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4 x 4 sectors

19 x 21 probes/sector

6,384 probes/array

Sector

RGB overlay of Cy3 and Cy5 images

Probe



Terminology

• Target: DNA hybridized to the array, mobile 
substrate.

• Probe: DNA spotted on the array, 

aka. spot, immobile substrate.

• Sector: collection of spots printed using the same 
print-tip (or pin),

aka. print-tip-group, pin-group, spot matrix, grid.

• The terms slide and array are often used to refer to 
the printed microarray.

• Batch: collection of microarrays with the same 
probe layout.

• Cy3 = Cyanine 3 = green dye.

• Cy5 = Cyanine 5 = red dye.



Segmentation

Adaptive segmentation, SRG Fixed circle segmentation

Spots usually vary in size and shape.



Seeded region growing

• Adaptive segmentation method.

• Requires the input of seeds, either individual pixels 
or groups of pixels, which control the formation of the 
regions into which the image will be segmented. 

Here, based on fitted foreground and background 
grids from the addressing step.

• The decision to add a pixel to a region is based on 
the absolute gray-level difference of that pixel’s 
intensity and the average of the pixel values in the 
neighboring region.

• Done on combined red and green images.
• Ref. Adams & Bischof (1994)



Local background

---- GenePix

---- QuantArray

---- ScanAnalyze



What is (local) background? 

usual assumption:

total brightness = 
background brightness (adjacent to spot)

+ brightness from labeled sample cDNA
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Quality measures

• Spot quality

– Brightness: foreground/background ratio;

– Uniformity: variation in pixel intensities and ratios of 

intensities within a spot;

– Morphology: area, perimeter, circularity.

• Slide quality

– Percentage of spots with no signal;

– Range of intensities;

– Distribution of spot signal area, etc.

• How to use quality measures in subsequent 

analyses?



LOESS-based
Normalization

Yang, Dudoit, et al.

Nucl. Acids Res. 30(4):e15, 2002



Normalization



Normalization

• Purpose. Identify and remove the effects of
systematic variation in the measured 
fluorescence intensities, other than differential 
expression, for example 

– different labeling efficiencies of the dyes;

– different amounts of Cy3- and Cy5-labeled
mRNA;

– different scanning parameters;

– print-tip, spatial, or plate effects, etc.



Normalization

• Normalization is needed to ensure that 
differences in intensities are indeed due to
differential expression, and not some 
printing, hybridization, or scanning artifact.

• Normalization is necessary before any 
analysis which involves within or between 
slides comparisons of intensities, e.g., 
clustering, testing.



Normalization

• The need for normalization can be seen most 
clearly in self-self hybridizations, where the 
same mRNA sample is labeled with the Cy3 and 
Cy5 dyes.

• The imbalance in the red and green intensities is 
usually not constant across the spots within 
and between arrays, and can vary according to 
overall spot intensity, location, plate origin, etc.

• These factors should be considered in the 
normalization.



Single-slide data display

• Usually: R vs. G

log2R vs. log2G.

• Preferred 

M  = log2R – log2G (ratio)

vs. A  = (log2R + log2G)/2. (geom. mean)

• An MA-plot amounts to a 45o

counterclockwise rotation of a 

log2R vs. log2G plot followed by scaling.



Self-self hybridization

log2 R vs. log2 G M vs. A

M = log2R - log2G,   A = (log2R + log2G)/2

M vs. A



Self-self hybridization

Robust local regression

within sectors 

(print-tip-groups)

of intensity log-ratio M

on average log-intensity 

A.

M = log2R - log2G,   A = (log2R + log2G)/2

M vs. A



Swirl zebrafish experiment

• Goal. Identify genes with altered expression 
in Swirl mutants compared to wild-type 
zebrafish.

• 2 sets of dye-swap experiments (n=4).

• Arrays: 

– 8,448 probes (768 controls);

– 4 x 4 grid matrix; 

– 22 x 24 spot matrices.

• Data available in Bioconductor package 
marrayInput.



Diagnostic plots

• Diagnostics plots of spot statistics

E.g. red and green log-intensities, intensity log-

ratios M, average log-intensities A, spot area.

– Boxplots;

– 2D spatial images;

– Scatter-plots, e.g. MA-plots;

– Density plots.

• Stratify plots according to layout 

parameters, e.g. print-tip-group, plate.



2D spatial images

Cy3 background intensity Cy5 background intensity



2D spatial images

Intensity

log-ratio, M



Boxplots by print-tip-group

Intensity

log-ratio, M



MA-plot by print-tip-group

Intensity

log-ratio, M

Average

log-intensity, A

M = log2R - log2G,   A = (log2R + log2G)/2



Location normalization

log2R/G log2R/G – L(intensity, sector, …)

• Constant normalization. Normalization function 

L is constant across the spots, e.g. mean or 

median of the log-ratios M.

• Adaptive normalization. Normalization function 

L depends on a  number of predictor variables,

such as spot intensity A, sector, plate origin.



Location normalization

• The normalization function can be 

obtained by robust locally weighted 

regression of the log-ratios M on predictor 

variables.

E.g. regression of M on A within sector.

• Regression method: e.g. lowess or loess 

(Cleveland, 1979; Cleveland & Devlin, 1988).



Location normalization
• Intensity-dependent normalization.

Regression of M on A (global loess).

• Intensity and sector-dependent normalization.

Same as above, for each sector separately 

(within-print-tip-group loess).

• 2D spatial normalization.

Regression of M on 2D-coordinates. 

• Other variables: time of printing, plate, etc.

• Composite normalization. Weighted average of 

several normalization functions.



2D images of L values

Global median

normalization
Global loess

normalization

Within-print-tip-

group loess

normalization

2D spatial
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2D images of normalized M-L
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Boxplots of normalized M-L

Global median

normalization
Global loess

normalization

Within-print-tip-

group loess
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2D spatial

normalization



MA-plots of normalized M-L

Global median

normalization
Global loess

normalization

Within-print-tip-

group loess

normalization

2D spatial

normalization



Normalization

• Within-slide

– Location normalization - additive on log-
scale.

– Scale normalization - multiplicative on log-
scale.

– Which spots to use?

• Paired-slides (dye-swap experiments)

– Self-normalization.

• Between-slides.



Scale normalization

• The log-ratios M from different sectors, plates, or 

arrays may exhibit different spreads and some 

scale adjustment may be necessary.

log2R/G (log2R/G –L)/S

• Can use a robust estimate of scale such as the 

median absolute deviation (MAD)

MAD = median | M – median(M) |.



Scale normalization

• For print-tip-group scale normalization, assume 

all print-tip-groups have the same spread in M.

• Denote true and observed log-ratio by ij and

Mij, resp., where Mij = ai ij, and i indexes print-

tip-groups and j spots. Robust estimate of ai is

where MADi is MAD of Mij in print-tip-group i.

• Similarly for between-slides scale normalization.

I
I

i i

i

i

MAD

MAD
a

1

ˆ



Which genes to use?

• All spots on the array:

– Problem when many genes are differentially expressed.

• Housekeeping genes: Genes that are thought to 

be constantly expressed across a wide range of 

biological samples (e.g. tubulin, GAPDH). 

Problems:

– sample specific biases (genes are actually regulated),

– do not cover intensity range.



Which genes to use?

• Genomic DNA titration series:

– fine in yeast,

– but weak signal for higher organisms with 

high intron/exon ratio (e.g. mouse, human).

• Rank invariant set (Schadt et al., 1999; 

Tseng et al., 2001): genes with same rank in 

both channels. Problems: set can be small.



Microarray sample pool

• Microarray Sample Pool, MSP: Control sample 
for normalization, in particular, when it is not 
safe to assume most genes are equally 
expressed in both channels.

• MSP: pooled all 18,816 ESTs from RIKEN 
release 1 cDNA mouse library.

• Six-step dilution series of the MSP.

• MSP samples were spotted in middle of first and 
last row of each sector.

• Ref. Yang et al. (2002).



Microarray sample pool

MSP control spots 

• provide potential probes for every target 
sequence;

• are constantly expressed across a wide range of 
biological samples;

• cover the intensity range;

• are similar to genomic DNA, but without intron
sequences better signal than genomic DNA in 
organisms with high intron/exon ratio;

• can be used in composite normalization.



Microarray sample pool

MSP

Rank invariant

Housekeeping

Tubulin, GAPDH



Dye-swap experiment

• Probes
– 50 distinct clones thought to be differentially 

expressed in apo AI knock-out mice compared to 
inbred C57Bl/6 control mice (largest absolute t-
statistics in a previous experiment).

– 72 other clones.

• Spot each clone 8 times .

• Two hybridizations with dye-swap: 

Slide 1: trt red, ctl green.

Slide 2: trt green, ctl red.



Dye-swap experiment



Self-normalization
• Slide 1, M  = log2 (R/G) - L

• Slide 2, M’ = log2 (R’/G’) - L’

Combine by subtracting the normalized log-ratios:

M – M’

= [ (log2 (R/G) - L) - (log2 (R’/G’) - L’) ] / 2

[ log2 (R/G) + log2 (G’/R’) ] / 2

[ log2 (RG’/GR’) ] / 2

provided L= L’.

Assumption: the normalization functions are the same for the two

slides.



Checking the assumption

MA-plot for slides 1 and 2



Result of self-normalization

(M - M’)/2 vs. (A + A’)/2



Summary

Case 1. Only a few genes are expected to change.

Within-slide

– Location: intensity + sector-dependent normalization.

– Scale: for each sector, scale by MAD.

Between-slides

– An extension of within-slide scale normalization. 

Case 2. Many genes are expected to change.

– Paired-slides: Self-normalization.

– Use of controls or known information, e.g. MSP.

– Composite normalization.



Pre-processing cDNA microarray

data
• marrayClasses:

– class definitions for cDNA microarray data;

– basic methods for manipulating microarray objects: printing, 
plotting, subsetting, class conversions, etc.

• marrayInput:

– reading in intensity data and textual data describing probes and
targets;

– automatic generation of microarray data objects;

– widgets for point & click interface.

• marrayPlots: diagnostic plots.

• marrayNorm: robust adaptive location and scale normalization 

procedures.



Huber, v. Heydebreck, et al.

Bioinformatics 18 suppl. 1 (2002), S96-S104

Variance
Stabilization



Which genes are differentially transcribed?Which genes are differentially transcribed?

same-same tumor-normal

log-ratio



Raw data are not mRNA concentrations

o other array 
manufacturing-
related issues

o hybridization
efficiency and 
specificity

o DNA-support
binding

o reverse
transcription
efficiency

o ‘background’
correction

o spotting
efficiency

o amplification
efficiency

o signal
quantification

o PCR yield, 
contamination

o RNA
degradation

o image
segmentation

o clone
identification and 
mapping

o tissue
contamination



Raw data are not mRNA concentrations

o other array 
manufacturing-
related issues

o hybridization
efficiency and 
specificity

o DNA-support
binding

o reverse
transcription
efficiency

o ‘background’
correction

o spotting
efficiency

o amplification
efficiency

o signal
quantification

o PCR yield, 
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o RNA
degradation

o image
segmentation
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identification and 
mapping

o tissue
contamination

The problem is less that these 
steps are ‘not perfect’; it is 
that they may vary from array 
to array, experiment to 
experiment.
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plicitely accounted for 
o “noise”

Error model



ik ik ik iky a b x= +

measured intensity  =  offset  +    gain   *   true abundance
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ik ik ik iky a b x= +

measured intensity  =  offset  +    gain   *   true abundance

bi per-sample
normalization factor

bk sequence-wise
labeling efficiency

ηik ~ N(0,s2
2)

“multiplicative noise”

exp( )iik k ikb b b η=

ik ikb x+

iik ik ika a L ε= + +
ai per-sample offset

Lik local background 
provided by image 
analysis

εik ~ N(0, bi
2s1

2)

“additive noise”

ik iky a=



Calibration
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Correct for systematic variations.
To do: fit appropriate "correction parameters" 
ai, bi, and apply to the data.
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Calibration
("normalization")

Calibration
("normalization")

Correct for systematic variations.
To do: fit appropriate "correction parameters" 
ai, bi, and apply to the data.

"Heteroskedasticity" (unequal variances)
weighted regression or variance stabilizing

transformation

Outliers:
use a robust method 
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Problem: all data points get the same weight, even 
if they come with different variance ('precision') -
this may greatly distort the fit! 



Ordinary regressionOrdinary regression

( )2
all i

residual iSoS =

Minimize the sum of squares

residual:= "fit" - "data"

Problem: all data points get the same weight, even 
if they come with different variance ('precision') -
this may greatly distort the fit! 

Solution: weight them accordingly (some weights 
may be zero)



Weighted regressionWeighted regression

( )2i
all i

w residual iSoS = ×

If wi = 1/variance(i), then minimizing SoS produces 
the maximum-likelihood estimate for a model with 
normal errors.

1/ variance(i) if residual(i) median(residuals)
( )

0 otherwise
w i

≤
=



Weighted regressionWeighted regression

( )2i
all i

w residual iSoS = ×

If wi = 1/variance(i), then minimizing SoS produces 
the maximum-likelihood estimate for a model with 
normal errors.

1/ variance(i) if residual(i) median(residuals)
( )

0 otherwise
w i

≤
=

Least Median Sum of Squares Regression:

1/ variance(i) if residual(i) media
( )w i

≤
=



But what is the variance of a 
measured spot intensity?

To estimate the variance of an individual probe, need 
many replicates from biologically identical samples. 
Often unrealistic.

Idea:

o use pooled estimate from several probes who we 
expect to have about the same true (unknown) variance

varpooled = mean (var individual probes)

o there is an obvious dependence of the variance on the 
mean intensity, hence stratify (group) probes by that.



the variance-mean dependencethe variance-mean dependence

data (cDNA slide):

model:

relation between
u E(Yik)

v Var(Yik)

2 2 2
0

( )

( )

v u

c u u s

=

+ +



variance stabilizationvariance stabilization

Xu a family of random variables with 

EXu=u, VarXu=v(u).

Define

var f(Xu ) ≈ independent of u

1
( )

v( )

x

f x du
u

=

derivation: linear approximation



variance stabilizing transformation

0 2 4 6 8 1
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sd(h(X))
E(h(X))



variance stabilizing transformationsvariance stabilizing transformations
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v ( )

x
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u
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variance stabilizing transformationsvariance stabilizing transformations

1
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x

f x d u
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1.) constant variance ( ) constv u f u= ∝
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3.) offset
2

0 0( ) ( ) log( )v u u u f u u∝ + ∝ +



variance stabilizing transformationsvariance stabilizing transformations

1
( )

v ( )

x

f x d u
u

=

1.) constant variance ( ) constv u f u= ∝

2.) const. coeff. of variation 2( ) logv u u f u∝ ∝

3.) offset
2

0 0( ) ( ) log( )v u u u f u u∝ + ∝ +

4.) microarray

2 2 0
0( ) ( ) arsinh

u u
v u u u s f

s
+∝ + + ∝



the arsinh transformationthe arsinh transformation

- - - log u

——— arsinh((u+uo)/c)

( )
( )

2arsinh( ) log 1

arsinh log log 2 0lim
x

x x x

x x
→∞

= + +

− − =

intensity
-200 0 200 400 600 800 1000
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parameter estimationparameter estimation

2Y
arsinh , (0, )iki

k ki ki
i

a
N c

b
µ ε ε− = +

o maximum likelihood estimator: straightforward 
– but sensitive to deviations from normality

o models holds for genes that are unchanged; 
differentially transcribed genes act as outliers.

o robust variant of ML estimator, à la Least
Trimmed Sum of Squares regression.

o works as long as <50% of genes are 
differentially transcribed



evaluation: effects of different data transformationsevaluation: effects of different data transformations
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Coefficient
of

variation

Coefficient
of

variation

cDNA slide:
H. Sueltmann



SummarySummary

log-ratio

'generalized' log-ratio

o advantages of variance-stabilizing data-transformation: 
generally better applicability of statistical methods 
(hypothesis testing, ANOVA, clustering, classification…)

o R package vsn

1 21 2

1 2

Y Y
arsinh arsinhk ka a

b b
− −−

1 21 2

1 2

Y Y
log logk ka a

b b
− −−
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