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Introduction

Applying statistical methods to analyze biological systems can be a
tricky task. We often have only limited data to fit complex models
and commonly used estimators (like ML) are not efficient enough
in this context.

Generally there are three ways to deal with this problem. We can
use:

o Bayes inference
@ penalized maximum likelihood estimation or

@ shrinkage estimators
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Stein’s estimator - derivation Stein’s estimator in the simplest setting: Vami(X,‘) =il
Stein’s estimator in an empirical Bayes context

Multivariate normal distribution and MLE for the mean

Complex models - large p, small n

In the coming 45 minutes you will learn more about
@ Stein's estimator
@ Stein's paradoxon
@ How to apply Stein's estimator to 'real’ data

@ The concept of shrinkage for regularized estimation
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Stein’s estimator - derivation stimator in the simplest setting: Vary, (X)) =1

stimator in an empirical Bayes context

The MLE's risk

Suppose that for given 6;
X 10, N(0;,1), i=1,...k>3.

The unknown vector of means 6 = (61, ...,6x) is to be estimated
with loss being the sum of squared component errors

where § = (01, ..., 0y) is the estimate of 6.
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Stein’s estimator - derivation Stein’s estimator in the simplest setting:VarHl.(X,) =1
Stein’s estimator in an empirical Bayes context

Stein’s estimator

The MLE which is also the sample mean,
8%(X) = X = (Xq, ..., Xk) has constant risk k (=MSE).

k
R(6,6°) = Ey > (Xi—0,)> =k

i=1
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Stein’s estimator - derivation Stein's estimator in the simplest setting:Vary (X;) = 1
Stein's estimator in an empirical Bayes contekt

Stein’s estimator dominates the ML estimator

James and Stein introduced the estimator

8Y(X) = (63(X), ..., 65(X)) for k>3

GFX)=pi+ (1 —(k=2)/S)(X;i — i), i=1,....k

with

o p=(p1,..., uk)  any initial guess at 0
o S=3(X— )
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Stein's estimator - derivation Stein’s estimator in the simplest setting: Varg, (X;) = 1
Stein's estimator in an empirical Bayes contekt

Stein's estimator - Remember

A simple calculation shows that 6;(X) is a weighted sum of X; and

it
OO =i+ (1-0%, (=522
81(X) has risk
R(0,8Y) = E zk:(é-l(X) ek k=2
R A S U o
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Remember

Using the MLE to estimate the mean of a multivariate normal
distribution is a not an optimal choice! For k > 3 the ML
estimator is inadmissible.

As you will see later, empirical Bayes estimators like Stein's reduce
the total risk by a large margin compared to the sample mean's
risk.
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Stein’s estimator - derivation Stein’s estimator in the simplest setting: Varg. (X;) = 1
Stein's estimator in an empirical Bayes context

Stein's estimator in an empirical Bayes context

Stein’s estimator in the simplest setting: Varg. (X;) = 1
Stein’s estimator in an empirical Bayes context

Stein’s estimator - derivation

The empirical Bayes context - a priori and a posteriori
distribution of 6;

Rev. T. BAYES

Christoph Knappik Shrinkage estimation

Stein’s estimator - derivation Stein’s estimator in the simplest setting: Varg. (X;)
Stein’s estimator in an empirical Bayes context

The empirical Bayes context - estimation of 72

FX)=pi+ (1= (k=2)/S)(Xi — i), i=1,...k arises quite
naturally in an empirical Bayes context. If the {6} themselves are
a sample from a prior distribution,

ind

0; ™ N(ui,7%), i=1,..k

then the Bayes estimate of 6; is the a posteriori mean of 6; given
the data

FH(XG) = E0; | Xi = pi+ (1= (L+72) ) (Xi — i)
A
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Stein’s estimator in the simplest setting: Var
Stein’s estimator in an empirical Bayes cont

Stein’s estimator - derivation

The empirical Bayes context - derivation of Stein’s
estimator

In the empirical Bayes situation 72 is unknown but it can be

estimated because marginally the {X;} are independently normal
with means {x;} and

S=Y (X —m)~ 1+
Since k > 3, the unbiased estimate
E(k—2)/S=1/1+7%)
is available.
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Stein’s estimator in the simplest setting: Varg. (X;) = 1
Stein’s estimator in an empirical Bayes context

Stein’s estimator - derivation

The empirical Bayes context - Stein's estimator’s risk

Substitution of (k —2)/S for the unknown 1/(1 + 72) in
07 (Xi) = EO; | X; = i+ (1= (1+72)7)(Xi — i)
results in
pi+ (1= (k= 2)/S)(X; — i) = 61(X)
53(X) has risk
ErEp(07 (X) = 0)* =1 = (k= 2)/k(1 +7%)
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Stein’s estimator in the simplest setting: Varg. (X;) = 1
Stein’s estimator in an empirical Bayes context

Stein’s estimator - derivation

The empirical Bayes context - positive part Stein

E Ep(3H(X) — 0;)> =1— (k —2)/k(1 +72)

is to be compared to the corresponding risks of

@ 1 for the MLE and
0 1—1/(1+72) for the Bayes estimator

Thus if k is moderate or large 6,-1 is nearly as good as the Bayes
estimator, but it avoids the possible gross errors of the Bayes
estimator if 72 is misspecified.
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Stein’s estimator in the simplest setting: Varg.(X;) = 1
Stein’s estimator in an empirical Bayes context

Stein's estimator - derivation

A simple way to improve 6} is to use min{1, (k —2)/S} as an
estimate of 1/(1 + 72) instead of E(k —2)/S.
This results in

G X) = pi+ (1= (k= 2)/S)"(X; — i)

with a™ = max(0, a).

It can be proofed that R(#,6) < R(6,48) V8.
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Baseball data - Stein’s estimator as shrinkage estimator

Stein’s estimator - examples

The empirical Bayes context - Remember

Remember
@ Stein's estimator dominates the MLE for kK > 3

@ Stein's estimator can be interpreted as an empirical Bayes
estimator

Shrinkage estimation
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Using Stein’s estimator to predict batting averages

T
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Baseball data - Stein’s estimator as shrinkage estimator

Stein's estimator - examples

Using Stein’s estimator to predict batting averages

The data

The batting averages of 18 major league players through their first
45 official at bats of the 1970 season (The samplesize of n = 45
was chosen to assure a satisfactory approximation of the binomial
by the normal distribution).

The challenge

Predict each player’s batting average over the reminder of the
season (70 - almost 600 at bats) using only the data of the first 45
at bats.

Using Stein's estimator as a shrinkage estimator.
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P N Baseball data - Stein’s estimator as shrinkage estimator
Stein's estimator - examples

P N Baseball data - Stein’s estimator as shrinkage estimator
Stein's estimator - examples

The concept of shrinking
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. N Baseball data - Stein’s estimator as shrinkage estimator
Stein's estimator - examples

The concept of shrinking

The concept of shrinking
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P N Baseball data - Stein’s estimator as shrinkage estimator
Stein's estimator - examples

The concept of shrinking - Regression towards the mean
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P N Baseball data - Stein’s estimator as shrinkage estimator
Stein's estimator - examples

The estimation in detail - the data
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- . Baseball data - Stein’s estimator as shrinkage estimator
Stein’s estimator - examples

Transformation to adjust the variance

¥, = batting P = batting At bats

average for average for for

i Player first 46 remainder remainder

at bats of season of season
(1) 2) ©)
1 Clemente (Pitts, NL} 400 246 267
2 F. Robinson (Balt, AL) 378 298 426
3 F. Howard (Wash, AL) 356 276 521
4 Johnstone (Cal, AL) 333 222 275
5 Berry (Chi, AL) 311 273 418
6 Spencer (Gal, AL) g 270 466
7 Kessinger (Chi, NL) 289 263 586
8 L. Alvarado (Bos, AL) 267 210 138
9 Santo (Chi, NL) 244 269 510
10 Swoboda (NY, NL) 244 230 200
1 Unser (Wash, AL) 222 264 277
12 Williams (Chi, AL) 222 256 270
13 Scott (Bos, AL) 222 .303 435
14 Petrocelli (Bos, AL) 222 264 538
15 E. Rodriguez (KC, AL) 222 226 186
16 Campaneris (Oak, AL) .200 285 558
17 Munson (NY, AL) 78 316 408
18 Alvis (Mil, NL) 156 200 70
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- t Baseball data - Stein’s estimator as shrinkage estimator
Stein’s estimator - examples

Estimation of u from the data

Let Y; be the batting average of Player i,i =1,...,18(k = 18)
after n = 45 at bats. Further asume that

nY; % Bin(n,p;), i=1,..,18

with p; the true season batting average, so EY; = p;. To stabilize
the variance of Y; at nearly unit variance the arc-sin transformation
is used: X; = f45(Y;) with

fo(y) = (n)%arcsin(Qy —1).
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From the central limit theorem for the binomial distribution and
the continuity of f, we have approximately

Xi10; % N, 1), P=1,..k

with mean 6; of X; given approximately by 6; = f,(p;).

We can now use Stein’s estimator, but we also want to estimate
the common unknown value = 3" pji/k by X =3 Xi/k,
shrinking all X; toward X.




P N Baseball data - Stein’s estimator as shrinkage estimator
Stein's estimator - examples

P N Baseball data - Stein’s estimator as shrinkage estimator
Stein's estimator - examples

Estimation of @ using the Bayes rule

Using the Bayes rule shown earlier the resulting estimate of the i-th
component 6; of 8 is therefore

=X+ (1—(k—3)/V)(X — X)

with V = >7(X; — X)? and with k — 3 = (k — 1) — 2 as the
appropriate constant since one parameter is estimated.

And with risk

R(0.5Y) < k (k—3)° i=S0/k

e EOR
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P N Baseball data - Stein’s estimator as shrinkage estimator
Stein's estimator - examples

REIES

Batting Retrans-
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Some things to take home

Some things to take home

Some things to take home

While the technical details might not be most important for this
seminar, there are quite a few things you should remember about
Stein's estimator:

@ Stein's Estimator provides a simple way of doing regularized
inference

@ The MLE is inadmissible for estimating the mean of a
multivariate normal distribution (Stein’s paradoxon)

@ Stein's estimator is available as empirical Bayes estimator

@ Stein's estimator can be used as shrinkage estimator
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For our data the estimate of 1/(1 +72) is (k — 3)/V = .791,
# =514 and X = —3.275 so

6H(X) = 0; = 791X + .209X; = .209X; — 2.50.

Batting Retrans-
average  Maximum form of

for season  likelihood  Stein's

remainder  estimate  estimator

i Pi Y pil
1 346 400 290
2 298 18 286
3 276 356 281
4 222 333 277
5 273 311 273
6 270 311 273
7 263 289 268
8 210 267 2
9 269 244 259
10 230 244 259
11 264 222 254
12 256 222 254
18 30 222 254
14 264 222 254
5 228 222 2
16 285 200 249
17 316 178 244
18 200 156 239
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. N Baseball data - Stein’s estimator as shrinkage estimator
Stein's estimator - examples

Results

results are striking:

@ X has total squared prediction error of 17.56 but
° SI(X) has total squared prediction error of only 5.01
e 31(X) is closer than X; to ; for 15 batters

@ The use of , limited translation estimators" (which we do not
cover here) can further improve the results
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