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• Score test

• Two-sample t-test
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test

• Kruskal-Wallis test
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Example Dataset

Twenty mice, 10 from strain 1, 10 from strain 2.
Five mice from each strain receive treatment 1.
Five mice from each strain receive treatment 2.

Twenty identical microarrays.
Simple indirect comparison design.
Label treatment RNA with green dye.
Label common reference with red dye.
Co-hybridise treatment RNAs and common reference
to 20 arrays.

Consider just one probe (there are thousands on the
whole array).
The 20 log2(G/R) measurements are:

Treatment 1 Treatment 2
Strain 1 Strain 2 Strain 1 Strain 2

-1.077 -3.023 -3.047 -0.463
0.805 0.221 -4.639 -1.039
0.457 -1.522 -2.336 -2.050
4.047 -1.340 -1.119 -3.819
5.149 0.549 0.760 -4.668
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Questions

1. Is expression different in two treatment groups?

2. Is expression different in two strain groups?

3. Is there a treatment-strain interaction?

4. Pretend four treatment-strain groups are actually
four treatment groups.
Is expression different in these four treatment
groups?
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Score test

(Comparing mean in two groups)

Let Xij (j = 1, . . . , ni) be expression in mouse j of
group i (i = 1,2).

Assume

Xij = µi + εij

where εij ∼ N(0, σ2).

Null hypothesis is H0 : µ1 = µ2.

Let X̄i be mean expression in group i.

Let X̄ be mean expression overall (in groups 1 and 2).

X̄1 =

(

−1.077 + 0.805 + 0.457 + 4.047 + 5.149
−3.023 + 0.221 − 1.522 − 1.340 + 0.549

)

10
= 0.427

X̄2 = −2.242

X̄ = −0.908

So, X̄1 − X̄2 = 2.669.

If H0 is true,

X̄1 − X̄2

σ
√

1/n1 + 1/n2

∼ N(0,1)

But we do not know σ2.
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Estimate σ2 by

s2 =
1

n − 1

2
∑

i=1

ni
∑

j=1

(Xij − X̄)2

Then

X̄1 − X̄2

s
√

1/n1 + 1/n2

∼ N(0,1)

approximately.

With example data,

s2 =
1

20 − 1

[

(−1.077 −−0.908)2 + . . .
+(−4.668 − 0.908)2

]

= 6.421

So,

2.669
√

6.421
(

1
10

+ 1
10

)

= 2.355

Now, if Z ∼ N(0,1), then P [|Z| > 2.355] = 0.0185.

So, approximate p-value is 0.019.
We reject H0 at 5% level.
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Two-sample t-test

Score test sometimes used, but t-test better.
More powerful and gives exact p-value.

Instead of using

s2 =
1

n − 1

2
∑

i=1

ni
∑

j=1

(Xij − X̄)2

Use ‘pooled’ estimate

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

where s2
i is estimate of σ2 based on data from group i:

s2
i =

1

ni − 1

ni
∑

j=1

(Xij − X̄i)
2

If H0 true,

X̄1 − X̄2

sp

√

1/n1 + 1/n2

∼ tn1+n2−2

exactly.

For example data, s2
p = 4.799

2.669
√

4.779
(

1
10

+ 1
10

)

= 2.702

If T ∼ t18, then P [|T | > 2.702] = 0.0146.

So, exact p-value is 0.0146.
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ANOVA (Analysis of Variance)

Two-sample t-test is for two groups.
ANOVA is generalisation to more than two groups.

One-way ANOVA

Assume

Xij = µi + εij

where εij ∼ N(0, σ2) (i = 1, . . . , I; j = 1, . . . , ni).

Null hypothesis is H0 : µ1 = . . . = µI.

Look at ratio of variation between groups to variation
within groups. If ratio is large, suggests H0 is false.

Formally,

B =

∑I
i=1 ni(X̄i − X̄)2

I − 1

is between-group variation. Within-group variation is

W =

I
∑

i=1

(ni − 1)s2
i

n − I

If H0 true, B/W has F-distribution with (I − 1) and
(n − I) degrees of freedom.

For example dataset, I = 4 and

B =
5

4 − 1
[(1.876 −−0.908)2 + (−1.023 −−0.908)2

+(−2.076 −−0.908)2 + (−2.408 −−0.908)2]

= 18.96

W =
5 − 1

20 − 4
(6.827 + 2.092 + 4.135 + 3.221) = 4.07
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So, B/W = 4.66.

If F ∼ F3,16 then P [F > 4.66] = 0.0159.
So, p-value is 0.016.

One-way ANOVA with two groups gives identical p-
values to two-sample t-test

Two-way ANOVA

Suppose there are two factors, rather than just one,
e.g. treatment and strain. Assume

Xijk = αi + βj + εijk (0.1)

where εijk ∼ N(0, σ2)
(i = 1, . . . , I, j = 1; . . . , J; k = 1, . . . , nij).

E.g. α1, . . . , αI treatment effects and β1, . . . , βI strain
effects.

Can test null hypothesis of no treatment effect: H0 :
αi = α for all i; or of no strain effect: H0 : βj = β for
all j.

Interaction

Equation (0.1) is for model without interaction, i.e.
effect of treatment assumed same for all strains. In-
teraction means effect of treatment differs according
to strain. Adding interaction terms gives

Xijk = αi + βj + γij + εijk

Test of no interaction is test of null hypothesis that
all γij’s equal zero.

ANOVA extends to more than two factors.
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Mann-Whitney two-sample /
Wilcoxon Rank Sum test

T-test assumes normally distributed errors and equal
error variances in two groups.
A variant exists (Welch test) that allows different error
variances, but it still assumes normality.

When data not normally distributed, type-I error rate
higher than nominal level. Too many false positives.

Mann-Whitney test (a.k.a. Wilcoxon Rank Sum test)
is ‘non-parametric’, i.e. does not make normality as-
sumption. It maintains correct type-I error rate.

Test works with ranks of expression data, rather than
actual values. Ranks of example data are

Treatment 1 Treatment 2
Strain 1 Strain 2 Strain 1 Strain 2

11 5 4 13
18 14 2 12
15 8 6 7
19 9 10 3
20 16 17 1

Ranks for treatment 1 tend to higher than those for
treatment 2.
Sum of ranks in group 1 is R = 11+18+. . .+16 = 135.
Total sum of ranks is 1 + 2 + . . . + 20 = 210.
If H0 is true, would expect R to be about 210/2 = 105.
Is R = 135 unlikely under H0?
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Under H0, all permutations of ranks equally probable.

16 14 9 7
11 4 13 18
12 2 17 20 R∗ = 92
5 19 15 10
8 1 6 3

6 15 3 20
9 12 8 18

16 19 10 14 R∗ = 110
4 17 13 2
1 11 5 7

4 1 5 3
14 13 16 10
8 18 17 2 R∗ = 110

12 20 7 19
9 11 6 15

Exact p-value is obtained by looking at all

(

20
10

)

=

6.7 × 109 possible permutations.
Calculate R∗ for each permutation.

P-value is the proportion in which R∗ > 135 multiplied
by two.
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6.7 × 109 is very large number to evaluate, but can
randomly generate, say, 10,000 permutations and es-
timate p-value.

Also, for large samples, distribution of R under H0

can be approximated and an approximate p-value cal-
culated.

For example dataset, p = 0.023.

Wilcoxon test is robust, but less powerful when normal
assumption is true.
(In this example, p = 0.023 compared to 0.0146 for
t-test.)
Loss of power quite small for large samples. Can be
large for small samples.

Note: Wilcoxon test is example of a permutation test.
These are common in statistics. All use principle that
under H0 all permutations of the data are equally prob-
able. Calculate some statistic (e.g. R) and see in what
proportion of permutations the statistic is as extreme
as value actually observed.
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Kruskal-Wallis test

Kruskal-Wallis test is generalisation of Wilcoxon test
to more than two groups.

Non-parametric equivalent of one-way ANOVA.

Does not assume normally distributed data, and so is
robust.

However, if data are normally distributed, ANOVA is
more powerful.

For the example dataset, the Kruskal-Wallis test for
equality of mean expression in the four groups gives
p = 0.048 (compared to 0.016 for ANOVA).
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