Bayes rule

Using the Bayes rule shown earlier the resulting estimate of the i-th component θ_i of θ is therefore

Ba

eball data - Stein

or as shrinkage esti

Results

$$ilde{\delta}_i^1 = \overline{X} + (1 - (k - 3)/V)(X_i - \overline{X})$$

with $V \equiv \sum (X_i - \overline{X})^2$ and with k - 3 = (k - 1) - 2 as the appropriate constant since one parameter is estimated.

And with risk

$$R(\theta, \tilde{\delta}^1) \leq k - rac{(k-3)^2}{k-3 + \sum(heta_i - \overline{ heta})^2}, \quad \overline{ heta} \equiv \sum heta_i/k$$

For our data the estimate of $1/(1+\tau^2)$ is (k-3)/V=.791, $\hat{\tau}=.514$ and $\overline{X}=-3.275$ so

$$\widetilde{\delta}_i^1(\boldsymbol{X}) = \widehat{\theta}_i = .791\overline{X} + .209X_i = .209X_i - 2.59$$

II data - Stein's estimator as shrinkage estin

	ふつか 前 (声)(中)(日)		(日) (圖) (문) (문) (문) 문 외약()
Christoph Knapp	k Shrinkage estimation	Christoph Knappik	Shrinkage estimation
Stein's estimator - derivati Stein's estimator - derivati Stein's estimator - examp Some things to take hor	n n Baseball data - Stein's estimator as shrinkage estimator e	Introduction Stein's estimator - derivation Stein's estimator - examples Some things to take home	Baseball data - Stein's estimator as shrinkage estimator
Results		Results	
Batting everage for seaso remainde i pi 1 3.46 2 298 3 2.76 4 2.222 5 2.73 6 2.70 7 2.63 8 2.10 9 2.60 10 2.30 11 2.64 12 2.266 13 3.033 14 2.61 15 2.228 16 2.285 17 .316 18 .200	Maximum ikelihood estimate Ratrans- Stein's estimator Y 01 400 290 356 281 333 277 311 273 311 273 289 268 244 259 222 254 222 254 222 254 222 254 252 254 252 254 252 254 252 254 252 254 256 239	 The results are striking: X has total squared prediction δ¹(X) has total squared prediction δ¹(X) is closer than X_i to θ_i The use of "limited translatic cover here) can further impresented to the structure of the structure o	on error of 17.56 but liction error of only 5.01 for 15 batters on estimators" (which we do not ove the results
Christoph Knapp	k Shrinkage estimation	Christoph Knappik	Shrinkage estimation
Introducti Stein's estimator - derivati Stein's estimator - exampl	n Some things to take home		

Some things to take home

While the technical details might not be most important for this seminar, there are quite a few things you should remember about Stein's estimator:

- Stein's Estimator provides a simple way of doing regularized inference
- The MLE is inadmissible for estimating the mean of a multivariate normal distribution (Stein's paradoxon)
- Stein's estimator is available as empirical Bayes estimator
- Stein's estimator can be used as shrinkage estimator

<ロ・イク・イミン・モン・モン・モン・マーン Christoph Knappik Shrinkage estimation