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Motivation and Questions

• Many time series data sets monitoring gene expression during the
cell-cycle are available. .

• We want to learn about cell cycle regulated genes. How can we identify
the subset of genes with a clear periodic signature?

• Controversy about data quality

• Problem of synchronization methods

• Statistical significance of results (chance fluctuations)?
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Program of Work

Guideline: avoid reinventing the wheel, use standard statistical time series
methods (no ad-hoc approaches please..)

• Visual assessment via average periodogram

• Test of hidden periodicities (i.e. unknown periodically expressed genes)
using Fisher’s exact g test

• Multiple testing with False Discovery Rate

• Reassessment of most popular benchmark data sets.
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Periodogram

Consider gene expression time series data Y1, ..., YN :

Then the periodogram is the corresponding power spectrum:

I(ω) =
1
N

∣∣∣∣∣
N∑

t=1

Yt exp(−iωt)

∣∣∣∣∣
2

, ω discrete ∈ [0, π] (1)

A simple graphical device is to search for significant peaks in I(ω).
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Average Periodogram

When Yit denotes the ith observed time series at time t where
i = 1, . . . , G and t = 1, . . . , N .

The average periodogram can then be defined as:

AI(ω) =
1
G

G∑
i=1

Ii(ω), (2)

where Ii(ω) is the periodogram of the ith time series.
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Graphical Interpretation

• If a time series contains a sinusoidal component with frequency
ω0 ∈ [0, π], then the periodogram exhibits a peak at that frequency.

• If a time series does not contain a periodic component, then the
periodogram reduces to a straight line.

• Hence, if there is no periodic component in the data then the average
spectral density of all time should will also reduce to a straight line.

• If there are a few time series exhibiting a strong cycle then their
corresponding periodogram ordinates contribute a large amount to the
average periodogram and consequently any visible peak should indicate
the presence of a periodic component.
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Example of the Average Periodogram

0.5 1.0 1.5 2.0 2.5 3.0

1.
0

1.
2

1.
4

Fourier Frequencies

A
ve

ra
ge

 P
er

io
do

gr
am

(a)

0.5 1.0 1.5 2.0 2.5 3.0

1.
0

1.
2

1.
4

Fourier Frequencies

A
ve

ra
ge

 P
er

io
do

gr
am

(b)

Average Periodogram for simulated data with 2000 time series (genes) of length 20. (a)

corresponds to a white noise process. (b) includes 100 time series with frequency 1.
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Fisher’s Exact g Test

Fisher (1929!) proposed a test of hidden periodicities in a time series using
the maximum periodogram coordinate by introducing the g statistic:

g =
maxk I(ωk)∑[N/2]

k=1 I(ωk)
. (3)

• The distribution of g can be computed exactly (important for small
sample size!) under a Gaussian process.

• Large values of g lead to the rejection of the null hypothesis.
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Gene Selection and Multiple Testing

• For each gene calculate the g-statistic and corresponding p-value

• Use FDR multiple comparison procedure on ordered p-values
p(1), p(2), . . . , p(G):

1. Let iq be the largest i for which p(i) ≤ i
Gq ,

2. then reject the null hypothesis for all genes g(1), g(2), . . . , g(iq).

It can be shown that this procedure controls the FDR at level q
(Benjamini and Hochberg 1995).
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FDR Simulations

N = 10 20 40 45 50 100 200
q = 0.15 3 21 65 103 118 121 117
q = 0.10 1 13 41 97 114 111 111
q = 0.05 1 3 30 90 107 104 104
q = 0.01 0 2 1 78 99 99 100
q = 0.001 0 0 0 45 88 99 99
Z 10 52 64 93 98 100 100

The simulations were carried out with 1900 random genes and 100 periodic
genes. N is the sample size, q the desired FDR level (expected type I error),
and Z the number of correctly identified periodic genes among the first 100
genes ranked according to their p-values.
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Summary and Recipe for Analysis

1. Check graphically using the average periodogram whether or not there
are periodic components in the data.

2. For each time series calculate Fisher’s g statistic.

3. For each of the test statistic calculate the corresponding p-value.

4. Identify the genes that show strong cyclic behavior under the desired
FDR level (e.g. q = 0.05).
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Investigated Molecular Data Sets

The datasets we have used are all available on the web or in public data
bases.

• Yeast Saccharomyces cerevisiae (4, Spellman et al.,1998)

• Caulobacter crescentus bacterial cell cycle (1, Laub et al.,2000)

• Human fibroblasts (2, Cho et al.,2001)

• Human cancer cell line (5, Whitfield et al.,2002)
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Results from FRD g Test

Cell type Experiment N G C C/G

Yeast cdc15 24 4289 766 17.9%

Yeast cdc28 17 1365 105 7.7%

Yeast alpha 18 4415 468 10.6%

Yeast elution 14 5695 193 3.4%

Caulobacter crescentus bacteria 11 1444 44 3.0%

Human Fribroblasts N2 13 4574 0 0% )

Human Fribroblasts N3 12 5079 0 0%

Human HeLa score1 12 14728 0 0%

Human HeLa score2 26 15472 134 0.9%

Human HeLa score3 48 39724 6043 15.2%

Human HeLa score4 19 39192 56 0.1%

Human HeLa score5 9 34890 0 0%

Notation: N is the sample size, G the total number of genes, C the number of periodic

genes that are statistically significant for a FRD level of q = 0.05).
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Yeast Cell Cycle

• four gene expression experiments

• three cell cycle synchronization techniques:

– temperature arrest (cdc15, cdc28)
– alpha factor arrest (alpha)
– elutriation synchronization (elution)

Controversy: synchronization method may affect the results.
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Average periodograms for Yeast

0.5 1.0 1.5 2.0 2.5 3.0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Fourier Frequencies

A
ve

ra
ge

 P
er

io
do

gr
am

cdc15

0.5 1.0 1.5 2.0 2.5 3.0

0.
1

0.
2

0.
3

0.
4

0.
5

Fourier Frequencies

A
ve

ra
ge

 P
er

io
do

gr
am

cdc28

0.5 1.0 1.5 2.0 2.5 3.0

0.
05

0.
10

0.
15

0.
20

Fourier Frequencies

A
ve

ra
ge

 P
er

io
do

gr
am

alpha

0.5 1.0 1.5 2.0 2.5 3.0

0.
05

0.
15

0.
25

0.
35

Fourier Frequencies

A
ve

ra
ge

 P
er

io
do

gr
am

elution

Clear signal of periodicity

Korbinian Strimmer, Department of of Statistics, University of Munich 17



Results obtained for Yeast

• the number of cyclic genes for cdc15 is similar to the one found in
previous studies, whereas we detected a smaller number of cyclic genes
for the other synchronization methods

• elution data provides little statistically significant information with
regard to cell cycle regulation

• difficult to distinguish cell cycle specific genes from an artifact of the
method used to synchronize the cells

• Only few periodic genes are identical across experiments
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Bacterial Cell Cycle

• shortest time series considered (1444 genes measured over 11 time
points)
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• the average periodogram indicates the presence of cell cycle specific
genes

• the g-test identified 44 significant periodically expressed genes ( as
compared with Laub et al. (2000) who have found 553).

Korbinian Strimmer, Department of of Statistics, University of Munich 19



Human Fibroblasts Cell Cycle

• consist of two microarray experiments

– N2 with 13 time points per gene

– N3 with 12 time points per gene
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Average Periodogram for Human Fibroblasts
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Results obtained from the Human Fibroblasts data set

• the average periodogram provides no evidence of periodic gene
expression in the overall data

• the formal g-test statistic did also not detect any periodicity

• these results cannot be due to the short sample size. E.g. the elution
(from the yeast experiment) and the bacteria data sets are also very
short

• previous authors have raised doubts, on biological grounds, of whether
this data is suited for statistical analysis (Shedden and Cooper, 2002)
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Human Cancer Cell Line

• consists of five experiments (score1, score2, score3, score4,
score5) measuring the expression levels of approximately 30,000 genes

• three cell cycle synchronization methods were used

– double thymidine block (score1, score2, score3)
– thymidine followed by arrest in mitosis with Nocodazole (score4)
– mitotic shake-off using an automated cell shake (score5)

• measurements were taken for up to 48 time points (score3), which
makes this study one of the most extensive microarray time series
experiment so far
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Average Periodogram of Human Cancer Cell Line
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Most Significant Periodic Genes (Hela/score3)
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Results obtained from the Human Cancer Cell Line

• the average periodogram showed evidence of periodicity in all data sets
except score5 (which shows a flat line)

• the g-test statistic detected the occurrence of periodic genes in all
scores apart from score1 and score5

• we were able to find a substantial amount of additional periodic genes
in score3 compared with other previous studies (e.g. Whitfield et al.,
2002)

• but results may also be due to cell perturbations rather than generic cell
cycle effects.
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Summary

• we have suggested two statistical tools for microarray time series
analysis:

– the average periodogram as an exploratory device to assess the
presence of periodically expressed transcripts

– a formal statistical test for gene selection based on Fisher’s g-statistic
and the FDR multiple testing that allows screening for individual
periodic genes

• Application to real microarray data shows that many data sets do not
contain many statistically significant periodic genes (and often these are
due to shock-response rather than generic activity).
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Advantages

• our approach is applicable to data sets with a small number of
measurements per gene

• average periodogram is essentially a non-parametric approach that takes
advantage of the parallel structure of the data

• the g statistic allows to detect periodically expressed genes even with
small amplitudes and is well defined for finite samples

• FDR multiple testing instead of arbitrary cut-off values
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Cons

• g statistic assumes a null-model a purely Gaussian process
- it is unclear whether this is a valid assumption for microarray time
series data (maybe preprocessing steps help).

• investigated genes are correlated - this may have an adverse impact on
the analysis (though non-independence is not critical for FDR testing).

• Open problem of interpreting statistically significant genes: how can one
distinguish perturbation artifacts from generic cell cycle activity
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Further conclusions

• there seems to be a remarkable gradient of signal quality in the data
sets publicly available

• for a reliable detection of cell-cycle-regulated genes at least 40 time
points per gene should be sampled.
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Reference and Software

Reference:

Wichert, S., K. Fokianos, and K. Strimmer. 2004. Indentifying periodically
expressed transcripts in microarray time series data. Bioinformatics
20:5–20.

Software:

The methods presented are implemented in the R package “GeneTS”
written by our group.

GeneTS is available from the R package archive CRAN and from the
Bioconductor web page.
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