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Complex models - large p, small n

Applying statistical methods to analyze biological systems can be a
tricky task. We often have only limited data to fit complex models
and commonly used estimators (like ML) are not efficient enough
in this context.
Generally there are three ways to deal with this problem. We can
use:

Bayes inference

penalized maximum likelihood estimation or

shrinkage estimators
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Complex models - large p, small n

In the coming 45 minutes you will learn more about

Stein’s estimator

Stein’s paradoxon

How to apply Stein’s estimator to ’real’ data

The concept of shrinkage for regularized estimation

Christoph Knappik Shrinkage estimation

Introduction
Stein’s estimator - derivation
Stein’s estimator - examples

Some things to take home

Stein’s estimator in the simplest setting:Varθi
(Xi ) = 1

Stein’s estimator in an empirical Bayes context

Multivariate normal distribution and MLE for the mean

Suppose that for given θi

Xi | θi
ind∼ N(θi , 1), i = 1, ..., k ≥ 3.

The unknown vector of means θθθ ≡ (θ1, ..., θk) is to be estimated
with loss being the sum of squared component errors

L(θθθ, θ̂θθ) ≡
k∑

i=1

(θ̂i − θi )
2

where θ̂̂θ̂θ ≡ (θ̂1, ..., θ̂k) is the estimate of θθθ.
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The MLE’s risk

The MLE which is also the sample mean,
δ0δ0δ0(XXX ) ≡ XXX ≡ (X1, ...,Xk) has constant risk k (=MSE).

R(θθθ,δ0δ0δ0) ≡ Eθ

k∑
i=1

(Xi − θi )
2 = k
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Stein’s estimator

James and Stein introduced the estimator

δ1δ1δ1(XXX ) = (δ1
1(XXX ), ..., δ1

k(XXX )) for k ≥ 3

δ1
i (XXX ) ≡ µi + (1− (k − 2)/S)(Xi − µi ), i = 1, ..., k

with

µµµ ≡ (µ1, ..., µk)′ any initial guess at θθθ

S ≡
∑

(Xj − µj)
2
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Stein’s estimator in an empirical Bayes context

Stein’s estimator dominates the ML estimator

A simple calculation shows that δi (XXX ) is a weighted sum of Xi and
µi :

δ1
i (XXX ) = λµi + (1− λ)Xi , (λ =

k − 2

S
).

δ1δ1δ1(XXX ) has risk

R(θθθ,δ1δ1δ1) ≡ Eθ

k∑
i=0

(δ1
i (XXX )− θi )

2 ≤ k − (k − 2)2

k − 2 +
∑

(θi − µi )2
≤ k
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Stein’s estimator - Remember

Remember

Using the MLE to estimate the mean of a multivariate normal
distribution is a not an optimal choice! For k ≥ 3 the ML
estimator is inadmissible.
As you will see later, empirical Bayes estimators like Stein’s reduce
the total risk by a large margin compared to the sample mean’s
risk.
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The empirical Bayes context - a priori and a posteriori
distribution of θi

δ1
i (XXX ) ≡ µi + (1− (k − 2)/S)(Xi − µi ), i = 1, ..., k arises quite

naturally in an empirical Bayes context. If the {θi} themselves are
a sample from a prior distribution,

θi
ind∼ N(µi , τ

2), i = 1, ..., k

then the Bayes estimate of θi is the a posteriori mean of θi given
the data

δ∗i (Xi ) = Eθi | Xi = µi + (1− (1 + τ2)−1︸ ︷︷ ︸
λ

)(Xi − µi )
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The empirical Bayes context - estimation of τ 2

In the empirical Bayes situation τ2 is unknown but it can be
estimated because marginally the {Xi} are independently normal
with means {µi} and

S =
∑

(Xj − µj)
2 ∼ (1 + τ2)χ2

k

Since k ≥ 3, the unbiased estimate

E (k − 2)/S = 1/(1 + τ2)

is available.
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The empirical Bayes context - derivation of Stein’s
estimator

Substitution of (k − 2)/S for the unknown 1/(1 + τ2) in

δ∗i (Xi ) = Eθi | Xi = µi + (1− (1 + τ2)−1)(Xi − µi )

results in

µi + (1− (k − 2)/S)(Xi − µi ) ≡ δ1
i (XXX )

δ1
i (XXX ) has risk

EτEθ(δ
1
i (XXX )− θi )

2 = 1− (k − 2)/k(1 + τ2)
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The empirical Bayes context - Stein’s estimator’s risk

EτEθ(δ
1
i (XXX )− θi )

2 = 1− (k − 2)/k(1 + τ2)

is to be compared to the corresponding risks of

1 for the MLE and

1− 1/(1 + τ2) for the Bayes estimator

Thus if k is moderate or large δ1
i is nearly as good as the Bayes

estimator, but it avoids the possible gross errors of the Bayes
estimator if τ2 is misspecified.
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The empirical Bayes context - positive part Stein

A simple way to improve δ1
i is to use min{1, (k − 2)/S} as an

estimate of 1/(1 + τ2) instead of E (k − 2)/S .
This results in

δ1+
i (XXX ) = µi + (1− (k − 2)/S)+(Xi − µi )

with a+ ≡ max(0, a).

It can be proofed that R(θθθ,δ1+δ1+δ1+) < R(θθθ,δ1δ1δ1) ∀θθθ.

Christoph Knappik Shrinkage estimation

Introduction
Stein’s estimator - derivation
Stein’s estimator - examples

Some things to take home

Stein’s estimator in the simplest setting:Varθi
(Xi ) = 1

Stein’s estimator in an empirical Bayes context

The empirical Bayes context - Remember

Remember

Stein’s estimator dominates the MLE for k ≥ 3

Stein’s estimator can be interpreted as an empirical Bayes
estimator
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Using Stein’s estimator to predict batting averages

Christoph Knappik Shrinkage estimation



Introduction
Stein’s estimator - derivation
Stein’s estimator - examples

Some things to take home

Baseball data - Stein’s estimator as shrinkage estimator

Using Stein’s estimator to predict batting averages

The data

The batting averages of 18 major league players through their first
45 official at bats of the 1970 season (The samplesize of n = 45
was chosen to assure a satisfactory approximation of the binomial
by the normal distribution).

The challenge

Predict each player’s batting average over the reminder of the
season (70 - almost 600 at bats) using only the data of the first 45
at bats.

The solution

Using Stein’s estimator as a shrinkage estimator.
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Baseball data - Stein’s estimator as shrinkage estimator

The concept of shrinking - Regression towards the mean
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Baseball data - Stein’s estimator as shrinkage estimator

The estimation in detail - the data
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Baseball data - Stein’s estimator as shrinkage estimator

Transformation to adjust the variance

Let Yi be the batting average of Player i , i = 1, ..., 18(k = 18)
after n = 45 at bats. Further asume that

nYi
ind∼ Bin(n, pi ), i = 1, ..., 18

with pi the true season batting average, so EYi = pi . To stabilize
the variance of Yi at nearly unit variance the arc-sin transformation
is used: Xi ≡ f45(Yi ) with

fn(y) ≡ (n)
1
2 arcsin(2y − 1).
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Baseball data - Stein’s estimator as shrinkage estimator

Estimation of µ from the data

From the central limit theorem for the binomial distribution and
the continuity of fn we have approximately

Xi | θi
ind∼ N(θi , 1), i = 1, ..., k

with mean θi of Xi given approximately by θi = fn(pi ).

We can now use Stein’s estimator, but we also want to estimate
the common unknown value µ =

∑
µi/k by X =

∑
Xi/k,

shrinking all Xi toward X .
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Baseball data - Stein’s estimator as shrinkage estimator

Estimation of θθθ using the Bayes rule

Using the Bayes rule shown earlier the resulting estimate of the i-th
component θi of θθθ is therefore

δ̃1
i = X + (1− (k − 3)/V )(Xi − X )

with V ≡
∑

(Xi − X )2 and with k − 3 = (k − 1)− 2 as the
appropriate constant since one parameter is estimated.

And with risk

R(θθθ, δ̃1̃δ1̃δ1) ≤ k − (k − 3)2

k − 3 +
∑

(θi − θ)2
, θ ≡

∑
θi/k
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Baseball data - Stein’s estimator as shrinkage estimator

Results

For our data the estimate of 1/(1 + τ2) is (k − 3)/V = .791,
τ̂ = .514 and X = −3.275 so

δ̃1
i (XXX ) = θ̂i = .791X + .209Xi = .209Xi − 2.59.
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Baseball data - Stein’s estimator as shrinkage estimator

Results

The results are striking:

XXX has total squared prediction error of 17.56 but

δ̃1(X )δ̃1(X )δ̃1(X ) has total squared prediction error of only 5.01

δ̃1(X ) is closer than Xi to θi for 15 batters

The use of
”
limited translation estimators“ (which we do not

cover here) can further improve the results
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While the technical details might not be most important for this
seminar, there are quite a few things you should remember about
Stein’s estimator:

Stein’s Estimator provides a simple way of doing regularized
inference

The MLE is inadmissible for estimating the mean of a
multivariate normal distribution (Stein’s paradoxon)

Stein’s estimator is available as empirical Bayes estimator

Stein’s estimator can be used as shrinkage estimator
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